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Abstract: Schizophrenia is characterized by heterogeneous pathophysiology. Using multiscale entropy
(MSE) analysis, which enables capturing complex dynamics of time series, we characterized MSE pat-
terns of blood-oxygen-level-dependent (BOLD) signals across different time scales and determined
whether BOLD activity in patients with schizophrenia exhibits increased complexity (increased entropy
in all time scales), decreased complexity toward regularity (decreased entropy in all time scales), or
decreased complexity toward uncorrelated randomness (high entropy in short time scales followed by
decayed entropy as the time scale increases). We recruited 105 patients with schizophrenia with an age
of onset between 18 and 35 years and 210 age- and sex-matched healthy volunteers. Results showed
that MSE of BOLD signals in patients with schizophrenia exhibited two routes of decreased BOLD
complexity toward either regular or random patterns. Reduced BOLD complexity toward regular pat-
terns was observed in the cerebellum and temporal, middle, and superior frontal regions, and reduced
BOLD complexity toward randomness was observed extensively in the inferior frontal, occipital, and
postcentral cortices as well as in the insula and middle cingulum. Furthermore, we determined that
the two types of complexity change were associated differently with psychopathology; specifically, the
regular type of BOLD complexity change was associated with positive symptoms of schizophrenia,
whereas the randomness type of BOLD complexity was associated with negative symptoms of the ill-
ness. These results collectively suggested that resting-state dynamics in schizophrenia exhibit two
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routes of pathologic change toward regular or random patterns, which contribute to the
differences in syndrome domains of psychosis in patients with schizophrenia. Hum Brain Mapp
36:2174–2186, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The unpredictable nature of behavioral patterns in schiz-
ophrenia and other mental illnesses has implicated the use
of chaos and complexity theories to understand the com-
plex behaviors of patients with psychiatric disorders
[Breakspear, 2006; Ehlers, 1995; Paulus and Braff, 2003;
Tschacher et al., 1997]. From a systemic perspective, com-
plexity reflects the ability of the brain to adapt to a con-
stantly changing environment. Such adaptation is often
impaired in schizophrenia and other mental illnesses, lead-
ing to abnormal behavioral patterns and impaired cogni-
tive and psychosocial functions [Bassett and Gazzaniga,
2011]. Therefore, studies of complexity in brain activities
may provide insights into how behavioral patterns of
schizophrenia are linked to the pathophysiology of brain
functions. Because of advances in brain activity monitoring
and quantitative measures of system dynamics, schizo-
phrenia research has increasingly focused on the complex-
ity analysis of neurophysiologic signals acquired from
schizophrenic patients [Bassett and Gazzaniga, 2011; Bull-
more and Sporns, 2009; Keshavan et al., 2004; Kotini and
Anninos, 2002; Lee et al., 2001; Meunier et al., 2009; Taka-
hashi et al., 2010] (for reviews see [Fernandez et al., 2013;
Takahashi, 2013]). In this context, complexity theory may
provide a useful clinical tool for the psychiatric evaluation
of symptom severity and predicting treatment outcomes.

The altered brain complexity in schizophrenia has been
studied using electroencephalography [Keshavan et al.,
2004; Koukkou et al., 1993; Li et al., 2008; Raghavendra
et al., 2009; Takahashi et al., 2010], magnetoencephalogra-
phy [Fernandez et al., 2011], and structural imaging of
gyri folding [Narr et al., 2004]. The analysis of the com-
plexity of blood-oxygen-level-dependent (BOLD) signals
obtained from resting-state functional magnetic resonance
imaging (fMRI) has attracted considerable interest. Previ-
ous studies have indicated that the nonlinear properties of
resting-state brain function can serve as a marker for aging
and mental illness [Meunier et al., 2009], as implicated in
Alzheimer’s disease [Liu et al., 2013; Maxim et al., 2005],
attention-deficit hyperactivity disorder [Anderson et al.,
2006; Sokunbi et al., 2013], autism [Lai et al., 2011], and

aging [McIntosh et al., in press; Smith et al., 2014; Yang

et al., 2014a, 2013a]. Although BOLD signals were consid-

ered hemodynamic responses rather than direct measures

of neuronal activity in a previous study [Fox and Raichle,

2007], these data provide evidence that altered nonlinear,

time-varying properties of BOLD signals are influenced by

the disease state and may provide a novel neuroimaging

approach for investigating brain dysfunction associated

with aging and mental illness. Several studies have investi-

gated the complexity of brain activity in schizophrenia

using resting-state fMRI [Bassett et al., 2012; Sokunbi et al.,

2014]. The wavelet entropy used by Bassett et al. [2012]

was insufficient for assessing the difference in the com-

plexity of regional BOLD activity between patients with

schizophrenia and healthy subjects. Sokunbi et al. [2014]

showed that schizophrenia had increased randomness of

BOLD activity by analyzing single-scale sample entropy

and the Hurst exponent, leading to the questionable con-

clusion that brain complexity was increased in patients

with schizophrenia.
We and others had recently applied the multiscale

entropy (MSE) method [Costa et al., 2002] to assess the
complexity of BOLD signals in healthy aging cohorts
[Yang et al., 2014a, 2013b] and in different brain areas of
white matter and ventricular space [McDonough and
Nashiro, 2014; Smith et al., 2014]. The MSE method pro-
vides a profile of entropy across multiple time scales and,
thus, enables extracting a signature of complexity from
physiologic signals not included in traditional methods
based on the mean or variance and conventional entropy
methods used to measure entropy in a single time scale
[Chialvo, 2002; Costa et al., 2005]. With MSE analysis, a
healthy physiologic process is typically represented by a
complex fluctuation with consistent entropy values over
different time scales, and reduced complexity in patho-
logic processes can exhibit either increased regularity (i.e.,
decreased entropy in all time scales) or increased random-
ness (i.e., high entropy in short time scales followed by
rapid decay in entropy as the length of time scales
increases). In contrast to the single-scale entropy method,
which is simply a measure of regularity [Lake et al., 2002;
Pincus and Goldberger, 1994; Richman and Moorman,
2000], a MSE profile enables differentiating true complex-
ity from uncorrelated randomness, which does not contain
meaningful information and cannot be regarded as a com-
plex state [Goldberger et al., 2002a,b]. Therefore, increased
regularity and randomness at the extreme of the dynamic
process represent the reduced complexity that can be
observed in various medical conditions, such as heart rate
variability in congestive heart failure and atrial fibrillation
[Goldberger et al., 2002b].

According to our previous review [Yang and Tsai, 2013],
this generic loss of complexity scheme has not been tested
in a large cohort of patients with mental illness using
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functional brain imaging. Such an investigation may reveal
crucial information regarding whether brain processes in
patients with mental illness exhibit increased complexity
or reduced complexity toward regularity or uncorrelated
randomness compared with those in healthy people. We
hypothesized that schizophrenia is associated with the loss
of multiple-time-scale complexity (either toward regularity
or uncorrelated randomness), and investigated the entropy
profiles of resting-state fMRI signals across time scales in
patients with schizophrenia, and determined the relation-
ship between the complexity of resting-state brain activity
and relevant psychopathologic assessments.

MATERIALS AND METHODS

Study Participants

The study cohort consisted of 315 Han Chinese partici-
pants who were recruited from the Department of Psychia-
try at Taipei Veterans General Hospital, Taiwan. The
patient group consisted of 105 patients with schizophrenia
(45 men, 60 women; mean age: 42.8 6 9.4 years), among
which 91 (86.6%) patients were referred from outpatient
clinics and 14 (13.3%) patients were from the inpatient
unit. To increase the homogeneity of the schizophrenic
group, we enrolled patients with an age of onset between
18 and 35 years and an age at fMRI scanning between 20
and 60 years. All schizophrenic patients were evaluated by
a board-certificated psychiatrist and diagnosed according
to the diagnostic criteria of the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition. Diagnoses of
schizophrenia were validated using the Mini-International
Neuropsychiatric Interview [Sheehan et al., 1998]. The Pos-
itive and Negative Syndrome Scale (PANSS) was used to
evaluate psychotic symptoms [Kay et al., 1987]. Chlor-
promazine (CPZ) equivalent dosages were computed
according to American Psychiatric Association guidelines.

The comparison group consisted of 210 healthy volun-
teers (89 men, 121 women; mean age: 42.9 6 11.3 years)
who were recruited from a healthy aging cohort and
matched according to age and sex at a 2:1 control-to-
patient ratio [Yang et al., 2014a, 2013b]. Healthy subjects
were evaluated by a trained research assistant using the
Mini-International Neuropsychiatric Interview to exclude
the presence of psychiatric disorders [Sheehan et al., 1998].
The comparison participants had no personal or family
history (first-degree relatives) of psychiatric disorders.
Exclusion criteria for the participants were severe medical
illness, cognitive impairment (a Mini Mental State Exami-
nation Score lower than 24), borderline personality disor-
der, a history of head trauma or neurological disease, and
a lifetime history of substance abuse disorder. The study
was conducted in accordance with the Declaration of Hel-
sinki and was approved by the Institutional Review Board
of Taipei Veterans General Hospital. Demographic and
clinical data on the participants are presented in Table I.

fMRI Scanning and Image Processing

fMRI scanning was performed at National Yang-Ming
University using a 3.0T Siemens MRI scanner (Siemens,
Erlangen, Germany) equipped with a 12-channel head coil.
All fMRI experiments were performed in the morning.
The scanning protocol was consistent with that described
in our prior reports [Yang et al., 2014a, 2013b]. T2*-
weighted images with BOLD contrast were measured
using a 43-slice gradient echo-planar imaging (EPI)
sequence with a repetition time (TR) of 2,500 ms, an echo
time (TE) of 27 ms, a field of view (FoV) of 200 mm, a flip
angle of 77�, a matrix size of 64 3 64, and a voxel size of
3.44 3 3.44 3 3.40 mm. In each run, 200 EPI volume
images were acquired along the AC–PC plane. High-
resolution structural 192-slice T1 images were acquired
using a 3D magnetization-prepared rapid gradient echo
sequence with a TR of 2,530 ms, a TE of 3.5 ms, a TI of
1,100 ms, a FOV of 256 mm, and a flip angle of 7�. The
duration of the fMRI scanning procedure was approxi-
mately 15 min for each participant.

The resting-state fMRI images were preprocessed using
Data Processing Assistant for Resting-State fMRI toolbox
[Chao-Gan and Yu-Feng, 2010] implemented in Matlab
(MathWorks, Natick, MA). The preprocessing included
slice-timing corrected, realigned, and normalized to the
standard stereotaxic space of the Montreal Neurological
Institute (MNI) EPI template and resampled to a 3-mm3

voxel. The covariates of the BOLD time series were
regressed out before complexity analysis was performed,
including the time courses of six head motions and their
derivatives and cerebrospinal fluids. No global signal
regression was performed to avoid introducing distortion
into the time series data [Anderson et al., 2011; Murphy

TABLE I. Demographics and clinical characteristics

Schizophrenia
(n 5 105)

Healthy
Control
(n 5 210)

Variables Mean SD Mean SD t or v2 P

Age at scan (years) 42.8 9.4 42.9 11.3 .08 .94
Gender, female 60 57.1% 121 57.6% .01 .92
Handedness, right 101 96.2% 204 97.1% .01 .92
Age of illness

onset (years)
25.4 5.0

Illness duration
(years)

17.4 9.4

PANSS total 38.3 9.2
PANSS positive 9.6 3.2
PANSS negative 9.4 5.2
PANSS general 20.3 3.9
CPZ equivalents 491.3 390.1

Categorical data are given as number (%)
PANSS, Positive and Negative Syndrome Scale; CPZ, Chlorproma-
zine equivalent dosage
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et al., 2009]. Physiological noise was minimized using
band-pass temporal filtering (0.01–0.08 Hz). The voxels
representing white matter and cerebrospinal fluids were
excluded from the analysis using a gray matter mask,
which was defined using a cohort-specific gray matter
mask (N 5 315) thresholding for partial volume estimates
at 0.25. All participants exhibited a maximum displace-
ment of less than 1.5 mm at each axis and an angular
motion of less than 1.5� for each plane. The first five data
points (12.5 s) in each BOLD time series were discarded
because of the instability of initial MRI scanning; thus, 195
data points on each time series were used in analyses.

Analysis of the MSE of BOLD Signals

A conceptual illustration of MSE is provided in Figure
1. A conventional entropy method involves measuring
irregularity and assigning a higher value when the irregu-
larity of a given signal is increased. However, because con-
ventional entropy is measured in the shortest time scale,
the measured irregularity can represent either true com-
plexity or merely uncorrelated randomness. Therefore,

increased irregularity does not imply increased complexity
[Goldberger, 1996; Goldberger et al., 2002b]. An ideal com-
plexity measure assigns a high value to signals with a
long-range correlation and other nonlinear properties (e.g.,
1/f noise) and assigns a low value to signals with either
regularity or uncorrelated randomness.

According to the theory that complex dynamics arise
from multiple time scales and that a generic approach for
measuring global complexity must consider multiple time
scales in a given physical system [Fogedby, 1992; Zang,
1991], MSE analysis [Costa et al., 2002, 2005] was devel-
oped to estimate sample entropy in multiple time scales
using a coarse-graining procedure. Sample entropy is used
in MSE analysis because it provides greater consistency
and is less dependent on a given signal length compared
with other entropy methods [Richman and Moorman,
2000]. MSE calculation can be summarized in the follow-
ing three steps: (a) constructing coarse-grained time series
according to different scale factors; (b) quantifying the
sample entropy of each coarse-grained time series; and (c)
examining the sample entropy profile over a range of
scales. According to this method, the length of each
coarse-grained time series is equal to the length of the

Figure 1.

Conceptual difference between randomness and complexity. (a)

Conventional entropy is a measure of irregularity based on the

single shortest time scale and involves assigning a higher entropy

value to uncorrelated randomness, which is often observed in

pathologic disease and presumed to convey less information

than 1/f noise [Goldberger et al., 2002a,b]. The relationship

between the expected complexity measure and randomness is

inverse U-shaped; regularity and uncorrelated randomness are

associated with reduced complexity, whereas meaningful com-

plexity is in between [Buzsaki and Draguhn, 2004; Goldberger

et al., 2002b]. (b) Multiscale entropy [Costa et al., 2002] cap-

tures the concept that complex dynamics typically arise from

multiple time scales; a generic approach to measuring global

complexity involves considering multiple time scales in a given

physical system [Fogedby, 1992; Zang, 1991]. In this context,

uncorrelated randomness (dark gray line) has high entropy in

the shortest time scale, but its entropy decays as the scale fac-

tor on a coarse time scale increases. By contrast, healthy com-

plexity (black line) maintains entropy across all time scales, and

regularity (light gray line) represents low entropy in all scale

factors.
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original time series divided by the scale factor. For Scale 1,
the time series is merely the original time series.

Sample entropy is defined by the negative natural loga-
rithm of the conditional probability that a dataset of length
N, having repeated itself within a tolerance of r (similarity
factor) for m points (pattern length), will also repeat itself
for m 1 1 points without allowing self-matches [Richman
and Moorman, 2000]. We have previously used the param-
eters for MSE calculation from relatively short BOLD sig-
nals using the parameters m 5 1 and r 5 0.35 and scale
factors up to 5 [Yang et al., 2014a, 2013a].

For a complexity analysis at the voxelwise level, the MSE
of the BOLD signal was computed for all gray matter voxels
to create a whole-brain MSE parametric map for subsequent
group analysis. In addition, each BOLD time series was nor-
malized for the zero mean and unit standard deviation
before MSE analysis. Instead of averaging entropy across all
scale factors as a proxy of the complexity index [Lu et al.,
2012; Norris et al., 2009; Yang et al., 2014a, 2013b], we fol-
lowed the patterns of three types of complexity change pro-
posed by Costa et al. [2002 and 2005] to classify the MSE
profiles of BOLD signals in each gray matter voxel.

Using the MSE of BOLD signals from healthy subjects as
the reference, we investigated whether the MSE of BOLD
signals from patients with schizophrenia showed increased
complexity (i.e., increased entropy in all scales), reduced
complexity toward regularity (i.e., decreased entropy in all
scales), or reduced complexity toward randomness (i.e.,
increased entropy in short scales followed by rapid decay in
entropy as the scale factors increase). The random type of
MSE profile represented a unique property of uncorrelated
randomness that cannot be captured by simply averaging
the entropy of all scale factors; therefore, the slope of
entropy decay was used as an indicator of complexity
change in the random type of complexity changes.

Statistical Analysis

Statistical analysis of the MSE parametric imaging data
was conducted using the MATLAB . Regional between-
group differences in the whole-brain MSE mapping of
each time scale were examined using the general linear
model (GLM). Because age, sex, and handedness were
well matched in the patient and control groups, we
assessed the main effect of schizophrenia on MSE com-
plexity without introducing covariates to the GLM. To
assess the association between the type of MSE complexity
change and the psychopatholgy, we regressed the clinical
variables (age of onset, duration of illness, CPZ dosage,
and PANSS scores) with the mean MSE value of all scale
factors at the voxelwise level for increased MSE complex-
ity or the regularity type of MSE complexity changes. For
the randomness type of MSE complexity change, we
regressed the clinical variables with the slope of entropy
decay across all scale factors. For all voxelwise analyses,
significant brain clusters with peak coordinates in the MNI

space were reported only if the P value corrected for mul-
tiple comparisons using the familywise error (FWE) rate
was lower than 0.05 at the cluster level.

RESULTS

Between-Group Comparison of MSE Profiles in

Different Time Scales

Figure 2 shows the regional between-group differences
in the MSE of BOLD signals among all scale factors at the
voxelwise level. Observing MSE profiles (i.e., patterns of
between-group entropy differences in a scale of 1–5)
showed that, in schizophrenic patients, BOLD signals in
the occipital, inferior frontal, and postcentral cortices
exhibited a pattern of increased entropy in Scales 1 and 2,
followed by decreased entropy in Scales 3–5, compared
with the BOLD entropy of healthy subjects. However,
entropy in the temporal cortex was reduced in all scale
factors in schizophrenic patients. These observations sug-
gested that schizophrenia exhibits two patterns of scale-
related entropy change in different brain regions.

Quantification of Different Types of Complexity

Change According to MSE Profile

Figure 3 shows MSE profiles extracted from the inferior
temporal cortex and inferior frontal cortex. The MSE pro-
file in the inferior temporal cortex (Fig. 3a) showed that
patients with schizophrenia exhibited a reduction in
entropy in all scale factors compared with healthy con-
trols, suggesting that a regular type of complexity changes
occurred in this brain region. However, the MSE profile in
the inferior frontal cortex (Fig. 3b) showed that, relative to
the controls, the patients with schizophrenia exhibited
increased entropy in short scales, followed by decreased
complexity as the scale factor increased, suggesting a pat-
tern of complexity changes toward randomness. This ran-
domness pattern is distinguishable from the increased
physiologic complexity that is expected to occur when
entropy increases in all scale factors. The regular type of
complexity change was quantified according to the aver-
age sample entropy across all scale factors, whereas the
random type of complexity change was assessed using the
slope of entropy decay. The effect size for the difference in
complexity metrics between schizophrenia and healthy
subjects was 0.47 for inferior temporal cortex and 0.45 for
inferior frontal cortex.

Figure 4 shows that most brain regions exhibited a ran-
dom pattern of BOLD complexity changes, whereas few
brain regions showed decreased complexity toward regular
patterns. Table II details the significant brain regions for
each type of complexity change. No brain region in patients
with schizophrenia exhibited significantly increased com-
plexity compared with the brain regions of healthy subjects.
Schizophrenic patients showed decreased complexity
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toward regular patterns in the left inferior temporal (peak
t 5 25.62), right inferior temporal (t 5 25.52), right middle
frontal (t 5 25.73), left middle frontal (t 5 24.74), left supe-
rior frontal (t 5 24.47), and left supplementary motor corti-
ces (t = 23.39) as well as the anterior lobe (t 5 23.99) and
posterior lobe of the cerebellum (t 5 26.10). Conversely,
decreased complexity toward randomness was observed in
patients with schizophrenia in clusters of the inferior frontal
(t 5 26.35), postcentral (t 5 25.23), and occipital cortices
(t 5 26.57) as well as the right insula (t 5 24.18) and left
middle cingulum (t 5 24.48).

Correlation of the Type of Complexity Change

with Psychopathology

Table III summarizes the correlation between the regular
type of complexity change and psychopathology. The

results showed that the PANSS positive syndrome score
was negatively correlated with MSE complexity in the
right fusiform gyrus (correlation coefficient r at peak
voxel 5 20.40) and the left fusiform and temporal pole of
the middle temporal region (r 5 20.35), whereas the
PANSS negative syndrome score was negatively correlated
with MSE complexity in the left posterior lobe of the cere-
bellum (r 5 20.53).

Table IV summarizes the correlation between the random-
ness type of complexity change and psychopathology. Age
of onset was correlated positively with the slope of MSE
change in the left medial orbitofrontal gyrus (r 5 0.61). The
duration of illness was correlated negatively with the slope
of MSE change in the right lingual gyrus (r 5 20.50) and
right postcentral gyrus (r 5 20.44). The PANSS negative
syndrome score was correlated negatively with the slope of
MSE change in the left orbitofrontal gyrus (r 5 20.43), left

Figure 2.

Regional differences in the MSE complexity of resting-state

BOLD activity in all scale factors between patients with schizo-

phrenia and healthy subjects. A positive t value (warm color

spectrum) represents a higher MSE value in patients with schizo-

phrenia than in healthy subjects, and vice versa for results

shown with negative t values (cool color spectrum). Visual

inspection suggested two patterns of pathologic change in

patients with schizophrenia. The occipital, postcentral, and infe-

rior frontal cortices of patients with schizophrenia exhibited

increased entropy (randomness) in short time scales (Scales 1

and 2) and reduced entropy (regularity) in coarse time scales

(Scales 3–5) compared with those of healthy volunteers. By con-

trast, the inferior temporal cortex exhibited reduced entropy

(regularity) across all scale factors. These two patterns of

entropy change were consistent with a shift in BOLD dynamics

toward randomness and regularity, respectively.
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middle occipital gyrus (r 5 20.44), right cuneus and part of
the superior occipital gyrus (r 5 20.52), left cuneus and part
of the superior occipital gyrus (r 5 20.46), left postcentral
gyrus and superior parietal gyrus (r 5 20.46), and right
postcentral gyrus (r 5 0.46). The CPZ dosage, PANSS score
in general psychopathology, and total PANSS score were
not associated with any type of complexity change. All brain
clusters reported in the results had FWE-corrected P values
lower than 0.05.

DISCUSSION

The current analyses show that patients with schizo-
phrenia exhibit a reduced resting-state fMRI complexity
compared with healthy subjects. Furthermore, in contrast
to conventional entropy analysis, in which single-time-
scale regularity is measured, the MSE profiles in different
time scales reveal two routes of decreased BOLD complex-
ity toward either a regular or random pattern. Reduced

BOLD complexity toward the regular pattern is observed
in the cerebellum and temporal, middle, and superior
frontal regions, and reduced BOLD complexity toward the
random process is observed extensively in the inferior
frontal, occipital, and postcentral cortices as well as in the
insula and middle cingulum. We determine that these two
types of complexity change are associated with psychopa-
thology and clinical variables differently. Collectively,
these results suggest that resting-state dynamics in
patients with schizophrenia exhibit two patterns of patho-
logic change toward regular or random patterns, and these
patterns may contribute to the differences in the syndrome
domains of psychosis in schizophrenia.

Implication of Different Types of Complexity

Change in the Pathophysiology of Schizophrenia

MSE profile analysis introduces the notion that the nei-
ther the extremes of complete regularity nor complete

Figure 3.

Two types of complexity change according to the MSE complex-

ity profile of BOLD signals (scale factor vs. mean 6 SD of sam-

ple entropy) extracted from (a) the inferior temporal cortex

and (b) the inferior frontal cortex. The MSE complexity profile

of (a) the inferior temporal cortex showed lower BOLD sample

entropy in patients with schizophrenia (SCZ) than in healthy

comparison (HC) subjects in all scale factors (PFWE< 0.05). By

contrast, the MSE complexity profile of (b) the inferior frontal

cortex showed higher BOLD entropy in SCZ than in HC in

Scale 1, and the entropy values in SCZ exhibited a crossover

with the MSE profile of HC. SCZ exhibited a lower BOLD

entropy than HC in Scales 4 and 5 (PFWE were< 0.05 in Scales

1, 4, and 5). We defined two quantitative measures for assessing

these two types of complexity change toward (a) regularity and

(b) randomness. (c) For the regularity type of complexity

change, we used the average sample entropy as an index to

assess the extent of increased regularity of BOLD signals in

SCZ. (d) For the randomness type of complexity change, we

used the slope of the sample entropy against scale factors 1–5

to assess the extent of increased randomness of BOLD signals

in SCZ.
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randomness are complex [Costa et al., 2005]. However, the
alteration of system complexity toward regularity or ran-
domness represents two distinct physical or biological
processes. For example, heart rate fluctuation under differ-
ent pathologic conditions may exhibit a loss of variability
toward regularity (e.g., congestive heart failure) or the
emergence of uncorrelated randomness (e.g., atrial fibrilla-
tion) [Goldberger et al., 2002a]. Likewise, our findings
regarding the MSE profiles of BOLD signals toward regu-
lar or random patterns suggest that schizophrenia is char-
acterized by two pathologic processes. This observation
warrants future studies to investigate the specificity of
these pathologic changes of MSE profile associated with
schizophrenia and assess the difference in brain complex-
ity with other mental illness or different brain states (e.g.,
sleep or psychedelic state).

Although the exact biological mechanisms contributing
to these two types of complexity change were not
delineated in this study, the differential associations of
BOLD MSE profiles with psychopathology may provide

clues. The PANSS positive syndrome score is associated
with the fusiform gyrus and middle temporal gyrus,
which exhibit a regular pattern of reduction in complexity;
previous studies have shown that these brain regions are
associated with auditory or imaginary hallucinations
[Lawrie et al., 2002; Santhouse et al., 2000; Shergill et al.,
2000]. One explanation, although speculative, is that the
core of positive symptoms in schizophrenia is character-
ized by repetitive and involuntary hallucinatory experien-
ces and fixed delusional thoughts, which manifest the lack
of variability and may be linked to the loss of brain com-
plexity toward regular patterns in the temporal and dorsal
prefrontal regions (Table II).

Conversely, the PANSS negative syndrome score is asso-
ciated with a random type of reduction in complexity
among brain regions, involving the orbitofrontal, occipital,
and postcentral cortices (Table IV). These brain regions are
related to affect and sensory processing. The duration of
illness was negatively correlated with reduced complexity
in the postcentral cortex. These results collectively suggest

Figure 4.

Quantification of complexity changes in patients with schizo-

phrenia (SCZ) relative to healthy controls (HC) according to

MSE profiles. (Left) Brain regions with the regularity type of

complexity changes of BOLD signals (i.e., decreased sample

entropy over all scale factors in SCZ relative to HC). (Middle)

Brain regions with increased complexity of BOLD signals (i.e.,

increased sample entropy over all scale factors in SCZ relative

to HC). Color shown in brain mapping represents raw t-statis-

tics of difference of MSE profile between SCZ and HC. No sig-

nificant brain cluster was observed in this type of complexity

change after correction for multiple comparisons. (Right) Brain

regions with the randomness type of complexity change (i.e.,

increased sample entropy in short time scales followed by decay

of sample entropy as the scale factor increases).

r Resting Brain Complexity and Schizophrenia r

r 2181 r



that a random type of reduction in BOLD complexity is
linked to chronicity and negative symptoms of schizophre-
nia. Furthermore, erratic brain activity in these brain
regions is consistent with the impaired sensory gating and
sensory overload commonly observed in patients with
schizophrenia [Bak et al., 2014; Brockhaus-Dumke et al.,
2008; Judd et al., 1992].

Other associations of psychopathology with decreased
BOLD complexity are consistent with clinical presentations
of schizophrenia. The negative correlation between the
PANSS negative syndrome score and the regular type of
reduced complexity in the cerebellum is consistent with
recent findings of reduced complexity of postural sway in

schizophrenia [Kent et al., 2012]. The positive correlation
between age of onset and MSE complexity in the orbito-
frontal region indicated that an earlier onset of illness is
associated with a stronger degree of reduction in brain
complexity toward randomness.

Remarks on Complexity Measures

The term complexity has been broadly used in neuro-
science research. Various nonlinear methods have been
applied to quantify the complexity of a neurophysiological
time series in the temporal dimension, including the
power–law spectra [Tagliazucchi et al., 2014; Zarahn et al.,

TABLE II. Regions showing significant changes in the MSE complexity profiles of BOLD signals from patients with

schizophrenia

MNI coordinates (mm)

Brain regiona BA x y z Volume (mm3)b Peak t

Increased complexity
None
Decreased complexity toward regularity
L inferior temporal gyrus 20/21 239 0 242 19,710 25.62
R inferior temporal gyrus 20/21 36 6 239 13,743 25.52
R middle frontal gyrus 10 30 63 23 10,206 25.73
L middle frontal gyrus 10 233 63 3 2,268 24.74
L superior forntal gyrus 10/9 227 54 33 864 24.47
R superior frotnal gyrus 10/9 18 54 33 1,539 24.84
L supplementary motor area 3 12 57 1,026 23.99
R/L cerebellum posterior lobe 233 275 45 39,744 26.10
L cerebellum anterior lobe 227 257 230 1,674 23.99
Decreased complexity toward randomness
L/R inferior frontal gyrus 11/47 218 30 227 48,600 26.35
L/R occipital lobe 18/19 18 284 30 98,955 25.23
R insula 39 227 18 2,727 24.18
L/R postcentral gyrus 6/3 248 221 60 95,175 26.57
L middle cingulum 24 212 29 42 1,755 24.48

All brain clusters had P value< 0.05 corrected for multiple comparisons using familywise error methods.
aL, left; R, right; BA, Brodmann area
bVolume was computed from cluster size (3 3 3 3 3 mm voxel).

TABLE III. Regions showing a significant correlation between clinical variables and the regular type of complexity

change in patients with schizophrenia

MNI coordinates (mm)

Brain regiona BA x y z Volume (mm3)b Peak t

PANSS positive syndrome

R fusiform gyrus 20 24 212 242 1,647 24.43
L fusiform gyrus and temporal pole of middle temporal gyrus 38 215 23 242 1,458 23.85
PANSS negative syndrome
L cerebelum posterior lobe 242 269 230 1,782 26.42

All brain clusters had P value< 0.05 corrected for multiple comparisons using familywise error methods.
aL, left; R, right; BA, Brodmann area
bVolume was computed from cluster size (3 3 3 3 3 mm voxel).
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1997], Hurst exponent [Bullmore et al., 2001; Lai et al.,
2011], fractal dimension [Rubinov et al., 2009], Lyapunov
exponent [Xie et al., 2008], and Lempel–Ziv complexity
[Fernandez et al., 2011], as reviewed by Fernandez et al.
[2013] and Takahashi [2013]. However, both increases and
decreases in the complexity of brain signals have been
reported in schizophrenic patients. The inconsistencies
among the results of these studies may have been caused
by differences in the study population, definition of the
various types of complexity methods, or (most plausibly)
by the simple up-and-down approach used to detect com-
plexity changes in a single time scale along the continuum
of regularity toward randomness, leading to the confusing
conclusion that randomness is complex in certain cases.
Therefore, MSE profile analysis across time scales provides
crucial information on the complex dynamics of underly-
ing processes and enables differentiating meaningful com-
plexity from uncorrelated randomness [Chialvo, 2002;
Costa et al., 2002; Takahashi et al., 2010; Yang et al.,
2013c]. Such notion complements the monotonic view of
entropy changes in different brain states [Carhart-Harris
et al., 2014; Tagliazucchi et al., 2014].

Furthermore, the relationship between the variability of
local activity and connectivity strength in a given brain
region remains underexplored. Bassett et al. [2012] showed
that the complexity of a time series from an individual
brain region is strongly predictive of the overall functional
connectivity of the brain, and the strength of this relation-
ship is altered in patients with schizophrenia. Recently, we
reported that reduced BOLD complexity in elderly apoli-
poprotein E carriers exhibited a compensatory increase in
functional connectivity between the posterior cingulum
and frontal regions [Yang et al., 2014a]. The relationship
between BOLD temporal complexity and spatial connectiv-

ity is likely nonlinear. A recent study based on Human
Connectome Project data showed that BOLD complexity
was negatively correlated with functional connectivity in
short scales, but was positively correlated with functional
connectivity in long scales [McDonough and Nashiro,
2014]. Incorporating both temporal and spatial complexity
methods in future studies may facilitate elucidating the
pathophysiology of schizophrenia in the context of the
complex brain network.

Although the generic feature of dynamical complexity
detected by the MSE method is independent of signal
characteristics [Costa et al., 2005], the equivalence of MSE
complexity metrics between resting-state fMRI signals and
electrophysiological time series is yet to be determined.
The resting-state fMRI signal and electrophysiological time
series (such as electroencephalographic signals) certainly
carry different aspects of neuronal information via distinct
mechanisms. The former is based on neurovascular cou-
pling which its hemodynamic response is in low frequency
range (<0.1 Hz), whereas the latter is typically a measure
of electrical activity over the scalp and is within a much
higher frequency range (�1–50 Hz). From the signal analy-
sis point of view, the MSE calculation for these two types
of signals captures dynamical information in very different
time scales. Hence, we anticipate that MSE profile of
BOLD signals may be equivalent of long time scale part of
MSE profile of EEG signals (i.e., applying a large scale fac-
tor to EEG signals in coarse-graining procedure).

Limitations

There are several limitations to our findings. First,
although our results did not show that reduced resting-
state complexity was correlated with antipsychotic

TABLE IV. Regions showing a significant correlation between clinical variables and the randomness type of com-

plexity change in schizophrenia

MNI coordinates (mm)

Brain regiona BA x y z Volume (mm3)b Peak t

Age of onset
L medial orbitofrontal gyrus 11 3 39 212 2,025 7.84
Duration of illness
R lingual gyrus 18 9 267 0 918 25.79
R postcentral gyrus 40 48 236 56 999 24.97
PANSS negative syndrome
L orbitalfrontal gyrus 11 6 54 224 3,753 24.85
L middle occipital gyrus 18 227 296 6 864 24.99
R cuneus and superior occipital gyrus 19 15 293 33 1,242 26.23
L cuneus and superior occipital gyrus 19 215 293 33 1,026 25.25
L postcentral gyrus and superior parietal gyrus 2 236 251 63 1,134 25.24
R postcentral gyrus 3 42 236 66 1,188 25.27

All brain clusters had P value< 0.05 corrected for multiple comparisons using familywise error methods.
aL, left; R, right; BA, Brodmann area
bVolume was computed from cluster size (3 3 3 3 3 mm voxel).
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dosages, little is known about the effects of antipsychotic
drugs on BOLD signals. A meta-analysis revealed no com-
mon effect of antipsychotics on BOLD signals; however,
antipsychotics with various affinities for the dopamine D2-
receptor may influence BOLD activity [Rder et al., 2013]. A
future study categorizing patients with schizophrenia
according to various outcomes or classes of antipsychotics
may clarify this effect. Second, the extent of the scale fac-
tor used in MSE analysis was limited to the length of
BOLD time series (195 data points); therefore, the MSE
complexity profiles based on scales of 1–5 may have cap-
tured only a portion of the underlying dynamics, unlike
long resting-state fMRI signals such as those used in the
Human Connectome Project [McDonough and Nashiro,
2014; Van Essen et al., 2013]. However, we suggest that
this limitation had little effect on our data because previ-
ous MSE analyses of other physiologic signals [Costa
et al., 2002, 2005] and BOLD signals in various brain
regions [McDonough and Nashiro, 2014; Smith et al., 2014]
suggested that randomness and meaningful complexity
could be differentiated in the shortest scale factors. Third,
we did not perform global signal regression to prevent
distortion in BOLD signals; however, another study identi-
fied a difference in global signals between patients with
schizophrenia and healthy subjects [Yang et al., 2014b];
this difference warrants further study of the effects of
global signals on MSE estimates in healthy and disease
populations. Finally, the relationship between the com-
plexity of BOLD signals and their frequency components
has not been established. Such study will facilitate delin-
eating the functional relevance of BOLD complexity.

CONCLUSION

Using MSE profile analysis, we evaluate the complexity
of resting-state brain activity in patients with schizophre-
nia and its relationship with the psychopathology of ill-
ness. Our findings represent a novel perspective on the
temporal dynamics of functional brain activity and
enhance the understanding of the various pathophysio-
logic processes in schizophrenia. On a broader scale, ana-
lyzing the complexity of the human brain at the temporal
dimension may facilitate developing clinically useful imag-
ing biomarkers.
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