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Abstract: It remains an outstanding question whether gamma-band oscillations reflect unitary cognitive
processes within the same task. EEG/MEG studies do lack the resolution or coverage to address the
highly debated question whether single gamma activity patterns are linked with multiple cognitive
modules or alternatively each pattern associates with a specific cognitive module, within the same
coherent perceptual task. One way to disentangle these issues would be to provide direct identification
of their sources, by combining different techniques. Here, we directly examined these questions by per-
forming simultaneous EEG/fMRI using an ambiguous perception paradigm requiring holistic integra-
tion. We found that distinct gamma frequency sub-bands reflect different neural substrates and
cognitive mechanisms when comparing object perception states vs. no categorical perception. A low
gamma sub-band (near 40 Hz) activity was tightly related to the decision making network, and in par-
ticular the anterior insula. A high gamma sub-band (�60 Hz) could be linked to early visual process-
ing regions. The demonstration of a clear functional topography for distinct gamma sub-bands within
the same task shows that distinct gamma-band modulations underlie sensory processing and percep-
tual decision mechanisms. Hum Brain Mapp 35:5219–5235, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

It has been proposed that gamma-band activity signals
emerging object percepts and decision-making [Gruber
et al., 2001; Martinovic et al., 2008; Rodriguez et al., 1999;
Sedley and Cunningham, 2013]. Accordingly, gamma-band
modulation is increased for ambiguous states prior to a
perceptual decision [Castelhano et al., 2013]. Animal stud-
ies [Castelo-Branco et al., 1998; Varela et al., 2001] further
support the ability to form coherent Gestalts [Keil et al.,
1999] as a function of gamma, in addition to the earlier
mentioned signaling of emerging object percepts.

Furthermore, gamma oscillations have been related to
many cognitive processes [Crone et al., 2011; Fries, 2009;
Gruber et al., 2001; Jensen et al., 2007; Rodriguez et al.,
1999; Tallon-Baudry and Bertrand, 1999]. Hence, electro-
physiological studies showed a wide variety of gamma-
band patterns and sources for different tasks [Akimoto
et al., 2013; Edwards et al., 2005; Fries et al., 2008; Gruber
et al., 2008; Gr€utzner et al., 2010; Jerbi et al., 2009;
Lachaux et al., 2005; Ray and Maunsell, 2011; Uchida
et al., 2001] but not within the same type of cognitive
task. Accordingly, it remains unclear whether distinct pat-
terns related to different cognitive modules coexist in the
same task. Unimodal studies do not have enough resolu-
tion to test for nonunitary sources and to establish their
spatial distribution [Crone et al., 2011; Uhlhaas et al.,
2011]. It is known that gamma patterns occur in a distrib-
uted manner across cortical regions [Groppe et al., 2013;
Guggisberg et al., 2007; Lachaux et al., 2005] and even at
different frequency ranges [Crone et al., 2011; Hoogen-
boom et al., 2006; Sedley and Cunningham, 2013; Uhlhaas
et al., 2011]. A major question is however still open: is
there a single gamma activity pattern of a broad fre-
quency band that reflects perception [Gruber et al., 2001;
Rodriguez et al., 1999], decision mechanisms [Guggisberg
et al., 2007] or both or, on the other hand, are there sepa-
rable gamma narrow sub-bands with distinct spatial sour-
ces in the brain?

In line with this notion, earlier experiments (in particu-
lar in animals) suggested that low- and high-frequency
oscillatory sub-bands may indeed reflect different neural
processes and may be originated in distinct brain regions
[Guggisberg et al., 2007; Ray and Maunsell, 2011; Scheer-
inga et al., 2011]. In this line, a recent MEG study also
showed a dissociation of attentional processes influencing
higher gamma oscillations in early visual cortex, but not
higher visual cortex, with clear distinct source localization
for distinct frequency sub-bands, but within the same
region (lateral and medial visual cortex [Koelewijn et al.,
2013]. Interestingly, we have also identified two distinct
patterns of gamma-band activity for the moment a holistic
object percept is formed [Bernardino et al., 2013; Castel-
hano et al., 2013]. These were observed in a perceptual
decision paradigm requiring object recognition from 3D
structure-from-motion in normal subjects and in a clinical
model of impaired perceptual coherence [Bernardino et al.,

2013]. A low range gamma sub-band (near 40 Hz) was
increased in patients while a higher gamma narrow band
(�60 Hz) was increased in controls, suggesting the use of
distinct cognitive modules. This finding inspired us to test
whether a critical dissociation exists between low and high
gamma-band oscillations [Sedley and Cunningham, 2013].
If they reflect nonunitary processes, that would be relevant
to understand normal cognition and neuropsychiatric dis-
orders such as autistic spectrum disorder and schizophre-
nia [Bernardino et al., 2013; Uhlhaas and Singer, 2012],
which are clinical models of fragmented perception and
decision.

Despite the technical challenges, simultaneous record-
ings of electrophysiological and hemodynamic activity can
be successfully measured [Allen et al., 1998; Brookes et al.,
2009; Duarte et al., 2013; Freyer et al., 2009; Mandelkow
et al., 2006; Ritter and Villringer, 2006; Rosenkranz and

Lemieux, 2010] and potentially clarify the contribution and
sources of relatively narrow low- and high- frequency neu-
ronal dynamics [Guggisberg et al., 2007; Ray and Maun-
sell, 2011; Scheeringa et al., 2011] given their
complementary advantages [Foucher et al., 2003; Freyer

et al., 2009] and coverage [Herrmann and Debener, 2008;
Laufs, 2008; Ritter and Villringer, 2006]. Besides, despite
the known limitation of EEG/fMRI, gamma-band activity
can be assessed using this technique at least in the 25–75
Hz range [Brookes et al., 2009; Mandelkow et al., 2006;

Mantini et al., 2007b] and linked to the Blood oxygen level
dependent (BOLD) fMRI response [Lachaux et al., 2007;
Logothetis, 2008; Logothetis et al., 2001; Niessing et al.,
2005], as assessed by general linear models [Michels et al.,
2010; Sumiyoshi et al., 2012] in humans performing a cog-

nitive task [Scheeringa et al., 2011].
To investigate the neuronal sources of gamma-band

responses to ambiguous perceptual states [Lachaux et al.,
2005; Laufs, 2008] with high spatial resolution, we per-
formed simultaneous EEG/fMRI recordings. Our hypothe-
sis was that independent gamma processes underlie visual
perception and decision. We used a face/object detection
and categorization task that was previously shown to
increase gamma-band activity patterns [Castelhano et al.,
2013; Rebola et al., 2012; Rodriguez et al., 1999]. Increased
activity was found to perception vs. no-perception states.
We predicted that separable sources of gamma-band activ-
ity should be identified in relation to different cognitive
processes by means of an EEG-informed fMRI approach.
This strategy implements EEG pre-processing to obtain a
specific EEG feature (time-frequency activity within a spe-
cific frequency band [Scheeringa et al., 2009]) that can be
used as predictor for the general linear model (GLM) analy-
sis of simultaneous fMRI data [Debener et al., 2006]. We
found that low gamma (30–48 Hz) response is related to
general perceptual decision-making networks and high
gamma activity (52–70 Hz) is associated with low level vis-
ual processing. These nonunitary patterns are relevant for
the understanding of normal and clinical impaired holistic
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integration and show that current neural models of gamma
activity generation need to consider their duality.

MATERIALS AND METHODS

Subjects

We performed a simultaneous EEG/fMRI experiment in
ten healthy subjects (age 5 26.33 6 4.17 years; six males;
two left handed). All participants had normal or corrected-
to normal vision and no history of neurological disorders
and were naive regarding the purpose of the study. All
subjects performed the simultaneous EEG/fMRI task (two
runs) and one prior run of EEG recording outside the
scanner. This study was approved by the Ethics Commis-
sion of the Faculty of Medicine of the University of Coim-
bra and was conducted in accordance with the declaration
of Helsinki. All subjects gave written informed consent to
participate in the study.

Stimuli

Visual stimuli were Mooney pictures (black and white
incomplete stimuli [Mooney, 1957]) of faces (upright and
inverted), guitars (prototypical stimuli), and their
scrambled versions (see Fig. 1 for examples). Stimuli were

presented using Presentation software (Neurobehavioral
Systems). Subjects viewed the projected (LCD Projector,
Avotec, USA) stimuli in a white screen located at the back
of the scanner (stimulus size: 6.56� 3 6.60�) through a mir-
ror placed on the head coil.

Procedure

The experiment consisted of three runs of EEG record-
ings: two runs were collected during fMRI acquisition and
one outside the scanner. fMRI was acquired concurrently
with the EEG recordings. Each run included 25 Mooney
face stimuli, 25 inverted Mooney faces, 25 Mooney guitars,
and 25 scrambled Mooney events. In total we had 50 trials
of each condition for the recordings obtained inside the
scanner. The number of trials for perceived faces vs. non
faces stimuli was approximately identical thus precluding
possible response-related attentional effects. Recognition of
Mooney objects was previously linked to increased
gamma-band activity [Castelhano et al., 2013; Rebola et al.,
2012; Rodriguez et al., 1999]. Stimulus presentation was
randomized across runs and subjects, and no stimulus was
repeated to prevent repetition induced effects. The trial
duration was 2 s, during which one stimulus was pre-
sented for 150 ms. Stimulus presentation was triggered

Figure 1.

Task timeline. (A) Examples of Mooney object categories and

scrambled controls. (B) Timeline details; Each run started with a

black screen for 10,000 ms and contained 100 trials (25 trials of

each category). Three runs were performed during the experi-

ment (one outside scanner and two inside scanner). Stimuli

were presented for 150 ms in a trial that lasted for 2,000 ms.

The average inter-stimulus-interval (fixation cross on a black

screen) was 7,850 ms (slow event-related design). Stimulus

presentation was randomized across subjects and runs, and

there were no repetitions. Subjects had to discriminate between

categories (face, guitar, or other) and to press the respective

button in the response box only after stimulus disappearance.

EEG and fMRI recordings were done concurrent with stimulus

presentation.
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automatically by the fMRI pulse. The stimuli (see Fig. 1)
were randomly presented with an average inter-stimulus
interval of 7,850 ms. A fixation cross on a dark screen was
shown during the baseline periods. Subjects performed a
forced choice discrimination task between the Mooney cat-
egories and were asked to press one of three keys after the
image presentation to discriminate between faces, guitars,
and scrambled stimuli. Note that responses were required
only after the stimulus offset (for details on reaction times
see results section), to prevent early contamination from
motor responses.

EEG Recording

For EEG recording we used an MR compatible EEG
system (MagLinkTM, NeuroScan, USA) with a cap provid-
ing 64Ag/AgCl nonmagnetic electrodes positioned
according to the extended 10/20 system. The recording
reference was set to an electrode close to CZ and EEG
and fMRI data were acquired in a continuous way. The
EEG signal was amplified and recorded at a sampling
rate (SR) of 10 kHz. This high SR is necessary to sample
accurately the gradient artifact. The amplifier was located
and connected to a PC in the scanner control room. To
improve the effectiveness of the offline artifact correction
algorithms, EEG and fMRI recordings were synchronized
by means of a Syncbox (NordicNeuroLab, USA) [Ertl
et al., 2010; Mandelkow et al., 2006]. The exact timing of
stimulus onset and MRI scanner gradient switching were
recorded together with the EEG signal as well as with
the stimuli logfiles. VEO and HEO bipolar channels were
used to record EOG and two more channels were placed
in the standard EKG electrode positions for EKG record-
ings. These data were required to detect the ballistocar-
diogram (BCG) artifacts in the EEG recordings. All
artifacts (gradient artifact and BCG) were removed offline
(see below). Channels that did not fulfill the impedance
criteria (<15X) or had problems during acquisition were
marked as “bad” and excluded (>55 channels per subject
were available for final analysis). To overcome this issue
for group average results, the spherical interpolation of
missing channels for each subject was used as it is imple-
mented in EEGLAB (MatlabVR toolbox v10_2_5_6a;
[Delorme and Makeig, 2004]).

Functional MRI Recording

MR imaging data were acquired on a 3T whole-body
MR scanner (Siemens Trio) using a 12 channel head coil.
Anatomical images were collected using a T1 weighted
MPRAGE (magnetization-prepared rapid-acquisition gra-
dient echo). T2*-weighted gradient-echo echo planar imag-
ing was used to collect fMRI data with TR 5 2 s, TE 5 39
ms, 27 slices per TR, 2.5 3 2.5 in-plane resolution, 3.5 mm
slice thickness with 4.2-mm gap, flip angle 5 90� and
matrix size 5 102 3 102. The slices were oriented to obtain

whole brain coverage. Nearly 410 volumes were acquired
for each run with a total scan time of 13:40 min. All runs
were acquired in the same EEG/fMRI session. The first
three volumes were discarded from the analysis. Data
analysis was performed using BrainVoyager QX v2.4
(Brain Innovation, Maastricht, The Netherlands).

EEG Data Analysis

Analysis of EEG data acquired concurrently with fMRI

Concurrent EEG/fMRI is challenging due to gradient arti-
facts (which are related to gradient switching) and ballisto-
cardiogram signals (BCG; which represent physiological
cardiac-related artifacts) [Allen et al., 2000]. Several meth-
ods have been developed for offline correction of the data
[Allen et al., 1998, 2000; De Munck et al., 2013; Debener
et al., 2008; Gonçalves et al., 2007]. EEG artifacts related to
MR gradient switch were corrected offline using average
subtraction gradient correction implemented in Maglink RT
Edit software (v4.5, NeuroScan, USA). In brief, this creates
an average template of the artifact that is subtracted from
the recorded EEG [Allen et al., 1998, 2000]. The correction
algorithm includes a low-pass filter of 75 Hz.

BCG artifacts were corrected using independent compo-
nent analysis (ICA) [Mantini et al., 2007a] implemented in
EEGLAB (MatlabVR toolbox v10_2_5_6a; [Delorme and
Makeig, 2004]). The independent components were
inspected and the ones with higher correlation with the
EKG signal recorded during the acquisition were removed
from the signal. ICA, based on all electrodes (including 4
EOG channels), was also applied to perform correction of
eye movement related artifacts as performed in Keren
et al., [2010]. We used the scalp topography of the ICA
components to identify the ocular component for ocular
artifact attenuation. All channels were re-referenced to
average reference. Epochs (2500 ms to 1,000 ms) were
obtained locked to the beginning of the correctly reported
stimuli and automatic epoch rejection as implemented in
the EEGLAB toolbox was then applied with an amplitude
criteria of 675 mV followed by visual inspection. After
epoch rejection 84.5% 6 7.23% (mean 6 standard deviation)
epochs of faces, 83.75% 6 12.07% epochs of inverted faces,
82.5% 6 8.26% epochs of guitars, and 83.75% 6 13.48%
epochs of the scrambled condition per subject remained
for further analysis.

Time–frequency analysis was implemented as in Uhlhaas
et al., [2006] and is described elsewhere [Bernardino et al.,
2013; Castelhano et al., 2013; Lachaux et al., 1999; Rodriguez
et al., 1999]. This analysis was carried out in MatlabVR con-
cerning induced (non-phase locked) activity for frequencies
ranging from 10 to 70 Hz (feasible range within the limita-
tions of EEG/fMRI) in steps of 1 Hz for all channels. Time-
frequency data were normalized (in the z-score sense) to the
baseline defined to pre-stimulus time-window (2500 ms to
250 ms) by subtracting the mean of the baseline per fre-
quency bin and dividing by their standard deviation.
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Results are shown for a cluster of parieto-occipital and tem-
poral electrodes (PO7, PO5, PO3, POZ, PO4, PO6, PO8, CP5,
TP7, P5, P7, CP6, TP8, P6, and P8) [Bernardino et al., 2013].

For the statistical comparison between conditions, for
each time-frequency point, nonparametric statistics
(Mann–Whitney U tests, Wilcoxon rank sum test) were
carried out and Bonferroni–Holms correction for multiple
comparisons (P values divided by the number of compari-
sons) were applied when appropriate. Furthermore, Pear-
son correlation was computed to assess if the reaction time
covariate did explain the observed pattern of results.

Event-related potential (ERP) measures were also
obtained. Data were filtered between 1 and 30 Hz and seg-
mented into epochs (2100 to 500 ms) locked to stimulus
onset. After baseline correction (prestimulus interval) ERPs
were obtained averaging the remaining trials per condition.
One-Way ANOVA with Bonferroni correction was com-
puted to assess statistical significance of the resulting ERPs.

ERP analysis of EEG data acquired outside the scanner

EEG data recorded outside the scanner were processed off-
line using the Scan 4.5 Edit Software (NeuroScan, USA) and
EEGLab (MatlabVR ). ICA-based ballistocardiogram correction
was performed to ensure that processing was exactly identi-
cal to the one performed inside the scanner. Data were fil-
tered between 1 and 30 Hz and segmented into epochs
(2100 to 500 ms) locked to stimulus onset. After baseline cor-
rection based on the interval before stimulus onset the auto-
matic epoch rejection (followed by visual inspection) was
applied with a criteria set to 675 lV (with >88% of the trials
accepted for further processing). The epochs were organized
by stimulus type and event related potentials (ERP) were
obtained. One-way ANOVA statistical testing was per-
formed to assess differences between conditions and Bonfer-
roni correction was used to correct for multiple comparisons.

ERP Source Localization

We performed source localization of the EEG data as it is
implemented in Curry 7.0 software (NeuroScan, USA) on a
realistic head model. For each condition, group average
ERP data were coregistered with anatomical MR data using
landmarks and standard electrode positions. Standard ana-
tomical MR data were used to create the boundary element
model (BEM) and current source density (CSD) analysis
was performed. CSD computes a local current pattern that
explains the EEG data at a certain time-point. The CSD
source localization was based in sLORETA (standardized
low resolution brain electromagnetic tomography) method
[Pascual-Marqui et al., 1994] with no assumption regarding
the number or location of active sources. This method is a
standardized discrete, three-dimensional (3D) distributed,
linear weighted Minimum norm inverse solution that takes
several neurophysiologic and anatomical constraints into
account and has been shown to yield depth-compensated
zero localization error inverse solutions [Pascual-Marqui,

1999; Pascual-Marqui et al., 2002]. sLORETA employs the
current density estimate given by the minimum norm solu-
tion, and localization inference is based on standardized
values of the current density estimates [Pascual-Marqui,
2002]. It was computed in Curry 7.0 yielding an estimate of
activity measures [Pascual-Marqui, 2002], namely (for each
location) the current strength divided by its error bar, from
which a F-distribution of the current densities were
extracted. This is not a statistical estimate in a strict sense
and therefore it has only localizing value and not in the
comparison of activities across sources, which justifies that
some caution should be taken regarding interpretations of
such activated sources. Source localization plots were com-
puted for a 200 ms time-window including the N170 peak.

fMRI Data Analysis

Functional MRI data were analyzed (pre-processing and
statistical analysis) using BrainVoyager QX 2.4 (Brain Inno-
vation, Maastricht, The Netherlands). The first three vol-
umes were discarded to avoid saturation effects.
Preprocessing was performed with the default parameters
including 3D motion correction, spatial smoothing and
temporal high-pass filtering of 0.00980 Hz (three cycles in
time course). The images were transformed into Talairach
space. This is a limitation of the study since this atlas tem-
plate is based in only one subject. fMRI data were coregis-
tered with anatomical data and statistical fMRI analysis
was performed using the general linear model (GLM), as
implemented in BrainVoyager QX.

Gamma-Band Source Localization

First, to localize the sources of Gamma activity in two
distinct frequency ranges, low (30–48 Hz; LF) and high fre-
quency (52–70 Hz; HF) per stimulus condition we per-
formed time-frequency decomposition using Curry 7.0
software. The 48–52 Hz range was excluded to avoid line
noise. We performed this frequency analysis using the
short time fast Fourier transform (STFFT) as implemented
in Curry 7.0 software. It provides time and frequency rep-
resentation of the signal with high temporal resolution for
the faster frequencies. Source localization was performed
for all accepted channels combined. The resulting source
analysis time points for each condition are based on the
latencies of the time-frequency peaks extracted from the
group average data over all parieto-occipital and temporal
electrodes (see above) and locked to the beginning of the
stimulus. This was performed for the low and high fre-
quency ranges (data filtered between 30 and 48 Hz and
between 52 and 70 Hz, respectively). Using the same pro-
cedure as in the ERP source localization we calculated the
current source density maps from the group data, as
revealed by sLORETA for these gamma-frequency ranges.

Furthermore, to precisely localize the active regions we
performed an EEG-informed fMRI approach in which an
EEG time-frequency feature is extracted from EEG data
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and used to inform fMRI GLM analysis (Fig. 2 schemati-
cally shows how this approach is performed) [Debener
et al., 2006; Huster et al., 2012; Nguyen and Cunnington,
2014; Scheeringa et al., 2009].

Consecutive time–frequency analysis epochs of 2 s were
applied to detect oscillations induced but not necessarily
phase locked neither to the stimuli nor to the response.
Concerning EEG-informed fMRI, as we found similar
time–frequency results and current density source patterns
for all readily perceived object categories, we used all
Mooney object (faces 1 guitars) stimuli together vs. scram-
bled 1 inverted faces (difficult perceptual decision condi-
tions). This analysis using balanced number of trials
focused more on the issue of difficult perceptual decision.
Separate EEG regressors for each condition (object and
scrambled) from low (30–48 Hz [Hoogenboom et al.,
2006]) and high (52–70 Hz [Akimoto et al., 2013]) fre-
quency bands were constructed. The peak latencies were
obtained on a trial by trial basis per subject, in the two
gamma sub-bands of interest and calculated by averaging
time-frequency results over the same parieto-occipital and
temporal electrodes as before. The resulting predictors
were introduced in the general linear model (GLM) design
matrix [Huster et al., 2012; Laufs, 2008; Michels et al.,
2010] as in event-related fMRI designs. Contrasts were
computed against the baseline (with epochs without any
peak neither in LF nor HF sub-bands). Statistical maps
show the results for LF and HF based contrasts for a
whole-brain analysis when computing the above men-
tioned contrasts. Corrections for multiple comparisons
were made through the Cluster Threshold plugin (Brain-
Voyager QX) with 1,000 iterations. The minimum cluster

size was set to a significant voxel threshold of P< 0.05 for
each contrast. T-tests were applied between conditions in
each frequency band and the coordinates and statistical
results of the peak analysis for all clusters (of increased or
decreased BOLD signal) are summarized in Table I.

RESULTS

Behavioral Data

To study the neural underpinnings of EEG oscillations,
we used a categorical perception task in which subjects

had to discriminate between Mooney (two-tone incomplete

patterns) object categories (Fig. 1). Behavioral analysis

showed that participants were well above chance in terms

of categorization performance levels (96.79% 6 3.13% for

“guitar-like” stereotypical objects; 81.4% 6 13.3% and

81.06% 6 13.46% for upright and inverted mooney faces,

respectively; 75.79% 6 18.90% for scrambled control stim-

uli; values indicate mean 6 standard deviation, except

when otherwise indicated). An ANOVA revealed a main

effect for condition (F 5 18.156, P< 0.00001) and the post-

hoc Bonferroni tests showed that these differences in dis-

crimination rates were significant between faces and

guitars (Mean difference: 20.51, P< 0.0001), inverted faces

and guitars (mean difference: 12.08, P 5 0.027), guitars ver-

sus scrambled (mean difference: 29.00, P< 0.0001) and

inverted faces vs. scrambled (mean difference: 16.93,

P 5 0.001). A bar graph summarizing these results is

shown in Figure 3 (left panel). This shows that subjects

were best at guitar discrimination. Regarding reaction

Figure 2.

Schematic representation of EEG-informed fMRI analysis. After

artifact correction, EEG data (acquired concurrently with fMRI)

were split into 2-s epochs and time-frequency (TF) decomposi-

tion applied. For each epoch that contains an event of interest

(perceptual conditions) the latency of the maximum of gamma

activity was extracted and used to build the fMRI protocol. Sep-

arated low and high gamma frequency events for each condition

were used as predictors. After convolution with the

hemodynamic response function (HRF), a general linear model

(GLM) analysis was performed in fMRI data and the resulting

statistical source maps show the sources of gamma activity

peaks (see [Huster et al., 2012]). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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times, a main effect of condition was also present

(F 5 19.502, P< 0.000001). The Bonferroni post-hoc analysis

revealed that subjects performed slower for the scrambled

condition in comparison with all the others (mean differ-

ence: 241.09 ms, P< 0.000001, for scrambled vs. faces;

285.94 ms, P< 0.000001 for scrambled vs. guitars; 217.96

ms, P 5 0.000004 for scrambled vs. inverted faces). On

average, subjects’ reaction times were 725.7 6 88.20 ms for

mooney faces, 751.20 6 98.02 ms for upside down faces,

682.69 6 77.81 ms for guitars and 968.22 6 136.13 ms for

scrambled conditions, well after stimulus offset (Fig. 3,

right panel contains a plot summarizing these results).

Event-related Potentials

Figure 4A,B shows ERP measures for each category out-
side (single EEG/ERP recordings) and inside (simultaneous
EEG/fMRI measurements) the scanner, respectively. After
artifact correction, we were able to observe similar wave-

form patterns outside and inside the scanner, across condi-
tions. We observed in both cases the expected positive P100
early visual component and a similar categorical dependent
pattern around the typical face selective N170 [George
et al., 2005]. Our results are in line with the report of Sadeh
et al. [2008]. An one-way ANOVA with Bonferroni correc-
tion for multiple comparisons (P< 0.05) revealed the time
points where the difference between conditions were sig-
nificant (see gray bars in Fig. 4C for detailed representation
of significantly different time points). Differences were
found close to the N170 and latter around 300 and 400 ms.
Furthermore, note that the Mooney face stimuli are evoking
the largest amplitudes of the N170 (150–200 ms, P< 0.05).

Time–Frequency Data

We computed the time-frequency (TF) transforms of
single epochs and averaged them across all trials and
the posterior cluster of electrodes. In this way, we

TABLE I. Location and statistics of significantly activated brain regions (clusters) for the different contrasts

of GLM analysis (distinct conditions and frequency ranges)

Peak X Peak Y Peak Z t P #Voxels Brain region

Faces and
guitars LF

Cluster 1 56 250 27 3,065 0.0022 1136 R, Parietal Lobe, Supramarginal Gyrus,BA40

Cluster 2 35 22 0 3,651 0.0003 2427 R, Sub-lobar, Insula, BA13
Cluster 3 2 22 39 3,119 0.0018 2647 R, Limbic Lobe, Cingulate Gyrus, BA32
Cluster 4 210 271 12 3,307 0.0009 3850 L, Occipital Lobe, Cuneus, BA17
Cluster 5 237 271 215 4,061 0.00005 3207 L, Posterior Lobe, Declive
Cluster 6 222 247 24 3,485 0.0005 936 L, Limbic Lobe, Cingulate Gyrus, BA31

Inv.Faces and
scrambled LF

Cluster 1 24 34 0 23,325 0.0009 6054 L, Limbic Lobe, Anterior Cingulate

Cluster 2 5 235 66 23,675 0.0002 1106 R, Frontal Lobe, Paracentral Lobule, BA4
Cluster 3 24 293 30 23,851 0.0001 2092 L, Occipital Lobe, Cuneus, BA19
Cluster 4 228 238 21 23,764 0.0002 2157 L, Sub-lobar, Insula, BA13
Cluster 5 219 286 36 23,018 0.0025 763 L, Occipital Lobe, Cuneus, BA19
Cluster 6 231 19 9 3,268 0.0011 737 L, Sub-lobar, Insula, BA13
Cluster 7 261 232 0 23,359 0.0008 942 L, Temporal Lobe, Middle Temporal Gyrus

Faces and
guitars HF

Cluster 1 59 214 18 24,076 0.00005 4462 R, Parietal Lobe, Postcentral Gyrus, BA43

Cluster 2 29 244 60 23,893 0.0001 2841 R, Parietal Lobe, Postcentral Gyrus, BA5
Cluster 3 228 286 29 3,772 0.0002 3508 L, Occipital Lobe, Inferior Occipital Gyrus, BA18
Cluster 4 252 28 12 23,647 0.0003 4530 L, Frontal Lobe, Precentral Gyrus, BA43

Inv.Faces and
scrambled HF

Cluster 1 23 277 29 3,931 0.00009 1611 R, Occipital Lobe, Lingual Gyrus, BA18

Cluster 2 21 46 15 3,396 0.0007 3059 L, Frontal Lobe, Medial Frontal Gyrus, BA9
Cluster 3 8 250 27 3,427 0.0006 1257 R, Limbic Lobe, Posterior Cingulate, BA23
Cluster 4 222 283 29 3,752 0.0002 7202 L, Occipital Lobe, Middle Occipital Gyrus, BA18
Cluster 5 225 241 57 23,413 0.0006 2280 L, Parietal Lobe, Sub-Gyral, BA40
Cluster 6 234 244 45 23,448 0.0006 1069 L, Parietal Lobe, Inferior Parietal Lobule, BA40
Cluster 7 252 223 36 22,688 0.0072 911 L, Parietal Lobe, Postcentral Gyrus, BA2

HF vs. LF Cluster 1 47 226 30 23,434 0.0006 1077 R, Parietal Lobe, Postcentral Gyrus, BA2
Cluster 2 24 259 30 3,024 0.0025 1116 L, Parietal Lobe, Precuneus, BA7
Cluster 3 243 1 3 23,117 0.0018 1036 L, Sub-lobar, Insula, BA13

LF and HF stands for low frequency and high frequency respectively. R, L, and BA stands for right and left hemispheres and Broad-
mann Area, respectively. Clusters were obtained correcting for multiple comparisons by applying the cluster-level statistical threshold
estimator from BrainVoyagerQX Plugins with 1000 iterations and alpha <0.05.
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Figure 3.

Behavioral results. Left panel: bar plot showing the behavioral results per condition in terms of

the discrimination rate. Significantly different comparisons are highlighted in the graph. Note that

subject’s best rate level is for guitars. Right panel: a bar plot representing the reaction time per

condition and the statistically significant differences between them. Scrambled conditions lead to

slower responses than all the other stimuli.

Figure 4.

Group average ERPs for EEG data acquired outside (A) and

inside the scanner (B). Separate plots are shown for each condi-

tion for the PO8 electrode. Bold lines represent the group aver-

age and thicker lines the respective standard deviations. (C):

Superimposed group average ERPs. Different colours represent

ERPs for the PO8 channel for the different stimulus categories.

Gray bars at the bottom show the time-points where differen-

ces are statistically significant as revealed by ANOVA with bon-

ferroni correction (P< 0.05).
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focused on the induced gamma activity patterns which
are not phase-locked to the stimulus onset. The time-
frequency results are summarized in Figure 5. Time-
frequency representations of gamma activity patterns for
objects minus control (non-perceived) scrambled condi-
tions are shown in Figure 5A–C for the faces, guitars
and inverted faces categories respectively. We found
increased activity at the gamma-band frequency range
for all categories vs. the scrambled condition after the
stimulus onset period (the TF result for the scrambled
condition is shown in Fig. 5D).

The same figure shows time frequency corrected p
value maps (Wilcoxon rank sum test (Matlab VR ), Fig. 5E)
represented in a plot showing the time-frequency points
where the difference is significant (P< 0.025). It is note-
worthy to point out that all objects vs. scrambled condi-
tion generate similar spectral signatures, with two bands,

one at the low gamma range (�40 Hz) and the other at
high gamma frequency range (�63 Hz). Moreover,
scrambled conditions induced modulations dominating at
lower frequency bands (high beta and low gamma)
whereas object categories dominate for the higher fre-
quency band. The time–frequency activity per electrode’s
cluster for both (scrambled and object) conditions is
shown in Figure 6.

We found a peak (increased gamma activity) with simi-
lar average frequency of 39.44 6 2.46 Hz and 40.28 6 3.70
(lower gamma-band, LF) for the readily perceived objects
(faces 1 guitars) and difficult conditions (scram-
bled 1 inverted faces), respectively. For the high gamma
frequency range (HF), the peaks were found for an aver-
age frequency of 63.11 6 3.75 Hz for objects and
62.95 6 3.10 Hz for scrambled conditions. Mean peak
amplitudes per frequency band were 9.49 6 6.99 and

Figure 5.

Normalized time–frequency analysis reveals a similar pattern for

all object categories conditions minus the scrambled (noncate-

gorical) condition. TF results are shown for a group average of

all parieto-occipital and temporal cluster of channels, for faces,

guitars, and inverted faces (A), (B), and (C), respectively. Result-

ing time-frequency data from the scrambled condition (also

shown in (D)) was subtracted in all conditions. Colour scale

means normalized units (in relation to baseline pre-stimuli) and

the blue line marks stimulus onset. Note that subject decision

was only reported after stimulus offset (see reaction time

results in Fig. 3). (E) plot showing the statistical p-values for the

comparison between Object categories and the Scrambled con-

ditions with the Wilcoxon–Ranksum test (P< 0.025). For addi-

tional information on normalized time-frequency results

obtained over different clusters of channels see Figure 6.
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7.97 6 3.78 (power) for objects and scrambled LF respec-
tively, and 14.09 6 3.13 for objects HF and 7.75 6 3.72 for
scrambled HF. Differences between peak frequencies of
objects vs. scrambled were not significant neither for fre-
quencies (t 5 20.71, P 5 0.5 for LF; t 5 0.10, P 5 0.920 for
HF) nor for amplitudes (t 5 1.009, P 5 0.347 for LF and
t 5 1.228, P 5 0.259 for HF). Moreover, no correlation was
found between differences in amplitude and differences in
reaction times (RT; Pearson 5 0.017, P 5 0.967 for LF and
Pearson correlation 5 0.294, P 5 0.479 for HF) or between
differences in discrimination rates and differences in peak
amplitudes (Pearson 5 0.5, P 5 0.253).

Source Localization Based on the EEG Data

We performed source localization of group average
ERPs using Curry 7.0 (NeuroScan, USA) for each stimulus
category and found the expected ERP sources of activity at
visual ventral regions 170 ms after stimulus onset. All
object perception conditions showed indeed similar bilat-
eral infero-temporal activations (Fig. 7A–C) that are dis-
tinct from the one evoked by the scrambled control (no
object perception) condition (see Fig. 7D). Right hemi-
sphere dominates for the faces, inverted faces and
scrambled conditions while left temporal regions appear

for the guitars. We only found dominant occipital and
frontal regions for the scrambled (absent visual category)
condition. Results shown in Figure 7 are displayed for the
hemisphere revealing activity over a threshold of 75% of
the CSD (see figure legend for F-distribution values per
condition).

In addition, we performed time–frequency decomposi-
tion using Curry 7.0 software and calculated the current
source density maps as revealed by sLORETA. We sepa-
rated the analysis by conditions and low and high fre-
quency ranges. Figure 8 summarizes the results for these
frequency bands. The activity for the low frequency (LF)
band (Fig. 8A–D) emerges mainly at infero-frontal regions
(insula plus frontal operculum) known to be related to
decision processes. This pattern is similar for all stimulus
conditions. On the other hand, high frequency patterns
(HF; Fig. 8E–H) show distributed activity sources that dif-
fer depending on the condition. The faces are localized to
parietal regions, inverted faces sources are localized to
right temporal regions, while guitars show a pattern with
conspicuously localized sources at frontal areas. In con-
trast, the scrambled (non-recognizable object) condition
shows a different pattern reminiscent to the one observed
with ERP source localization with dominant occipital and
frontal regions.

Figure 6.

Time–frequency results obtained over different clusters of channels (occipital, parietal, temporal,

frontal, and those left and right). (A) Time–frequency results for the faces 1 guitars condition;

(B) Time-frequency results for the scrambled 1 inverted faces condition. Colorscale means nor-

malized units (data normalized for the time preceding stimuli presentation) and the blue line

marks the stimuli onset.
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Source Localization With EEG Informed fMRI

Approach

Using a general linear model analysis of the fMRI data,
to model the neural origins of the different gamma activity
patterns, we were able to identify two different neural
generators for these distinct frequency bands. To precisely
localize these patterns of gamma-band activity we used
the latencies (on a trial by trial basis, per subject) of the
gamma activity peaks as event predictors of a GLM mod-
eling the EEG oscillations. Separate predictors for the low
(30–48 Hz) and high (52–70 Hz) frequencies were con-
structed [Scheeringa et al., 2011]. Differences in latency
peaks between conditions were not significant (LF, object
vs. scrambled: F 5 0.231, P 5 0.634; HF, object vs.
scrambled: F 5 0.075, P 5 0.786). Results show that poste-
rior sources mainly located at the parieto-occipital and
temporal lobes were strongly linked to the higher gamma
frequency band but also for the LF band, in particular for
object category perception (Fig. 9A,C).

We found that different gamma sources are related to
perception processes in decision related regions centered
in the anterior insula (Fig. 9B,E) and in the visual process-
ing areas (Fig. 9C,D); see also Supporting Information Fig-
ure 1 with stimulus locked fMRI localization). Low
gamma frequency related activity in the anterior insula
was particularly strong, which is interesting given the role
of this region in perceptual decision [Rebola et al., 2012]
(Fig. 9B; see Table I for details regarding regions’ coordi-
nates, cluster sizes and statistics). Furthermore, a dissocia-
tion was visible for the LF sources between perceived
objects and scrambled conditions. Interestingly, activity for
object percepts was lateralized to the right insula while for
scrambled conditions it was higher at the left anterior
insula. Negative BOLD activity, as measured by EEG-
informed fMRI was visible for different contrasts. These
activations were found to the scrambled LF predictors
localized in areas spanning from occipital regions to ante-
rior areas including the sub-lobular insula and the anterior
cingulate. Regarding the HF predictors, negative activity

Figure 7.

Categorical perception leads to a pattern that is distinct from per-

ception of random (scrambled) patterns. Source localization of

group average ERPs reveals sources of activity at visual ventral

regions. Results are shown for the N170 latency point. Colour

codes correspond to the range of min and max CDR distribution

values based in sLORETA. Right hemisphere dominates for the

faces (F-distributed (min–max): 5.2–6.7), inverted faces (F-distrib-

uted 3.9–5.6) and scrambled condition (F-distributed 5.0–7.0)

while left temporal regions appear for the guitars (F-distributed

3.3–4.2). Note that all object conditions (A–C) have a similar

infero-temporal pattern that differed from the one evoked by

scrambled conditions (D). A display threshold of 75% of the CSD

was applied and the sources are shown for the hemisphere that

revealed higher activity. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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was found for parietal and frontal regions (see Table I for
details). Figure 9E,F show the GLM results for the two
direct contrasts: HF higher than LF and vice versa, respec-
tively. Note that posterior (visual) activation is evident for
the HF>LF and bilateral anterior activation on the
insula/operculum is present for the LF>HF contrast.

DISCUSSION

In this simultaneous EEG/fMRI study we found that
different gamma oscillatory patterns corresponding to dif-
ferent brain regions/networks can be separated within the
same perceptual decision-making task. These regions were
identified as visual and insular networks. High gamma
band patterning (�60 Hz) dominated in visual regions and
a lower band (�40 Hz) dominated in the anterior insula,
which is a region known to be involved in high level deci-
sion processes [Heekeren et al., 2008]. Both visual and
insular sources are known to be important for perceptual
decision making and gestalt formation [Gr€utzner et al.,
2010; Rebola et al., 2012]. We observed that under difficult
decision conditions, when an object category was harder
to detect, the insula showed a higher modulation. This is
precisely the region most closely associated with higher
beta and low gamma frequency modulation (together with
the anterior cingulate [Lee et al., 2007], which is involved
in conflict monitoring [Botvinick et al., 2004]). Larger activ-

ity modulation at the higher frequency gamma-band
around decision time was present for holistic categorical
(object) vs. noncategorical (scrambled) perception. Such a
dissection of the cognitive and neural components of per-
ceptual decision suggests that different gamma sub-bands
can be related to separable circuits within the same cogni-
tive task.

Different Gamma sub-bands had been previously identi-
fied in different cortical regions and tasks [Akimoto et al.,
2013; Crone et al., 2011; Edwards et al., 2005; Fries et al.,
2008; Groppe et al., 2013; Gruber et al., 2008; Gr€utzner
et al., 2010; Hoogenboom et al., 2006; Jerbi et al., 2009;
Koelewijn et al., 2013; Lachaux et al., 2005; Ray and Maun-
sell, 2011; Sedley and Cunningham, 2013; Uchida et al.,
2001] but the focus of this study was whether distinct pat-
terns could be found within the same task.

Current source density approaches in the above men-
tioned studies had found evidence for gamma patterns
characterized by different frequencies, for different tasks.
However, these did not have enough resolution (as here
provided by combination of EEG and fMRI) to test for
non-unitary sources and establish their spatial topography
within the same task.

Separability of different sources of gamma activity [Koe-
lewijn et al., 2013] had been suggested to occur within the
same visual region (lateral and medial visual cortex). Koe-
lewijn et al. have indeed found that a rotating grating
induced gamma synchronization in medial visual cortex at

Figure 8.

Source localization of gamma activity patterns reveals distinct

sources for LF and HF bands. (A–D) show current source den-

sity maps per condition for the LF gamma activity band. (E–H)

are the source maps per condition for the HF band. Colorscale

corresponds to the range of min and max values of source

maps. Sources were present in both hemispheres (a display

threshold of 75% of the CSD was applied). The faces are local-

ized to parietal regions (F-distributed min–max varied between

11.0–14.7 and 3.8–5.0 for LF and HF, respectively), inverted

faces sources are localized to right temporal regions (F-distrib-

uted: 2.0–2.7 for LF and 16.0–22.0 for HF) while guitars show

sources at frontal areas (F-distributed: 6.7–8.8 for LF and 4.1–

5.9 for HF). In contrast, the scrambled (non-recognizable object)

condition source localization have dominant occipital and frontal

regions (F-distributed: 6.6–8.7 for LF and 3.0–5.1 for HF).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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30–70 Hz, and in lateral visual cortex at 60–90 Hz. Direct-
ing spatial attention to the grating increased gamma syn-
chronization in medial visual cortex, but only at 60–90 Hz
[Koelewijn et al., 2013], which is in the range identified in
our study for visual regions.

These results are also consistent with MEG study of
Gruber et al. [2008] on gamma-band generators in focal
visual areas. We argue that these generators reflect local
processing [Schnitzler and Gross, 2005].

Our previous EEG study in Williams syndrome [Bernar-
dino et al., 2013] suggested that sub-bands related to either
visual or high level processing can be differentially modu-
lated as a function of the cognitive strategy, suggesting the
recruitment of multiple cognitive modules, and also
inspired the current study.

Following those findings we found that predictors for
increased activity at higher gamma-band have their origin
in low-level visual areas in particular during object per-
ception, during which top-down perceptual effects domi-
nate. On the other hand, predictors for the low frequency
range have their source at anterior decision related areas,
namely the insula. In spite of the fact that the dissocia-
tion between two frequency bands within the same
experiment has already been reported from auditory cor-
tex recordings [Edwards et al., 2005], the duality we
found and its relation to distinct cognitive mechanisms
within the same task was not identified before. These
gamma sub-bands show different frequencies, different
brain generators and different functional meaning, one
related to visual processing and the other to perceptual

Figure 9.

EEG-informed fMRI evidence for different neural generators for

distinct frequency bands, one related to visual processing (early

visual areas) and the other to high level decision mechanisms

(e.g., the insula). (A) and (B) show GLM maps based on gamma-

band regressors—low frequency (LF) for face 1 guitar objects

(easily perceived) and inverted faces 1 scrambled conditions (not

readily perceived), respectively. High frequency (HF) GLM maps

are shown in (C) and (D). Note that group analyses showed dif-

ferent significantly activated regions as a function of frequency

band. We found increased activity for decision related areas

(anterior insula) mainly for the LF predictor (low gamma range;

A) and B)). Visual areas activated in particular in response to

higher Gamma oscillation predictors which are related to object

perception (C) and scrambled conditions (D). (E): brain regions

activated for the contrast HF> LF. (F): areas with increased

modulation for the LF>HF contrast. Map threshold was set to

P< 0.05 (corrected). See Table I for details regarding significant

clusters sizes, and locations and statistics.
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decision-making. This was rendered possible by our
simultaneous EEG/fMRI [Logothetis, 2008] and the EEG
source localization approaches which enabled to pinpoint
the above described unexpected dichotomy of gamma
activity during perceptual decision. EEG/fMRI yields bet-
ter localization resolution than MEG, which has neverthe-
less been shown to have considerably better accuracy in
localization than EEG.

Gamma oscillations are known to be stimulus-induced
[Hoogenboom et al., 2006; Muthukumaraswamy et al.,
2010] and are closely colocalized to the blood-oxygen-
level-dependent (BOLD) response [Koch et al., 2009; Logo-
thetis et al., 2001]. Our finding that a clear functional and
topographic distinction is present for separable anatomo-
physiological substrates of gamma sub-bands may shed
light on the controversy between studies that reported the
differential patterns of correlation between BOLD and
gamma-band oscillations [Foucher et al., 2003; Logothetis
et al., 2001; Michels et al., 2010; Muthukumaraswamy and
Singh, 2008, 2009; Scheeringa et al., 2011; Sumiyoshi et al.,
2012]. Therefore our results provide support to the idea
that low- and high-frequency oscillations reflect different
phenomena and may be caused by different mechanisms
[Guggisberg et al., 2007; Logothetis et al., 2001; Ray and
Maunsell, 2011; Scheeringa et al., 2011] within the same
task. Although we were limited by the artifact correction
algorithms that restrict the frequency range one can ana-
lyze (maximum �70 Hz), our results do indeed support
the notion that gamma-band activity patterns (low and
high gamma sub-bands) are not related to holistic percep-
tion in a simple unified manner, since aspects related to
visual processing and decision can clearly be separated in
terms of their neural origins. Based on the information
provided by time-frequency EEG analysis, we were able to
determine their spatio-temporal profile.

An analogous distinction between sub-bands was also
discussed recently in a review by Sedley and Cunnigham
differentiating gamma activity in terms of narrow versus
broad-band patterns [Sedley and Cunningham, 2013], with
putatively distinct physiological meaning. Accordingly,
Ray and Maunsell showed that in monkey multi-unit
recordings, higher frequency oscillations only were associ-
ated with spiking rate, which was not the case for lower
gamma oscillations [Ray and Maunsell, 2011]. Interestingly
the lower frequency oscillations that we observed were
mostly related to the insula and not the visual cortex.

Concerning the negative BOLD response which is also
known to reflect stimulus related and/or neurophysiologi-
cal responses [Duarte et al., 2013; Marques et al., 2009;
Shmuel et al., 2002, 2006; Smith et al., 2004] we also identi-
fied a network that deactivated mainly in response to
scrambled object conditions, in particular in anterior
regions.

In sum, we could identify spatial substrates underlying
the temporal dynamics of brain activity [Herrmann and
Debener, 2008; Laufs, 2008; Ritter and Villringer, 2006]
during perceptual decision and categorization. Our results

indicate the existence of distinct low and high level func-
tional modules in the same perceptual decision task that
can be tagged by two distinct frequency bands. These find-
ings are relevant for the understanding of normal and clin-
ical impaired holistic integration and show that current
neuronal models of gamma-band spatial distribution need
to consider their duality by separating low and high sub-
bands.

CONCLUSIONS

We conclude that gamma-band activity patterns do
not represent a unitary phenomenon within the same
decision task, but rather distinct neurocognitive compo-
nents. Accordingly, at least two separate neural modules
are involved in holistic perceptual decision, one in the
visual cortex and the other in the anterior insula. This
provides a step forward in understanding the functional
specialization of decision-making networks and the role
of gamma frequency range sub-bands in signaling their
different neural and cognitive components. The finding
that gestalt formation elicits non unitary gamma-band
patterns, underlying independent sensory processing and
perceptual decision mechanisms is novel and may shed
new light on the role of gamma-band response in nor-
mal cognition and in neuropsychiatric disorders such as
autism and schizophrenia, where both visual and deci-
sion making circuits may be impaired [Uhlhaas and
Singer, 2012]. Further studies including electrocorticogra-
phy and non-simultaneous MEG and fMRI studies may
help elucidating their separability with even higher spa-
tial resolution.
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