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Abstract: Spatial leakage effects are particularly confounding for seed-based investigations of brain net-
works using source-level electroencephalography (EEG) or magnetoencephalography (MEG). Various
methods designed to avoid this issue have been introduced but are limited to particular assumptions
about its temporal characteristics. Here, we investigate the usefulness of a model-based geometric cor-
rection scheme (GCS) to suppress spatial leakage emanating from the seed location. We analyze its
properties theoretically and then assess potential advantages and limitations with simulated and exper-
imental MEG data (resting state and auditory-motor task). To do so, we apply Minimum Norm Esti-
mation (MNE) for source reconstruction and use variation of error parameters, statistical gauging of
spatial leakage correction and comparison with signal orthogonalization. Results show that the GCS
has a local (i.e., near the seed) effect only, in line with the geometry of MNE spatial leakage, and is
able to map spatially all types of brain interactions, including linear correlations eliminated after signal
orthogonalization. Furthermore, it is robust against the introduction of forward model errors. On the
other hand, the GCS can be affected by local overcorrection effects and seed mislocation. These issues
arise with signal orthogonalization too, although significantly less extensively, so the two approaches
complement each other. The GCS thus appears to be a valuable addition to the spatial leakage correc-
tion toolkits for seed-based FC analyses in source-projected MEG/EEG data. Hum Brain Mapp 36:4604–
4621, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

A basic element of various analyses for electroencepha-
lography (EEG) and magnetoencephalography (MEG) data
is the brain electromagnetic inverse problem, i.e., the
reconstruction of electric current flows from extra-cranial
electrophysiological measurements [Baillet et al., 2001; Sar-
vas, 1987]. A well-known but fundamental limitation for
source-space MEG/EEG is the ill-posed nature of this
problem. In particular, a source reconstruction cannot be
inferred in a unique way from extra-cranial data only, but
must be chosen among the many source configurations
compatible with the observations. This selection requires
the use of an inverse model, which involves adding
enough prior assumptions to constraint the large set of
possibilities down to one. In MEG/EEG, two widely used
inversion schemes are Minimum Norm Estimates (MNE)
[Dale and Sereno, 1993; H€am€al€ainen and Ilmoniemi, 1994]
and Beamformers [Hillebrand et al., 2005; Van Veen et al.,
1997]. Both approaches typically yield a spatially blurred
representation of the underlying source distribution
because the signals reconstructed at two different locations
may be sensitive to activity in the same brain areas, in
which case they must necessarily share dynamical infor-
mation. This spurious co-dependence effect of recon-
structed sources bears various names in the literature and
shall be henceforth referred to as “spatial leakage.”

This difficulty is particularly confounding for source-
space functional connectivity (FC) analyses. One motiva-
tion for performing MEG/EEG FC at the source level is

to improve the interpretability of sensor-space FC maps,
which are substantially affected by field spreading
[Schoffelen and Gross, 2009]. However, spatial leakage
limits the success of this idea because the spurious con-
nectivity patterns remaining after source projection typi-
cally dominate physiological interactions. Several
dependency measures designed to be insensitive to spa-
tial leakage have thus been introduced to investigate spe-
cific aspects of large-scale neural communication, such as
imaginary coherence [Nolte et al., 2004], the multivariate
interaction measure [Marzetti et al., 2013] or the phase
lag index [Hillebrand et al., 2012; Stam et al., 2007] for
phase coupling, and orthogonalized envelope correlation
[Brookes et al., 2012b; Hipp et al., 2012] for amplitude
coupling. In the latter case, closely related but slightly
different versions of signal orthogonalization procedures
were actually used: a static version presuming time-
independent spatial leakage effects [Brookes et al.,
2012b], a non-stationary extension thereof [O’Neill et al.,
2015] and an instantaneous version merely assuming
zero phase lag effects [Hipp et al., 2012]. The common,
generic idea underlying these FC indices is that spatial
leakage can only induce zero-lag linear spurious cou-
pling, which can thus be avoided by focusing on non-
zero-lag connectivity. One limitation, though, is that true
zero-lag linear coupling is suppressed as well, a priori
leading to conservative FC estimates that might miss
physiological interaction processes such as synchroniza-
tion. Furthermore, this suppression leads to a mixing of
phase and amplitude signals that can also bias non-linear
FC estimates such as envelope correlation [Wens, 2015].
More generally, this idea does not take into account the
structure of spatial leakage, which ultimately originates
from the underlying inverse model and controls the
validity of the above-mentioned assumptions.

Methods for source-level MEG/EEG seed-based FC
analysis overcoming these limitations and applicable to
any dependency measure therefore appear useful. Here,
we investigate the advantages and the limitations of a geo-
metric correction scheme (GCS) associated with a struc-
tural model of spatial leakage [Wens, 2015]. To that aim,
we apply analytical and statistical tools to characterize
spatial leakage correction in FC mapping and compare the
GCS with signal orthogonalization, using MNE as canoni-
cal example of inverse model. Firstly, we examine the the-
oretical properties of a GCS-modified inverse operator
valid for any linear source reconstruction. Secondly, we
assess the structural effect of the GCS on noisy point-
spread functions (PSFs) as a function of distance from the
seed, signal-to-noise ratio (SNR) and lead field errors.

Abbreviations

A1 Primary auditory
CKC Corticokinematic coherence
DICS Dynamic Imaging of Coherent Sources
DLPFC Dorso-lateral prefrontal cortices
EEG Electroencephalography
FC Functional connectivity
GCS Geometric correction scheme
ITG Inferior temporal gyri
MEG Magnetoencephalography
MNE Minimum norm estimation
PSF Point-spread function
RSN Resting-state network
SM1 Primary sensorimotor
SM1ha SM1 hand area
SMA Supplementary motor area
SMG Supramarginal gyrus
SNR Signal-to-noise ratio
SSS Signal space separation
STG Superior temporal gyri
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Lastly, we explore the induced effect of spatial leakage
corrections on FC mapping per se using simulated and
experimental MEG data. We consider the primary sensori-
motor (SM1) and auditory (A1) resting-state networks
(RSNs) well described in terms of envelope FC [Brookes
et al., 2011,2012a,2012b; de Pasquale et al., 2010, 2012; Hall
et al., 2013; Hipp et al., 2012; Luckhoo et al., 2012b; Wens
et al., 2014a,b], as well as a network involved in an
auditorily-cued motor task. The latter case is based on
Dynamic Imaging of Coherent Sources (DICS) [Gross
et al., 2001], which illustrates an example where the zero-
lag spatial leakage assumption is broken.

THEORY

Preliminaries

Figure 1 illustrates the GCS under consideration. In this
section, we introduce a linear projection encapsulating this
spatial leakage correction and derive some properties,
including new mathematical justification. Relevant infor-
mation about other spatial leakage corrections and MNE is
also reviewed. Matrix notations suitable for discrete sam-
pling of time and brain volume are used throughout, so
the key formulas can be applied directly in computational
implementations.

Our starting point is the MEG/EEG forward model

l 5 Lw 1 E:

The M3T matrix l represents M sensors time series con-
taining T time samples. The model is characterized by a
time-independent, real-valued M3DN lead field matrix L,
which allows prediction of the observations generated by
a known source configuration. The latter is approximated
by a discrete set of N sources (N �M), each being para-
meterized by the D components of their dipole moment.
Their time series are encoded into the DN3T matrix w.
Finally, the M3T matrix E denotes the prediction error,
which is often modeled based on expected properties of
measurement noise.

An inverse model determines a unique source matrix ŵ
from given data l. We shall focus here on linear estima-
tors of the form

ŵ5Wl;

where the time-independent DN3M source projection
matrix W defines the inverse operator. This class of
inverse models, for which W may be real or complex-
valued, contains stationary MNE and Beamformers as spe-
cial examples.

Formally, spatial leakage effects are associated with the
analytical properties of the lead field and inverse opera-
tors, which put fundamental limits to the spatial resolution
of reconstructions and concomitantly introduce sources
correlations (or coherencies) reflecting this geometric struc-
ture rather than dynamical information [Wens, 2015]. Spa-
tial leakage is expected to be linear for the type of inverse
models under consideration, and its geometry can be mod-
eled. For simplicity, we shall focus on the case of one-
dimensional sources. This typically occurs upon projection
of each D3T matrix block ws of w (corresponding to a
source location indexed by s, with 1 � s � N) onto direc-
tions ns (unit D31 vector) determined by anatomical or
functional constraints. In practice, this projection involves
the replacements

D 1; Ls  Lsns; Ws  nT
s Ws;

where Ls and Ws respectively denote the matrix blocks of
L and W corresponding to source location s.

In the D51 case, the geometry of spatial leakage ema-
nating from a given seed location s0 can be modeled as the
source configuration [Wens, 2015]

WLs0
ŵs0

Ws0 Ls0

:

The N3T numerator is proportional to the PSF of the
seed, WLs0

, which corresponds to the reconstruction of a
source configuration concentrated at the seed s0 via for-
ward modeling in the noiseless limit (E50) and source
projection, and indeed describes the topography of spatial
leakage from that seed. The time-dependent (13T) normal-
ization factor ŵs0

= Ws0 Ls0ð Þ is an estimate of true seed activ-
ity in the absence of measurement noise. The strict validity
of this estimate, and thus of the above model, requires
that the seed reconstruction ŵs0

does not depend on true
activity originating from elsewhere. This entails the model
assumption that true seed activity is sufficiently isolated
from other active regions s 6¼ s0 so that no spatial leakage
effectively takes place from s to s0 [Wens, 2015].

Geometric Correction Scheme

The GCS for spatial leakage effects emanating from the
seed s0 simply consists in subtracting the spatial leakage

Figure 1.

Illustration of the GCS. The reconstruction (left) of a bi-focal

source configuration localized at the SM1 cortices (white dots)

is shown together with the geometric model of spatial leakage

contribution from the left SM1 cortex (middle). The corrected

reconstruction is obtained by subtraction (right).
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geometry model from the reconstruction, as illustrated in
Figure 1. In the present context of linear inverse modeling,
the resulting corrected source configuration /GCS can be
expressed compactly in terms of a modified inverse opera-
tor WGCS, i.e.,

/GCS5WGCSl

with

WGCS5W2
WLs0 Ws0

Ws0 Ls0

5W 1M2
Ls0 Ws0

Ws0 Ls0

� �
;

where 1M denotes the M3M identity matrix. This is the
fundamental formula of the GCS under consideration. Cor-
rected seed-based FC maps are obtained by estimating FC
between the uncorrected seed (ŵs0

) and the corrected tar-
gets (/GCS

s ).
Let us now describe some analytical properties of this

modified inverse operator. Except for the first one, they
hold independently of the underlying model assumption.

i. Phase lag of spatial leakage
Considering a complex-valued inverse operator

W (e.g., DICS), the corrective term in the definition
of WGCS estimates the phase lag induced by spatial
leakage from seed s0 to source s as the phase of the
complex number WsLs0

=Ws0
Ls0

. For a real-valued W ,
this estimate vanishes and the zero-lag assumption
thus holds.

ii. Preservation of spatial properties
The modified inverse operator WGCS shares the

spatial properties of the original one W , such as its
source blurring. Indeed, source modeling using the
GCS actually coincides with original source modeling
preceded by a projection l! 1M-Ls0 Ws0=Ws0 Ls0ð Þl on
sensors data.

iii. Depth bias independence
A particular case of (ii) is that the original and

the modified inverse operators exhibit the same
depth bias, to which the GCS is thus insensitive.
Indeed, a spatially inhomogeneous renormalization
Ws !Ws=ks eliminating the depth bias ks for source
s induces the same rescaling WGCS

s !WGCS
s =ks since

the sensor-space projector is invariant.
iv. Local elimination of seed activity

The role of the sensor-space projection is to sup-
press the contribution of the seed s0 to the recon-
struction. This elimination is embodied by the
identity WGCS

s0
50, which shows that corrected recon-

structions always vanish at the seed location
(/GCS

s0
50). The remaining source blurring then also

imposes non-trivial correction for neighboring sour-
ces s (see also property (vii) below).

v. Elimination of spatial leakage from the seed
A related consequence of this projection is the

suppression of spatial leakage effects emanating

from s0. This central property of the GCS is evi-
denced by the vanishing of the corrected PSF

WGCSLs0
50;

which indeed shows that the spurious contribution
of true seed activity to the corrected reconstruction
has been eliminated.

vi. No modification in the absence of spatial leakage
Another key property is that the inverse operator is

effectively uncorrected wherever spatial leakage
effects from s0 are negligible, as it should. Indeed, the
absence of such effects from s0 to s is characterized by
WsLs0 � 0, from which follows WGCS

s �Ws. This typi-
cally happens in regions sufficiently distant from the
seed, as will be shown for MNE using simulations.

vii. Local overcorrection
Ideally, a method designed to correct for spatial

leakage from s0 should satisfy the property (v) but
leave other PSFs unaffected. However, these con-
straints are generally incompatible (at least in the
context of linear inverse modeling) because of lead
field correlations. For the GCS, this impossibility is
exemplified by the formula

WGCSLs5WLs-ksWLs0 ; ks5Ws0 Ls=Ws0 Ls0 :

The PSF of source s 6¼ s0 is thus non-trivially modi-
fied when ks deviates from zero, which happens
when the lead field columns Ls and Ls0 are suffi-
ciently correlated. The GCS thus completely elimi-
nates spatial leakage from s0 at the expense of
possible overcorrection wherever ks 6¼ 0. In MEG/
EEG, this overcorrection is expected to be essen-
tially local because lead field correlations typically
arise from the spatial smoothness of the forward
model. This limitation of the GCS should thus have
consequences mainly for local FC estimation and
seed location errors.

Properties (v) and (vi) provide a posteriori justification of the
GCS, whereas avoiding the issue of overcorrection (vii)
explains the stated model assumption that only sources s with
negligible spatial leakage from s to s0 (i.e., Ws0

Ls � 0 so ks � 0)
should be active. The extent of this limitation, as well as of
other implicit model assumptions (no measurement noise or
lead field errors), shall be assessed using simulations.

Spatial Leakage Correction by Signal

Orthogonalization

The advantages and limitations of the GCS shall also be
examined by comparison with signal orthogonalization.
We focus here on the two foundational versions, i.e., static
[Brookes et al., 2012b] and instantaneous [Hipp et al.,
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2012] orthogonalizations. Mathematically, they correspond
respectively to temporal and phase Gram-Schmidt ortho-
gonalizations of the sources and the seed time courses. In
our notations,

/static5ŵ2

Re ŵ ŵ
†

s0

� �

ŵs0
ŵ

†

s0

ŵs0

and

/inst
t 5ŵt2

Re ŵtŵ
�
s0t

h i

jŵs0tj
2

ŵs0t;

the subscript t indicating the column corresponding to the
tth time sample (1 � t � T).

It is noteworthy that these corrections (originally devel-
oped for envelope FC) can be formally applied to phase cou-
pling measures and actually relate closely to existing FC
indices such as the phase lag index [Wens, 2015] or imagi-
nary coherence. Rephrasing an argument given in Nolte
et al. [2004], the link with imaginary coherence can be traced
back to the orthogonality relation

Re /ŵ
†

s0

� �
5 0 ð/5/static or /instÞ;

which indicates that the cross-density /ŵ
†

s0
(unnormalized

coherence between the uncorrected seed and the orthogon-
alized source time series) is indeed imaginary.

Minimum Norm Estimation

To illustrate the theory on simulations and experimental
data, we shall use MNE as a basic example of linear
inverse model, for which W reads [Dale and Sereno, 1993]

W5LT LLT1jCE
� �-1

;

the M3M matrix CE and scalar j > 0 respectively denoting
measurement noise covariance and a regularization parame-
ter. This expression follows from a well-known minimiza-
tion problem [Backus and Gilbert, 1970; Tarantola, 2004]. It
is noteworthy that the GCS for MNE also derives from a
constrained minimization explicitly implementing the key
property (v), and actually reduces to a special case of the
DeFleCT algorithm [Hauk and Stenroos, 2014] (see Support-
ing Information A.1 for details).

In practice, we shall set the regularization parameter to

j5
tr C-1

E LLT
� �

tr C-1
E Cl

� �
2M

;

where Cl denotes the M3M data covariance. This choice
can be derived from a consistency argument within the

prior assumptions of MNE (see Supporting Information
A.2). To simplify subsequent analyses, the D 1 projec-
tion will be applied onto the directions ns of maximum
sources variance, estimated as the principal eigenvectors
of each dipole D3D covariance matrix WsClWT

s [Wens
et al., 2014a,b]. When needed (e.g., for visualization of
PSFs), the depth bias will be corrected using sLORETA
[Pascual-Marqui, 2002], i.e., upon normalization of each
source s amplitude estimate by

k̂s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ws j21LLT1CE
� �

WT
s

q
:

For MNE, spatial leakage is essentially controlled by the
correlation structure of the lead field [Wens, 2015]. We
shall use two consequences of this observation. Firstly,
lead field columns spatial similarity jcorr Ls; Ls0

ð Þj gives a
natural measure of the spurious cross-talk strength from
seed s0 to source s, where corr denotes Pearson’s correla-
tion coefficient. Secondly, spatial leakage among all N
sources strongly restricts the number qMNE of spatial
degrees of freedom (DOFs) involved in MNE reconstruc-
tions (qMNE � N), which can be identified generically with

qMNE5rank Wð Þ5rank Lð Þ

in view of the above equation for W . Adapting the philos-
ophy of Barnes et al. [2011] to the specific case of MNE,
we shall use an estimate of qMNE to control the multiple
comparisons problem involved in statistically testing
source-level maps. The GCS and signal orthogonalizations
remove one DOF due to seed activity (see identities
/GCS

s0
5/static

s0
5/inst

s0
50). Nevertheless, since some tests con-

sidered next mix uncorrected and corrected reconstruc-
tions, we shall systematically use qMNE instead of qMNE-1,
which leads to only slightly conservative statistics. In prac-
tice, the lead field rank will be evaluated by computing
the spectrum of the covariance matrix LLT and finding the
minimum number of eigenvalues whose sum reaches 99%
of total variance tr LLT.

MATERIALS AND METHODS

Structural Effects on Noisy Point-Spread

Functions

All simulated MEG data were generated using one sub-
ject’s lead field L 0ð Þ for a 306-channels whole-scalp neuro-
magnetometer (Vectorview, Elekta Oy, Helsinki, Finland)
taken from the RSNs data (described next). Only planar
gradiometers were used (M5204), as explained later.

The effect of the GCS on noisy PSFs was first investi-
gated using simulated source configurations w (DN31)
consisting of a single active dipole s whose moment vector
ws was chosen of unit amplitude and pointing in the direc-
tion of maximum magnetic response L

0ð Þ
s ws (i.e., the
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principal eigenvector of the D3D matrix L
0ð ÞT

s L
0ð Þ

s ). Sensor-
space data l were then generated by forward modeling
with lead field L5L 0ð Þ and measurement noise E obtained
by randomly picking a time sample from an artifact-free
empty room MEG recording (duration: 5 min, sampling
rate: 1 kHz, band-pass filter: 0.1–330 Hz). The latter data
were preprocessed beforehand using signal space separa-
tion (SSS) to suppress external interferences [Taulu et al.,
2005] and rescaled so as to fix the SNR estimate

f5
1

M
tr C-1

E Cl
� �

to a given value (see below). The noise covariance matrix
CE was derived from the empty room data and regularized
by adding 10% of the mean gradiometers variance tr CE=
M to its diagonal elements before inversion.

Source modeling was then performed with MNE, as out-
lined in the Theory section. To include lead field errors, L

was chosen as an interpolation 1-sð ÞL 0ð Þ1sL 1ð Þ between the

true lead field L 0ð Þ and another lead field L 1ð Þ taken from
the RSNs data; s denoting the interpolation parameter (see

below). The resulting reconstruction ŵ then defined the
noisy PSF of source s at parameters f and s. Likewise, the
GCS-modified PSF was computed as the corrected recon-

struction /GCS, with the seed location s0 chosen at the left
SM1 hand area (SM1ha, MNI coordinates: [–42, 226, 54]
mm) or the left A1 cortex ([–54, 222, 10] mm). Spatial dis-

similarity ds f; sð Þ51-corr ŵ;/GCS
	 


was finally used to

quantify the modification of PSFs by the GCS. Possible val-
ues range between 0 (same PSFs, i.e., no effect of GCS) to
1 (uncorrelated PSFs) to 2 (anti-correlated PSFs). This
index was averaged over 5 simulation runs.

Spatial dissimilarity was assessed as a function of source
location by performing the above steps for all sources s
with f54 and s50 (reference simulation). The effect of
noise parameters was subsequently explored by varying
the SNR (f5 1.01, 2, 4, 8 and 16) and the lead field inter-
polation (s from 0 to 1 by step 0.2), and quantitatively
compared to the reference simulation fref54, sref50 using
the fit error

P
s ds f; sð Þ2ds fref; srefð Þð Þ2P

sds fref; srefð Þ2
:

Because of the computational load, the simulations with
varying parameters were limited to a random subselection
of 1000 sources, to which the sums over s were restricted.

Simulated Networks

The induced effect of spatial leakage correction on FC
estimation was investigated using simulated networks in
the b band (12-21 Hz). Source configurations w (DN3T)
comprised a number K of active nodes (seed node s0, tar-
get nodes s1; . . . ; sK-1) on top of a brain background

(b-band filtered gaussian white noise, duration: 5 min,
sampling rate: 200 Hz, T563104). The simulated dipole
moments consisted of b-band filtered gaussian white
noises with variance 10 times that of the background; their
orientations being fixed in terms of the lead field L 0ð Þ as in
the PSF simulation. To mimic the slow amplitude FC
observed in RSNs, the Hilbert envelope of the seed node
was replaced by a 0.1 Hz sinusoid [Brookes et al., 2012b]
shifted and rescaled to preserve envelope positivity and
signal variance. The Hilbert envelope and phase of the tar-
get nodes were then modulated to set up various coupling
patterns involving slow envelope FC with (non-orthogonal
signals, phase lag 6¼ p=2) or without (orthogonal signals,
phase lag 5p=2) linear correlation. The precise algorithm
is detailed in Supporting Information A.3. Forward model-
ing of the resulting simulated configuration was then per-
formed using L5L 0ð Þ and measurement noise E taken from
the empty room MEG data [downsampling to 200 Hz, b-
band filtering, rescaling for a realistic SNR estimate f54
(see the RSNs data)].

Several configurations were considered. Firstly, basic
binodal (K52) networks of orthogonal signals were built
using a seed node placed at left SM1ha and a target node
probing the rolandic sulcus at various distances, or a seed
node at left A1 and a target node at right A1 (MNI coordi-
nates: [54, 222, 10] mm, distance from seed node: 10 cm).
Their coupling consisted of slow envelope FC (simulated
values: 0 and 0.5) without linear correlation. Secondly, a
trinodal (K53) network mimicking the auditory RSN was
built using a seed node at left A1, one target node in the
left supramarginal gyrus (SMG, [247, 238, 26] mm, 2 cm)
and another at right A1. Couplings with the seed node
consisted of equal linear and slow envelope correlations
(values: 0.5 for SMG, 0.7 for right A1). Lastly, a quadrino-
dal (K54) network reproducing the sensorimotor RSN was
built using a seed node at left SM1ha, two target nodes
along the left rolandic sulcus ([250, 212, 42] mm and
[218, 230, 272] mm, 2.5 cm) and another at right SM1ha
([42, 226, 54] mm, 8 cm). Couplings with the seed node
consisted of equal linear and slow envelope correlations
(value: 0.7) for the left target nodes and pure slow enve-
lope FC (value: 0.5, orthogonal signals) for the right target
node. In each case, the simulation was run 10 times.

Seed-based FC analyses were then performed for each
simulation. The used seed ŝ0 either coincided with the
seed node s0 or was placed 1.5 cm away to investigate the
consequences of seed mislocation. The reconstruction ŵ
was obtained with MNE (no lead field interpolation) and
its analytic signal was extracted using the Hilbert trans-
form. The GCS and signal orthogonalizations were also
applied to correct for spatial leakage from the seed ŝ0,
resulting in analytic signals /GCS

s , /static
s and /inst

s for all
target sources s 6¼ ŝ0. Slow envelope FC maps were finally
derived between the seed (X0) and the target (X) time
series (simulated FC: X05ws0

, X5ws; reconstructed FC:
X05ŵ ŝ0

, X5ŵs, /GCS
s , /static

s or /inst
s ), by first down-

r Spatial Leakage Geometric Correction Scheme r

r 4609 r



sampling the Hilbert envelopes jX0j and jXj using sliding-
window averages (width: 1 s, step: 0.5 s) and then com-
puting their temporal correlation [Brookes et al., 2012b;
Wens et al., 2014a,b].

Resting-State Networks

This resting-state dataset is the same as the one used in
Wens et al. [2014b]. Fifteen healthy adult subjects (8
females and 7 males, mean age: 24 years, age range: 19–30
years) took part in this study after written informed con-
sent; the study being approved by the ULB–Hôpital
Erasme Ethics Committee. All participants were right-
handed as assessed by the Edinburgh Handedness Inven-
tory [Oldfield, 1971] and had no history of neurologic or
psychiatric disease. Subjects performed a resting-state
MEG session (5 min), during which they were asked to sit
still and gaze at a fixation cross projected on a screen in
front of them. Data were recorded (sampling rate: 1 kHz,
band-pass filter: 0.1–330 Hz) in a light-weight magnetically
shielded room (MaxshieldTM, Elekta Oy, Helsinki, Finland)
using a 306-channels whole-scalp neuromagnetometer
(Vectorview, Elekta Oy, Helsinki, Finland) installed at the
ULB–Hôpital Erasme [for its technical characteristics, see
Carrette et al., 2011; De Tiège et al., 2008]. Four head-
tracking coils monitored the subjects’ head position inside
the MEG helmet. Their locations relative to anatomical
fiducials, as well as at least 150 head-surface points, were
recorded prior to MEG data acquisition using an electro-
magnetic tracker (Fastrack, Polhemus, Colchester, VT).

Off-line preprocessing was then applied to clean data
from noise and extract the sensor-level b-band rhythms
used to derive the SM1 and the A1 MEG RSNs. The SSS
method was first applied to suppress external interferences
and correct for head movements [Taulu et al., 2005]. Sen-
sor signals were then filtered between 0.5 and 45 Hz and
linearly decomposed using independent component analy-
sis [Hyv€arinen et al., 2001; Vigario et al., 2000] as imple-
mented in the FastICA algorithm (dimension reduction to
30, non-linearity tanh). Artifactual components correspond-
ing to cardiac, eye movements and electronic artifacts
were visually selected and projected out of data (number
of rejected components per subject: mean 3.3, range 2–5).
Finally, the cleaned MEG time series were filtered in the b

band and their analytic signals were derived using the Hil-
bert transform. In subsequent analyses, data were
restricted to the M5204 planar gradiometers [to avoid pos-
sible issues associated with SSS, see Luckhoo et al., 2012a]
and gathered in a complex-valued M3T data matrix l
(T � 33105). The resulting SNR estimates were f54:662:5
(mean 6 standard deviation over the subjects), explaining
the value used in the simulations.

Computation of subjects’ lead fields L was based on their
high-resolution 3D-T1 weighted MRI acquired using a 1.5 T
MRI scanner (Intera, Philips, The Netherlands) and anatom-
ically segmented using the Freesurfer software (Martinos

Center for Biomedical Imaging, Massachusetts, USA). MEG
and MRI coordinate systems were co-registered using the 3
anatomical fiducial points for initial estimation and the
head-surface points for further manual refinement. A source
grid was then built in each subject’s MRI to approximate
the current flow distribution by a discrete collection of N
current dipoles. To facilitate group averaging, this grid was
obtained by mapping a common regular 5-mm grid sam-
pling the Montreal Neurological Institute (MNI) brain vol-
ume (N516102) onto each subject’s brain using a non-linear
spatial deformation algorithm implemented in Statistical
Parametric Mapping (SPM8, Wellcome Trust Centre for
Neuroimaging, London, UK). The D53 lead field L associ-
ated to each grid was then estimated using the Boundary
Element Method implemented in the MNE software suite
(Martinos Center for Biomedical Imaging, MA). Two of
these were used in the simulations.

Inverse modeling, spatial leakage correction (GCS and
signal orthogonalizations) and slow envelope FC estima-
tion were performed as for the network simulations. To
disclose the SM1 and the A1 RSNs, seed locations s0 were
selected at the left SM1ha and the A1 cortex as above.

Auditory-Motor Network

This dataset investigates the corticokinematic coherence
(CKC) phenomenon [Bourguignon et al., 2011, 2012, 2013];
the hand movement being here auditorily paced. Ten
healthy adult subjects (4 females and 6 males, mean age:
31 years, age range: 24–40 years) took part in this study
approved by the ULB–Hôpital Erasme Ethics Committee.
All were right-handed as assessed by the Edinburgh
Handedness Inventory [Oldfield, 1971], had no history of
neurologic or psychiatric disease, and participated after
written informed consent. Subjects performed flexion-
extensions of the right-hand fingers during 5 one-min peri-
ods, each separated by one minute of rest. They were
asked to avoid any contact between the thumb and the
other fingers to reduce tactile inputs, and to gaze at a
point on the ceiling of the magnetically shielded room to
avoid any visual contact with the moving hand. A move-
ment pace of 2 Hz was imposed by using an auditory cue
(440 Hz pure tone with 2 Hz amplitude modulations, 60
dB above hearing threshold). Right index finger kinematics
was recorded (sampling rate: 1 kHz, low-pass filter: 330
Hz) simultaneously to MEG signals using a 3-axis acceler-
ometer (Acc; ADXL335 iMEMS Accelerometer, Analog
Devices, Norwood, MA).

MEG data acquisition and artifact correction in the
0.5–45 Hz band was identical to the RSNs pipeline. The
euclidean norm of band-passed (1–200 Hz) Acc signals was
computed for each time sample, hence reflecting movement
kinematics independently of direction. The five movement
periods were concatenated and defined the MEG (l) and
the Acc (a) data. As before, only gradiometers were used
(M5204).

r Wens et al. r

r 4610 r



A time-frequency representation adapted to coherence
analysis was obtained using the Fast Fourier Transform on
overlapping sliding windows (width: 3072 ms correspond-
ing to �6 movement cycles, step 615 ms). This resulted for
each frequency f (spectral resolution: � 0.33 Hz) in
complex-valued time series Fl fð Þ (M3T) and Fa fð Þ (13T),
where F symbolizes the Fourier transform operation and T
denotes the corresponding number of time windows
(T � 450). A similar decomposition was applied to the
empty room data, defining measurement noise FE fð Þ
(M3T with T � 490). Subsequent analysis was limited to
movement frequency f052 Hz and its first harmonic
f154 Hz, which were singled out by CKC spectra [Bour-
guignon et al., 2011, 2012, 2013]. Data and noise M3M
cross-density matrices were estimated at f 5f0 and f 5f1
using Cl fð Þ5Fl fð ÞFl fð Þ

†

=T and CE fð Þ5FE fð ÞFE fð Þ
†

=T. The
SNR estimates at these frequencies were f523:1616:0 at f
5f0 and f518:269:9 at f 5f1 (mean 6 standard deviation
over the subjects).

Inverse modeling and the GCS were then applied as
above, with the only difference that covariances were
replaced by cross-densities. In this setup, the resulting
MNE inverse operator W5W fð Þ was frequency specific
and complex valued, hence inducing non-zero-lag spatial
leakage effects. Reconstructed sources Fourier time series
Fŵ fð Þ and its corrected version F/GCS fð Þ (N3T) were
obtained by application of the original and the modified
inverse operators on Fl fð Þ.

Cortico-cortical coherence analysis was then performed.
The seed was chosen for each frequency of interest (f0 and f1)

on the basis of source-level CKC analysis [Bourguignon et al.,

2012]. Coherence maps jcoh Fa fð Þ;Fŵs fð Þ
	 


j between sources

and Acc signals were first computed and averaged over sub-
jects, coh denoting the complex-valued coherence [Halliday
et al., 1995]. The seed s0 was selected as the local maximum
located at the SM1 cortex contralateral to hand movement.
Then, cortico-cortical coherence maps with and without
GCS were obtained as the magnitude coherence

jcoh Fŵs0
fð Þ;FXs fð Þ

	 

j with X5ŵ (uncorrected for spatial

leakage) and X5/GCS (corrected) for all target sources s 6¼ s0.
Despite the failure of the zero-lag spatial leakage assumption,

the imaginary coherence maps jIm coh Fŵs0
fð Þ;Fws fð Þ

	 

j

were also computed for comparison with the GCS.

Statistical Maps

Various statistics were considered to assess the signifi-
cance of FC estimates, MNE spatial leakage effects and
their correction by the GCS or the signal orthogonalization.
All the following tests were performed at significance level
a50:05. The family-wise error (FWE) was controlled using
Bonferroni correction for the number qMNE of spatial DOFs
[i.e., aFWE5a=qMNE, see Barnes et al., 2011; Brookes et al.,
2012b] identified in the Theory section (simulations:

qMNE555; resting-state: qMNE55865; auditory-motor at f0
and f1: qMNE56266; mean 6 standard deviation over the
subjects).

Statistical significance against the null hypothesis of
zero FC was assessed for the resting-state and the
auditory-motor networks, by constructing approximately
gaussian standard Z-scores as Fisher-transformed FC
divided by its null standard deviation [for Fisher’s trans-
form of imaginary coherence, see Eq. (12) in Nolte et al.,
2004]. The latter was estimated non-parametrically using
1000 surrogate datasets preserving temporal autocorrela-
tions. For slow envelope FC, the null samples were gener-
ated by computing Fisher-transformed seed-based
envelope correlations with Fourier-phase surrogates
[Schreiber and Schmitz, 2000] of each target slow envelope
time series. For coherence, they were generated as the
Fisher-transformed seed-based magnitude or imaginary
coherence with random-phase surrogates [Faes et al., 2004]
of each target Fourier time series. To detect FC typical of
the population, statistical masking was derived from a
conjunction analysis. Briefly, the one-tailed tests Zs > 0
with FWE correction were first performed for each subject.
Then, only source locations with a fraction g of subjects
falling in the confidence interval gc � g � 1 were included
in the mask [resting-state: gc562% for 15 subjects;
auditory-motor at f0 and f1: gc548% for 10 subjects; see Eq.
(3) in Friston et al., 1999].

For the network simulations where the true interac-
tion pattern is known, spatial leakage effects in seed-
based FC maps were gauged by the statistical differ-
ence between simulated (ground truth) and recon-
structed (uncorrected, GCS and signal
orthogonalizations) FC estimates. This was assessed
using two-tailed paired T-tests (samples: Fisher-
transformed slow envelope FC for the 10 simulations;
number of DOFs: m59); the resulting Tm-maps being
thresholded at significance level aFWE.

Finally, in all cases, the differential effect of the consid-
ered FC reconstructions was assessed using similar T-tests
(samples: Fisher-transformed slow envelope FC or coher-
ence for the m11 simulations or subjects; number of DOFs:
m59 for simulated and auditory-motor networks, m514 for
RSNs).

RESULTS

Structural Effects on Noisy Point-Spread

Functions

We explored the effect of the GCS from two seed loca-
tions on the inverse operator using reconstructions of
noisy PSFs. Results for the SM1ha seed are depicted in
Figure 2. For the reference simulation, the spatial distribu-
tion of PSF dissimilarity showed that the GCS has mostly
a local effect decreasing with distance from the seed (Fig.
2A, left and middle). Locations with PSF dissimilarity
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above 0.2 were observed up to 2 cm, where the GCS acted
non-trivially. Strong effect was found at the seed itself
(Fig. 2B, left), reflecting the elimination of spatial leakage
[property (v) in the Theory section]. An example of non-
trivial modification for a nearby (� 2 cm) source is also
given (Fig. 2B, middle), illustrating local over-correction
[property (vii)]. Back to Figure 2A (middle), PSF dissimi-
larity was below 0.1 for sources farther than 4 cm (and in
particular, in the hemisphere contralateral to the seed)
where no effect of the GCS was observed, as exemplified
in Figure 2B (right). This demonstrated the absence of
effective long-range modifications of the inverse operator
and the locality of overcorrection [properties (vi) and

(vii)]. An increasing relation between PSF dissimilarity
and lead field similarity was also observed (Fig. 2A, right).
This confirmed that the GCS has negligible effect for small
spatial leakage [property (vi)] and gets more important for
stronger spatial leakage.

Since the model on which the GCS is based ignores both
measurement noise and lead field inaccuracies, we investi-
gated the robustness of this method by varying the SNR

and the lead field interpolation. Figure 2C shows the fit

error estimating the alteration of the PSF dissimilarity dis-

tribution by these parameters, compared to the reference

simulation. No effect induced by reasonable SNR or lead

field interpolation (Fig. 2C, top insert) could be disclosed.

Figure 2.

Effect of the GCS from the left SM1ha on noisy PSFs. (A) Spatial

distribution of PSF dissimilarity for the reference simulation

(SNR f54, no lead field error). It is represented as a cortical

map (left) and plotted against distance (middle) or lead field simi-

larity (right) between the seed and the simulated node. Blue and

red points respectively denote sources in the left and the right

hemispheres. (B) Example PSFs before (top) and after (bottom)

geometric correction taken from the reference simulation with

simulated node (white cross) placed along the rolandic sulcus at

0, 1 and 8 cm from the seed (white dot). Maps were normalized

using sLORETA for visualization. C: Effect of parameters varia-

tion on PSF dissimilarity, as assessed by the fit error to the ref-

erence simulation. Inserts show two examples with explicit

comparison to the reference simulation (yellow points).
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The fit error only increased for very poor SNR, in which

case PSFs were dominated by noise and the action of the

GCS was therefore mild and random (Fig. 2C, bottom

insert).
Results for the A1 seed were similar, despite its deeper

location within the sylvian sulcus and henceforth lesser
MEG signal SNR (see Supporting Information B.1).

Simulated Binodal Networks (Orthogonal

Signals)

The effect of the GCS on FC per se was investigated and
compared to signal orthogonalization using simulated net-
works. We began with binodal networks of orthogonal sig-
nals (coupled via slow envelope correlation) to assess the
basic performance of the GCS and its limitations due to
local overcorrection, which on the basis of the structural
effects was expected to arise for nodes distance below
2 cm. Figure 3 illustrates the reduction of seed-based spa-
tial leakage FC by the GCS for various configurations. In
all cases, the uncorrected maps (Fig. 3, left) were domi-
nated by local spatial leakage FC around the seed (T9-
maps maximum >100), which was significantly decreased
after correction (Fig. 3, middle and right). Accordingly, the
effect of the GCS on spatial leakage FC prevailed around
the seed, although mild (i.e., close to significance thresh-
old) long-range differences were also observed (Fig. 3,
right). For sufficiently remote nodes with and without
seed mislocation (Fig. 3A,D), the disconnected significant
region was left qualitatively unaffected [as expected by
locality of spatial leakage from the seed, see property (vi)
and Fig. 2B, right] and its maximum FC co-localized with
the right target node. Of notice, its spurious surrounding
pattern represents a “secondary” spatial leakage effect
[see, e.g., Palva and Palva, 2012] combining the true simu-
lated coupling with spatial leakage from the target node,
which is indeed not corrected by the GCS. For closer
nodes whose PSFs overlapped (distance <2 cm, see Fig.
2A,B, middle), the GCS corrected spatial leakage imper-
fectly [overcorrection effect, property (vii)] and resulted in
spurious local FC patterns. At distance 1 cm (Fig. 3B), this
spurious pattern was mild and maximum FC actually co-
localized with the target node, whereas at 0.5 cm (Fig. 3C)
this spurious pattern was dominant. Likewise, seed mislo-
cation generated dominating spurious FC around the seed
(Fig. 3D; see also Supporting Information B.2 for the mislo-
cation effects associated with the deeper A1 seed).

To check how spatial leakage correction behaves in the
presence of active nodes uncoupled to the seed, binodal
simulations without FC were also considered. Results are
illustrated in Supporting Information B.3. Briefly, the pure
spatial leakage effect observed in uncorrected maps was
completely eliminated after geometric correction without
seed mislocation, including for very close nodes. With
seed mislocation, the same spurious local FC pattern than
in Figure 3D was obtained.

Qualitatively similar observations applied to signal
orthogonalization (as expected since the simulated signals
conformed to the underlying orthogonality assumptions),
although slightly significant differences were observed
whenever overcorrection or seed mislocation effects took
place. The above-mentioned local spurious FC patterns
were decreased compared to the GCS, indicating that sig-
nal orthogonalization is less affected by overcorrection
issues, but it is noteworthy that they were still present.
Details are given in Supporting Information B.4.

Simulated Multinodal Networks

We then considered more complex setups involving
both close and distant nodes and including non-
orthogonal signals (so as to reveal ability to map linear
FC). Figure 4 shows results for the sensorimotor and the
auditory simulations. All spatial leakage corrections
eliminated the local patterns dominating the uncorrected
maps (Fig. 4, left, T9-maps maximum >100) and located
the coupling with the orthogonal target node (Fig. 4,
top). The GCS was also able to pinpoint all non-
orthogonal target nodes, whereas static orthogonalization
was blind to them (as expected from the absence of
simulated linear coupling). Instantaneous orthogonaliza-
tion could also disclose the remote non-orthogonal target
node (Fig. 4, bottom right). The direct comparison of
spatial leakage corrections is relegated to Supporting
Information B.5.

Resting-State Networks

Figure 5A shows the statistical FC maps representing
the SM1 and the A1 RSNs. The uncorrected maps (Fig. 5A,
left) presented the expected connectivity between left and
right primary cortices but were dominated by intra-
hemispheric correlations around the seed (Z-maps maxi-
mum >110). The three correction methods decreased Z-
scores around the seed but significant local patterns per-
sisted, either along the rolandic sulcus for the SM1 RSN or
at the SMG for the A1 RSN. Corrected topographies were
similar but with smaller Z-scores after instantaneous
orthogonalization (Fig. 5A, right), for which the inter-
hemispheric A1 FC was not significant.

Statistical comparisons of the different spatial leakage
corrections (Fig. 5B) confirmed that the GCS decreased FC
locally [Fig. 5B, left; see also property (vi)]. They did not
disclose extensive differences between the GCS and static
orthogonalization for these resting-state data, but revealed
non-homogeneous FC underestimation by instantaneous
orthogonalization.

Auditory-Motor Network

The seeds MNI coordinates obtained from source-level
CKC analysis were [227.5, 29.5, 58.5] mm (left primary
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motor (M1) cortex) at f052 Hz and [238.5, 233.5, 47.5]
mm (left primary somatosensory (S1) cortex) at f154 Hz.
Figure 6 shows the resulting statistical maps for seed-
based coherence, both uncorrected for spatial leakage and

corrected with the GCS, as well as for imaginary coher-
ence. Again, high levels of FC around the seed dominated
the uncorrected maps (Fig. 6, left, Z-maps maximum
>210) and were decreased after correction (Fig. 6, middle

Figure 3.

Geometric correction for simulated binodal networks (orthogo-

nal signals). The statistical maps assess spatial leakage FC for

uncorrected (left) and corrected (middle) slow envelope FC esti-

mations as well as the differential effect of the GCS (right). Net-

work nodes are indicated by the white dot and cross (A–C) or

two white crosses (D). In all cases, the white dot shows the seed

location used for FC mapping and geometric correction. Statisti-

cal thresholding was applied at FWE-corrected significance level

0.05, while upper scales were set to the maximum of the

GCS2truth (left and middle) or uncorrected2GCS (right) maps.
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and right). Despite preeminent spatial leakage effect, vari-
ous local maxima away from the seed could be disclosed
visually in the uncorrected map at f0 and appeared quali-
tatively preserved after geometric correction (Fig. 6, top
left and middle). Coherent areas overlapped the dorso-
lateral prefrontal cortices (DLPFC) bilaterally, the supple-
mentary motor area (SMA)/medial premotor cortex, the
right SM1 cortex, the posterior parietal cortex (PPC, Brod-
mann areas 5 and 7), the superior (STG) and inferior (ITG)
temporal gyri bilaterally, and the cerebellum with predom-
inance over the right cerebellar hemisphere. At f1, spatial
leakage effects spread more extensively, and the only local
maxima identified before correction were left DLPFC, left
ITG and right preeminent cerebellum (Fig. 6, bottom left).
After applying the GCS, the right SMA, left premotor/M1
cortex, right medial SM1 cortex and left PPC were also
emphasized (Fig. 6, bottom middle).

The values and topographies of Z-maps appeared differ-
ent for imaginary coherence (Fig. 6, right), as expected
since the zero-lag spatial leakage assumption is broken.
However, statistical comparison of correction methods did

not disclose extensive significant differences (see Support-
ing Information B.6).

DISCUSSION

Geometric Correction of Spatial Leakage

This article considers a GCS allowing elimination of
spurious couplings induced by spatial leakage from a
fixed location and investigates its usefulness for MEG/
EEG seed-based FC analyses.

The starting point of this approach is the observation
that spatial leakage emerges from the structure of inverse
operators rather than brain state dynamics. The GCS
indeed relies on seed-based spatial leakage geometry mod-
eled as a suitably normalized PSF at the seed location.
This application of PSFs shares common features with pre-
vious works [Hauk and Stenroos, 2014; Liu et al., 2002;
Schoffelen and Gross, 2011]. In particular, the point-spread
metric jWsLs0

j2=jWs0
Ls0
j2 used by Liu et al. (2002) to assess

the spatial leakage from source s0 to source s is closely

Figure 4.

Spatial leakage correction for simulated multinodal networks.

The statistical maps assess spatial leakage FC for uncorrected

and corrected (GCS, static and instantaneous orthogonaliza-

tions) slow envelope FC estimations. Network nodes are indi-

cated by white dots (seed node, also used for FC mapping and

spatial leakage correction) and crosses (target nodes; 1: orthog-

onal, 3: non-orthogonal). Statistical thresholding was applied at

FWE-corrected significance level 0.05, while upper scales were

set to the maximum of the GCS2truth maps.

r Spatial Leakage Geometric Correction Scheme r

r 4615 r



Figure 5.

Spatial leakage correction for RSNs. (A) Statistical mapping of

significant SM1 (top) and A1 (down) slow envelope FC at rest

without correction for spatial leakage, with the GCS, as well as

with static and instantaneous orthogonalizations. The presented

values of Z-scores were group averaged and the upper scales

were based on the GCS maps maximum. Statistical masking was

derived from a conjunction analysis and lower scales were set

to the within-mask minimum. (B) Differential effects of spatial

leakage corrections. Statistical thresholding was applied at FWE-

corrected significance level 0.05, and upper scales were set to

the maximum of GCS2inst. orth. maps. In all cases, the white

dot indicates the seed used for FC mapping and spatial leakage

correction.



related to our model, including the same normalization
denominator. We also noted the link between the GCS and
the DeFleCT algorithm [Hauk and Stenroos, 2014], which
builds inverse operators using constraints allowing some
control over source-level cross-talk. For seed-based FC
analysis, it is natural to impose the single constraint of
vanishing PSF at the seed location, in which case DeFleCT
and the GCS applied to MNE actually coincide (Support-
ing Information A.1). The present work adds to this litera-
ture in two ways. From the theoretical perspective, we
derived the GCS from an explicit model of spatial leakage
[Wens, 2015] and focused on an assumption-free analysis
of its properties. From the applied perspective, we investi-
gated its performance for seed-based FC analysis by com-
bining network simulations, experimental MEG data and
statistical mapping. Critically, this proof-of-principle was
limited to MNE, so this part can be viewed as an applica-
tion of DeFleCT to FC estimation. We expect the GCS to
be applicable to other linear source estimators as well, but
this still requires formal confirmation since, e.g., Beam-
formers exhibit more complex, data-dependent PSF shapes
[Brookes et al., 2012b].

Our analyses highlighted some advantages and limita-
tions of the GCS. One asset of the geometric approach is
that it does not make dynamical assumptions about brain
interactions, to the contrary of signal orthogonalization (as

further discussed below). This allows mapping all types of
coupling (linear or non-linear, zero-lag or non-zero-lag),
including for non-zero-lag spatial leakage. Furthermore,
the topography of PSFs being relatively focal for MNE, the
GCS does not affect long-range FC estimation, as should
be in the absence of spatial leakage effects. These two
points could be predicted from theoretical considerations
and confirmed by simulations. Likewise, on experimental
data, the GCS disclosed the inter-hemispheric coupling
typical of bilateral RSNs [Brookes et al., 2011, 2012b; Hipp
et al., 2012; Wens et al., 2014a,b] as well as coherencies
observed in the auditory-motor network [Bourguignon
et al., 2012, 2013; Jerbi et al., 2007; Pollok et al., 2004]
[including temporal areas in this auditorily-paced para-
digm, see Pollok et al., 2005], with the expected preserva-
tion of long-range FC.

On the other hand, the model assumptions of the GCS
set some limitations and we explored its robustness
against their violation. The first hypothesis is the absence
of statistical or systematic errors in forward modeling,
i.e., zero measurement noise and exact lead field estima-
tion. However, simulations suggested that the GCS is
resilient against the introduction of such errors except for
unreasonably small SNR (f51:01, i.e., true data variance
roughly 1% of noise variance), in which case spatial leak-
age and FC estimation get drowned in noise anyway. Of

Figure 6.

Spatial leakage correction for auditory-motor network. Statisti-

cal mapping of significant task-based cortico-cortical coherence

at f0 (top) and f1 (bottom) using uncorrected coherence (left),

geometrically corrected coherence (GCS, middle) as well as

imaginary coherence (imag. right). The presented values of Z-

scores were group averaged and the upper scales were based

on the GCS maps maximum. Statistical masking was derived

from a conjunction analysis, and lower scales were set to the

within-mask minimum [Zmin 5 20 (f0) or 15 (f1) for uncorrected

and GCS; Zmin 5 9 for imag. (f0 and f1)]. In all cases, the white

dot indicates the seed used for FC mapping and spatial leakage

correction.
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notice, the effect of lead field inaccuracies (modeled here
using inter-subjects interpolation) was mild and indeed
similar to that of reasonable measurement noise (SNR
f � 1:5, i.e., true data variance roughly 50% or more of
noise variance). The second hypothesis is the local isola-
tion of the seed, which is not guaranteed in experimental
data and leads to local overcorrection issues. This is the
main drawback of a geometric correction and can lead to
significant but spurious FC around the seed, as we illus-
trated using simulations including seed and target nodes
with overlapping PSFs (i.e., within about 2 cm from the
seed). The last limitation is that of seed mislocation, since
the GCS assumes that the seed coincides with a true net-
work node. In general, seed selection is a fundamental
step for seed-based FC mapping, independently of spatial
leakage itself. Simulations with 1.5 cm error in seed place-
ment again indicated the emergence of spurious local FC.
Local overcorrection and seed mislocation thus warrant
some caution when interpreting short-range corrected FC
such as the persisting intra-hemispheric RSN couplings
(notwithstanding the physiological meaningfulness of the
rolandic sulcus for SM1 RSN and SMG for A1 RSN).
Importantly, these issues are unavoidable for any spatial
leakage correction based on seed activity elimination and
were indeed also observed for signal orthogonalization,
albeit less extensively.

Comparison to Signal Orthogonalization

Our comparative analyses with signal orthogonalization
also highlighted the differences and the complementarity
of the two correction approaches. Signal orthogonalization,
being based on a linear regression from the seed time
course, makes the dynamical assumptions that sources are
gaussian [Brookes et al., 2014] and temporally or phase
orthogonal to the seed [Brookes et al., 2012b; Hipp et al.,
2012]. Its main drawback with respect to the GCS is that it
cannot disambiguate spatial leakage effects from true lin-
ear interactions. Two different issues can arise. First, zero-
lag FC gets eliminated independently of its physiological
relevance, even when spatial leakage is absent. This repre-
sents an overcorrection effect distinct from that of the GCS
and was illustrated in our simulations including linear cor-
relations, for which static orthogonalization missed FC
between non-orthogonal nodes whereas instantaneous
orthogonalization could still disclose those far enough
from the seed. This is because our simulation algorithm
generated linear correlation via non-zero phase lag, see
Supporting Information A.3. For nearby nodes, spatial
leakage set this phase approximately to zero, making them
effectively orthogonal and thus invisible to instantaneous
orthogonalization. Second, spatial leakage can be only par-
tially corrected or not at all for non-zero-lag spatial leak-
age (e.g., when using DICS). Imaginary coherence, which
we used for the auditory-motor data, suffers the same
flaw because of its close relation with signal orthogonaliza-

tion. In the context of DICS, the phase-lag optimization
(rather than orthogonalization) by Drakesmith et al. [2013]
represents a signal-based alternative that would be inter-
esting to compare with the GCS.

On the other hand, the two approaches are expected to
converge when the temporal characteristics of spatial leak-
age are rightly identified and in the absence of non-
orthogonal interactions. This was confirmed using simulated
networks of orthogonal nodes. However, signal orthogonali-
zation proved more resilient against local overcorrection and
seed mislocation, which represents its main advantage over
the GCS. This is because of stronger FC suppression around
the seed, although, critically, the associated spurious pat-
terns remained significant. For RSNs, no significant differen-
ces were disclosed between the GCS and the static
orthogonalization, indicating that no genuine linear correla-
tion is sustained over sufficiently long periods between left
and right primary cortices in the resting state.

Instantaneous orthogonalization underestimated RSN
FC (see, e.g., the missing inter-hemispheric A1 coupling)
because the static nature of spatial leakage in MNE was
not taken into account. Indeed, the non-stationarity of its
linear regression [Hipp et al., 2012] leads to the elimina-
tion of transient linear correlations, which are bound to
emerge from physiological or random fluctuations [not-
withstanding subtler effects described in Wens, 2015].

Further Limitations and Possible Extensions

This work was limited to the scope of stationary source
reconstruction and FC estimation. In theory, the underesti-
mation bias of instantaneous orthogonalization may be
more drastic for dynamic analyses, i.e., investigations of
non-stationary fluctuations in brain interactions via, e.g.,
sliding windowed FC estimation [Brookes et al., 2014; de
Pasquale et al., 2010, 2012; O’Neill et al., 2015]. On the
other hand, methodological developments consider non-
stationary linear inverse models, e.g., based on instantane-
ous inverse operators W tð Þ [e.g., Beamformer spatial filters
derived from a time-varying estimation Cl tð Þ of data
covariance, see Baker et al., 2014; Woolrich et al., 2013], in
which case non-stationary signal orthogonalization [Hipp
et al., 2012; O’Neill et al., 2015] becomes more justified
than the static version. Importantly, the GCS generalizes
straightforwardly to time-dependent forward and inverse
operators [Wens, 2015]. Extending this article to dynamic
analyses is an interesting topic for future works.

Another limitation of the GCS and the signal orthogon-
alization is that they specifically eliminate spatial leakage
from the seed location only. Persisting “secondary” spatial
leakage induced from the target nodes [Palva and Palva,
2012] is at the basis of the local overcorrection issue for
short-range FC (discussed above) as well as the FC blur
around targets (illustrated in our simulations for long-
range FC). The situation could be improved using multi-
variate generalizations correcting spatial leakage from
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multiple sources, such as the multivariate signal orthogonal-
ization of Colclough et al. [2015]. However, it remains an
open question to know if (and how) useful multivariate
GCS can be designed in the presence of lead field correla-
tions among sources of interest, since they make the multi-
ple constraints of vanishing PSFs incompatible with each
other (as reviewed in the Theory section; see also Hauk and
Stenroos [2014], for an illustration of how correction goes
wrong). A related comment is that seed-based correction
leads to asymmetric FC estimates. This is not a problem for
seed-based FC mapping considered here, since the seed
location is singled out anyway, but should be avoided for
connectomes (all-to-all FC) analyses. Authors have either
applied a posteriori symmetrization by averaging FC indices
in both directions [Hipp et al., 2012] or designed intrinsi-
cally symmetric techniques [Colclough et al., 2015]. Investi-
gating how symmetrization of the GCS would perform for
connectomes studies provides avenue for future works.

A last limitation to mention is that we only considered
linear inverse models, which typically yield spatially
smooth reconstructions with extensive blurring issues,
implying the necessity of spatial leakage correction. An
alternative strategy would be to use spatially sparse recon-
structions. The most basic approaches based on L1 regula-
rization priors [Uutela et al., 1999] typically yield
temporally discontinuous source estimates, making them
not suitable for FC analysis. More advanced methods have
been developed to generate spatially sparse and tempo-
rally continuous reconstructions, e.g., temporal projections
of L1-norm estimates [Huang et al., 2006, 2014], empirical
Bayesian inference [Friston et al., 2008; Wipf and Nagara-
jan, 2009; Wipf et al., 2010], mixed-norm regularization
[Gramfort et al., 2013; Ou et al., 2009] or subspace pursuit
algorithms [Babadi et al., 2014]. By design, these
approaches should limit spatial leakage effects and may
thus be promising, although they have not yet been eval-
uated for MEG/EEG FC analyses. These inverse models
being typically non-linear, neither the GCS nor the signal
orthogonalization can be strictly applied to them. (See
nevertheless Wens [2015], for possible non-linear exten-
sions of the GCS.) However, it is noteworthy that the spa-
tial sparsity constraint is not always suitable, e.g., when
averaging procedures (over time for stationary analyses of
ongoing activity, or over subjects for group-level analyses)
are involved. In such cases, spatially blurred reconstruc-
tions are relevant to smooth out sources before averaging,
and spatial leakage correction therefore remains an impor-
tant element of FC analyses.

CONCLUSIONS

In conclusion, this article considers the problem of spa-
tial leakage in source-space MEG/EEG seed-based FC
analyses and investigates the usefulness of a GCS (applied
to MNE) for networks mapping. This model-based
approach is theoretically principled, robust against the

introduction of forward model errors, and able to map all
kinds of brain couplings. Although its ability to pinpoint
local interactions is limited, the comparative analyses
showed that it nicely complements signal orthogonaliza-
tion methods. The GCS thus appears to be a valuable
addition to spatial leakage correction toolkits.
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Recording temporal lobe epileptic activity with MEG in a
light-weight magnetic shield. Seizure 20:414–418.

Colclough GL, Brookes MJ, Smith SM, Woolrich MW (2015): A
symmetric multivariate leakage correction for MEG connec-
tomes. Neuroimage 117:439–448.

Dale AM, Sereno MI (1993): Improved localization of cortical
activity by combining EEG and MEG with MRI cortical surface
reconstruction: A linear approach. J Cogn Neurosci 5:162–176.

r Spatial Leakage Geometric Correction Scheme r

r 4619 r



de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D,

Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL,
Corbetta M (2010): Temporal dynamics of spontaneous MEG activ-

ity in brain networks. Proc Natl Acad Sci USA 107:6040–6045.
de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V,

Romani GL, Corbetta M (2012): A cortical core for dynamic

integration of functional networks in the resting human brain.
Neuron 74:753–764.
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