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Abstract: The current diagnosis of psychiatric disorders including major depressive disorder based
largely on self-reported symptoms and clinical signs may be prone to patients’ behaviors and psychia-
trists’ bias. This study aims at developing an unsupervised machine learning approach for the accurate
identification of major depression based on single resting-state functional magnetic resonance imaging
scans in the absence of clinical information. Twenty-four medication-naive patients with major depres-
sion and 29 demographically similar healthy individuals underwent resting-state functional magnetic
resonance imaging. We first clustered the voxels within the perigenual cingulate cortex into two subre-
gions, a subgenual region and a pregenual region, according to their distinct resting-state functional
connectivity patterns and showed that a maximum margin clustering-based unsupervised machine
learning approach extracted sufficient information from the subgenual cingulate functional connectivity
map to differentiate depressed patients from healthy controls with a group-level clustering consistency
of 92.5% and an individual-level classification consistency of 92.5%. It was also revealed that the sub-
genual cingulate functional connectivity network with the highest discriminative power primarily
included the ventrolateral and ventromedial prefrontal cortex, superior temporal gyri and limbic areas,
indicating that these connections may play critical roles in the pathophysiology of major depression.
The current study suggests that subgenual cingulate functional connectivity network signatures may
provide promising objective biomarkers for the diagnosis of major depression and that maximum
margin clustering-based unsupervised machine learning approaches may have the potential to
inform clinical practice and aid in research on psychiatric disorders. Hum Brain Mapp 35:1630–1641,
2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

In recent years, interest in exploring the brain variance
between patients with psychiatric disorders and healthy
controls using machine learning methods based on neuroi-
maging data has increased [Oquendo et al., 2012; Pereira
et al., 2009]. Potential neuroimaging-based biomarkers that
highlight the pathophysiology of psychiatric disorders can
be found by investigating disease-related structural and
functional brain abnormalities [Kawasaki et al., 2007; Shen
et al., 2010a; Uddin et al., 2012; Zeng et al., 2012]. There
are two main approaches within machine learning: super-
vised and unsupervised learning [Bishop, 2006; Orrù et al.,
2012]. Supervised learning techniques can map two or
more sets of observations with two or more categories
based on the labeled data, while unsupervised learning
techniques can be used to determine how the data are
organized when a priori labeling information is unavail-
able. To the best of our knowledge, most of the previous
classification studies of brain imaging have focused on
supervised machine learning techniques, which require the
prior diagnostic labeling of prototype subjects. Increasing
evidence has demonstrated that supervised classification
approaches that are dependent on prior clinical behavioral
scores may be prone to inter-user bias [Hardoon et al.,
2007]. First, different patients are likely to have different
ways of expressing symptoms and complaints, which may
affect the clinicians’ interpretations of the patients’ behav-
ior [Buckner et al., 2007]. Second, some evidence indicates
that clinicians might be vulnerable to engaging in personal
or stereotyped thinking, which could affect important
aspects of diagnoses [Buckner et al., 2007; Caplan and
Cosgrove, 2004; Sue, 1998], despite their best efforts to
control prejudice due to diverse cultures, languages, val-
ues, customs, beliefs and practices. Hence, it is important
to develop an unsupervised classification framework that
is independent of prior clinical diagnoses to escape the
above biases [Bishop, 2006]; to date, however, little
attention has been paid to unsupervised classification
approaches for disease state prediction from neuroimaging
data.

Unsupervised machine learning approaches can discover
homogeneous groups (called clusters) of similar samples
within the data and flexibly determine the complex and
unknown distribution or pattern of data within the input
space without prior knowledge [Bishop, 2006]. Therefore,
the unsupervised classification of brain imaging data may
provide more objective neuroimaging evidence for the
diagnosis of psychiatric disorders compared to supervised
classification based on clinical scores. C-means and
normalized cuts (Ncut) are two widely used clustering
algorithms [Shi and Malik, 2000]. C-means performs best if
the data have a Gaussian distribution, but it cannot be
guaranteed that brain-imaging data are Gaussian in fea-
ture space. The Ncut algorithm is very robust to outliers
and exhibits favorable performance relative to other graph
clustering methods [Shen et al., 2010b; Shi and Malik,

2000], but it does not always lead to particularly good sol-
utions [Luxburg, 2007]. Maximum margin clustering
(MMC), a recently proposed powerful clustering algo-
rithm, is very robust to the data distribution and outper-
forms other popular algorithms, including both C-means
and Ncut, in two-class clustering analysis [Ding et al.,
2009; Wang et al., 2010; Xu et al., 2005; Xu and
Schuurmans, 2005]. This study attempted to develop an
MMC-based unsupervised machine learning approach for
accurately identifying major depressive disorder (MDD)
on the basis of single resting-state functional magnetic
resonance imaging (fMRI) scans in the absence of clinical
information.

MDD, which is characterized by persistent depressed
mood or anhedonia and cognitive deficits [APA, 2000], has
been ranked as a leading cause of living on disability
worldwide [Eisch and Petrik, 2012; Tanti and Belzung,
2010]. To date, the pathophysiology of MDD remains
unclear, and the diagnosis of MDD is based largely on
history, self-reported symptoms and clinical signs. There-
fore, the investigation of objective neurobiological markers
is significant for both diagnostic systems and treatment
decisions.

The core depressive symptoms may be associated with
brain network dysfunction [Drevets et al., 2008; Mayberg,
2003]; this suggested association has prompted a wealth of
resting-state functional connectivity MRI (rs-fcMRI) stud-
ies. The subgenual anterior cingulate cortex (sACC), which
is located beneath the genu of the corpus callosum and
corresponds primarily to Brodmann area 25 (BA25) and
the caudal portions of BA32 and BA24 [Johansen-Berg
et al., 2008], has become a critical region of interest (ROI)
within the distributed brain networks that mediate depres-
sive symptoms [Greicius et al., 2007; Mayberg, 2003].
Many previous studies have implicated the sACC as a
focus of dysfunction in MDD [Botteron et al., 2002; Coryell
et al., 2005; Davey et al., 2012; Drevets et al., 2002; Greicius
et al., 2007; Kennedy et al., 2001; Mayberg et al., 2000;
Osuch et al., 2000]. All these findings imply that resting-
state functional connections of the sACC can provide
potential useful information to advance our current under-
standing of the pathophysiology of MDD and may be
promising features in identifying depression.

The sACC is functionally and cytoarchitectonically dis-
tinct from the pregenual anterior cingulate cortex (pACC)
[Johansen-Berg et al., 2008; Margulies et al., 2007; McCor-
mick et al., 2006; Vogt et al., 1995; Walter et al., 2009],
although the pACC may also play an important role in the
pathophysiology of MDD [McCormick et al., 2006; Walter
et al., 2009]. In fact, the two regions are activated during
the presentation of different emotional and cognitive stim-
uli [Kelley et al., 2002; Kross et al., 2009; Walter et al.,
2009], and this distinction is also reflected by hyperactivity
in the sACC and hypoactivation in the pACC, to some
extent, in depression [Walter et al., 2009]. However, func-
tional parcellation of the perigenual cingulate comprising
the sACC and pACC has not been investigated. Thus, the
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characterization of the variability of the perigenual cingu-
late functional connectivity in healthy subjects is a first
step in evaluating patient variability. In this study, we
used an MMC algorithm to perform a functional connec-
tivity-based parcellation of the perigenual cingulate region
and then used the functional connectivity of the subre-
gions from the parcellation as classification features to dis-
tinguish the depressed patients from the healthy controls.

MATERIALS AND METHODS

Subjects

The study’s participants included 24 patients diagnosed
with MDD from the outpatient clinic at the First Affiliated
Hospital of China Medical University and 29 healthy vol-
unteers, matched for gender, age and education, who were
recruited via local recruitment advertisements in the hos-
pital and in the neighboring communities (Table 1). All of
the subjects were right-handed and native Chinese speak-
ers. The depressed patients met the criteria for a current
episode of unipolar recurrent major depression based on
the DSM-IV (Diagnostic and Statistical Manual of Mental
Disorders-IV) criteria [APA, 2000]. Using the Structured
Clinical Interview for DSM-IV [First et al., 1995], the diag-
nosis was confirmed by clinical psychiatrists. The exclu-
sion criteria included acute physical illness, substance
abuse or dependence, a history of a head injury resulting
in loss of consciousness and a major psychiatric or neuro-
logical illness other than depression. The patients
abstained from caffeine, nicotine and alcohol prior to the
scanning session. All patients were medication-naive at
the time of the scan, and the depressive symptoms were
assessed with the 17-item Hamilton Depression Rating
Scale (HDRS) [Hamilton, 1960], Hamilton Anxiety Rating
Scale (HAMA) [Hamilton, 1959], and Clinical Global
Impression Scale-Severity (CGI-S) [Guy, 1976] (Table 1).
The healthy volunteer subjects were studied under identi-
cal conditions. This study was approved by the Ethics
Committee of China Medical University, and all partici-
pants gave written informed consent.

Imaging Acquisitions and Data Preprocessing

All resting-state fMRI data were acquired using a
1.5-Tesla GE SIGNA scanner (GE Medical System, Milwau-
kee, WI). A total of 245 volumes of echo planar images were
obtained axially (repetition time/echo time ¼ 2,000/50 ms,
thickness/gap ¼ 5/1.5 mm, field of view ¼ 240 � 240 mm,
flip angle ¼ 90�, matrix ¼ 64 � 64, and slices ¼ 20).

All of the fMRI images were preprocessed using SPM5
(http://www.fil.ion.ucl.ac.uk/spm). For each subject, the
first five volumes of the scanned data were discarded for
magnetic saturation. The remaining 240 volumes were cor-
rected by registering and reslicing for head motion, and
all subjects had less than 2.5 mm translation in the x, y, or
z-axis and 2� of rotation in each axis. Next, the volumes
were normalized to the standard template (Montreal Neu-
rological Institute). The resulting images were detrended
to eliminate linear trends and then temporally filtered
with a band-pass filter (0.01–0.08 Hz). No spatial smooth-
ing was performed to avoid the possible degradation of
classification ability [Kriegeskorte et al., 2006]. Finally, the
time courses were further corrected by regressing out
head motion parameters, global signals, white matter and
cerebrospinal fluid average signals, i.e., these nuisance var-
iables were used as regressors in a general linear regres-
sion model to remove the associated variance [Desjardins
et al., 2001; Fox et al., 2009]. The residuals of these regres-
sions were the set of time series used for functional con-
nectivity analyses. We evaluated the functional
connectivity between each time series pair using Pearson
correlation coefficients. In addition, all correlation coeffi-
cients were converted to z-scores by applying the Fisher
r-to-z transformation [Zar, 1996].

Maximum Margin Clustering

Clustering analysis is one of the most popular unsuper-
vised machine learning techniques [Jain et al., 1999; Mad-
hulatha, 2012]. In this study, we used an unsupervised
MMC algorithm to perform the functional connectivity-
based parcellation of the perigenual cingulate to

TABLE 1. Characteristics of the participants in this study

Variable Patient Control P value

Sample size 24 29
Gender (M/F) 8/16 9/20 0.86a

Age (yr) 31.83 � 10.99 33.62 � 10.29 0.54b

Education (yr) 11.71 � 3.13 11.00 � 3.12 0.66b

Number of previous episodes 1.63 � 0.77
Duration of current episode (months) 5.33 � 6.29
Hamilton Depression Rating Scale (HDRS) 26.42 � 5.22 (18–38) 4.25 � 1.02 (3–6)
Hamilton Anxiety Rating Scaling (HAMA) 20.29 � 5.25 (8–30) 3.55 � 0.91 (2–5)
Clinical Global Impression Scale-Severity (CGI-S) 5.92 � 0.65 (5–7)

aPearson v2 test.
bTwo-sample t-test.
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distinguish depressed patients from healthy controls on
the basis of single resting-state fMRI scans and in the ab-
sence of clinical information. Inspired by the success of the
large margin criterion in a support vector machine (SVM),
Xu et al. [2005] proposed the use of the maximum margin
principle for clustering, referred to as MMC, which simul-
taneously learns the optimal hyperplane and cluster labels
and is very robust to various data distributions [Xu and
Schuurmans, 2005; Xu et al., 2005]. The goal of an SVM is
to find the linear discriminant that maximizes the mini-
mum misclassification margin based on labeled training
data, but the goal of MMC is to find labeling that results
in a large margin classifier. However, the original mathe-
matical model of two-class MMC is a mixed integer pro-
gram [Li et al., 2009]. To make it more tractable and to
avoid the problem of suffering from local minima, MMC
can be solved globally via convex semi-definite program-
ming (SDP) relaxation. Recently, Li et al. [2009] proposed
a novel and scalable convex optimization method,
LG-MMC, which maximized the margins of opposite
clusters via ‘‘Label Generation,’’ to alleviate the computa-
tional burden of SDP. Their experiments showed that
LG-MMC achieves promising clustering performance. In
this study, we used the LG-MMC package (linear kernel,
LGMMC_V2; http://lamda.nju.edu.cn/datacode/LGMMC.
htm) to solve the optimization problem.

Unsupervised Parcellation of the

Perigenual Cingulate

Individual connectivity-based parcellation was per-
formed using the LG-MMC algorithm, and then popula-
tion-based parcellation was achieved using a standard
majority-voting scheme based on the individual parcella-
tion results. First, according to the previous studies [Johan-
sen-Berg et al., 2008; Mayberg et al., 2005], we defined the
ROI of the perigenual cingulate with the free software

WFU_PickAtlas (version 2.0, http://www.ansir.wfubm-
c.edu) on the basis of its ACC region excluding the dorsal
component, BA25 region, and the caudal portions of BA32
and BA24 regions, as shown in Figure 1. Second, resting-
state functional connectivity was calculated between each
voxel within the perigenual cingulate and all other voxels
in the brain for each healthy subject, allowing a feature
vector to be extracted from the functional connectivity
map of each voxel within the perigenual cingulate. Taking
each voxel within the perigenual cingulate as a sample,
two-class clustering analysis was performed for each
healthy subject. In the LG-MMC algorithm, the slack pa-
rameter was set as Inf, and the class balance parameter
was set as approximately one fifth of the total voxel num-
ber in the perigenual cingulate. The unsupervised connec-
tivity-based parcellation defined two subregions with
distinct resting-state functional connectivity patterns
within the perigenual cingulate for each healthy subject.
To avoid the curses of data dimensionality in clustering
analysis [Bellman, 1961; Guyon and Elisseeff, 2003], princi-
pal component analysis (PCA) was used to reduce the
dimensionality of the feature space. Finally, to resolve dis-
agreements in the labeling of the 29 healthy subjects com-
ing from the same voxel within the perigenual cingulate,
we applied a standard majority-voting scheme in which
the label predicted most frequently among the 29 healthy
subjects was assumed as the label for the given voxel. A
population-based parcellation into two subregions was
generated in standard brain space.

Unsupervised Classification of Major Depression

We developed an MMC-based unsupervised machine
learning approach to cluster the depressed patients and
the healthy controls into two groups based only on
rs-fcMRI data. The feature space for classification was
spanned by the functional connectivity between each

Figure 1.

Location of the perigenual cingulate and its functional connectivity-based parcellation defining two

distinct subregions: the subgenual (sACC, green) and pregenual anterior cingulate cortex (pACC,

red). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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subregion in our parcellation of the perigenual cingulate
and all other voxels. The LG-MMC package, described
previously, was used. As in a previous study [Xu et al.,
2005], the following two widely used algorithms were also
used: C-means and Ncut [Shi and Malik, 2000]. In all algo-
rithms, we set the number of clusters to 2 for classifying
the depressed patients and the healthy controls. In addi-
tion, there were certain parameters that needed to be set
in the LG-MMC algorithm: (1) the slack parameter was
selected in a range of [0.001, 0.01, 0.1, 1, 10, 100, Inf]; and
(2) the class balance parameter was set by grid search
from [6, 15] with granularity 1. In addition, the dimension-
ality of principal component subspace was set by grid
search from [2, 52] with granularity 1. All of the algo-
rithms would be reported with the best parameter setting.

To evaluate the consistency between the clustering labels
and clinical diagnostic labels of the subjects, we defined
clustering consistency as similar to clustering accuracy
[Wang et al., 2010], which can be used to discover one-to-
one relationships between clusters and clinical classes and
can measure the extent to which each cluster contains data
points from the corresponding class. Clustering consis-
tency sums up the entire matching degree between all pair
class clusters. Clustering consistency can be computed as

Consistency ¼ 1

N
max
Ck;Lm

X

Ck;Lm

T Ck; Lmð Þ
8
>>>>:

9
>>>>; (1)

where Ck denotes the kth (k[{1, 2}) cluster in the final
results, and Lm is the diagnostic mth (m[{1, 2}) group (i.e.,
patient group and control group). T(Ck, Lm) is the number
of samples that belong to group m and are assigned to
cluster k. Consistency is the maximum sum of T(Ck, Lm)
for all pairs of clusters and groups, and these pairs have
no overlaps.

In addition, we used a leave-one-out cross-validation
(LOOCV) strategy to estimate the generalization ability of
our MMC-based unsupervised classification method at an
individual subject level. To better understand the perform-
ance of the MMC-based classifiers, two other popular lin-
ear classification methods, SVM with linear kernel
functions and linear discriminant analysis (LDA), were
applied to the same data [Bishop, 2006; Vapnik, 1995]. The
overall proportion of samples whose assigned labels were
consistent with the diagnostic labels was evaluated by
classification consistency, with a greater classification con-
sistency resulting in better generalization ability.

Reconstruction of the Most Discriminative

Features

A linear MMC-based classifier in nature is a linear
projection, and the absolute value of an element in the
projective vector represents the contribution of the corre-
sponding feature to the discriminative score. Thus, these

values can be used to measure the discriminative power of
the functional connectivity features, called feature weights.
Given a two-class data set X0 ¼ {X0

i} [ RD � N, where X0
i [

RD are samples (feature vectors in this study), it was
assumed that the value of d (d < D) was given. Using
PCA, all sample data were projected onto d-dimensional
subspace spanned by the principle components, and the
projective matrix U [ RD � d was obtained:

Xi ¼ UT X0
i � �X0

i

� �
(2)

where X0
i was the mean vector of X0

i and Xi [ Rd was the
output vector of PCA. Usually, U consists of d eigenvectors
with the first d largest eigenvalues of the covariance matrix.

In brief, an MMC algorithm with linear kernel function
seeks an optimal projective direction by maximizing the
margin. Theoretically, the d-dimensional feature vector X
of each sample is projected to a one-dimensional discrimi-
native score y by the inner product operation:

y ¼ X;Wh i � y0 ¼WTX � y0 (3)

where W[Rd is the optimal projective vector and y0 [ R is
a classification threshold.

In fact, we can combine Eq. (2) with Eq. (3) in the clus-
tering procedure, and then an equivalent result is
obtained:

yi ¼WT UTðX0
i � �X0

i Þ
� �

� y0 ¼ UWð ÞT ðX0
i � �X0

i Þ � y0 (4)

Suppose K = UW = (k1,� � �, kD)T; then, the absolute value
of the element kj (j = 1, � � �, D) represents the contribution
of the corresponding feature to the discriminative score,
which denotes the feature weight. Thus, a greater feature
weight means a greater contribution of this feature to the
discriminative score, and the features with the greatest
weights can be considered to be the most discriminative
features. Because the feature weights might differ slightly
from fold to fold of LOOCV, the final feature weights
were averages from all folds of LOOCV. The top 5% of
features with the greatest weights were extracted as the
most discriminative features. Finally, a cluster size thresh-
old of 10 voxels was used to extract the anatomical regions
with the highest discriminative power.

RESULTS

Functional Connectivity-Based Parcellation

of the Perigenual Cingulate

A population-based parcellation of the perigenual cingu-
late into two subregions was generated in the standard
brain space (Fig. 1). Interestingly, the two clusters
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represented the two typical portions of the perigenual cin-
gulate, including the sACC (Fig. 1, green) and pACC (Fig.
1, red). We selected the sACC and pACC regions from the
parcellation as seeds to calculate the functional connectiv-
ity with all the other voxels in the brain for each subject,
resulting in resting-state functional connectivity maps of
the two regions as shown in Figure 2 (one-sample t-test,
False Discovery Rate corrected, P < 0.05, cluster size >20
voxels). It was observed that the sACC was most strongly
connected with the medial prefrontal cortex (mPFC,
BA11/10/24/32/25), basal ganglia, temporal lobe (BA38)
and cerebellum (Supporting Information Table S1). By con-
trast, and in addition to these areas, the pACC is also
strongly connected with the precuneus/posterior cingulate
cortex (BA7/31/23), bilateral angular gyri (BA39/40), and
thalamus (Supporting Information Table S2), all of which
are key default mode regions. There are some common
areas between the two functional connectivity maps, but
there are also apparent differences between the two subre-
gions that may drive the parcellation.

Classification Results

Using functional connectivity maps of the sACC,
LG-MMC achieved better performance (92.5% clustering
consistency) than Ncut (83.0%) or C-means (100 runs: 82.1
� 5.1%) (Table 2). We also clustered the depressed patients
and controls based on the functional connectivity maps of
the pACC, resulting in the clustering consistencies
of 84.9%, 81.1%, and 72.9 � 3.8% using MMC, Ncut, and
C-means, respectively.

Considering the promising clustering performance of
MMC, we tested its generalization ability using an LOOCV
strategy. The MMC-based classifiers achieved an individual-
level classification consistency of 92.5% using the functional
connectivity maps of the sACC, which was similar to the
results of SVM classifiers but better than the results of LDA
classifiers (Table 3). Using the functional connectivity maps of
the pACC, the MMC classifiers via LOOCV achieved a classi-
fication consistency of 83.0%, whereas the SVM and LDA
classifiers both achieved a classification consistency of 81.1%.

Most Discriminative Functional Connectivity

Networks in Major Depression

The most discriminative sACC-based functional connec-
tivity network was extracted, as shown in Figure 3A.

Figure 2.

Resting-state functional connectivity maps of the subgenual (A) and pregenual (B) anterior cingulate

cortex (one-sample t-test, False Discovery Rate corrected, P < 0.05, cluster size >20 voxels). Rela-

tive to the subgenual cingulate, the pregenual cingulate is additionally connected with certain default

mode regions, mainly including the precuneus/posterior cingulate cortex and bilateral angular gyri.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 2. Comparison of clustering performance using

different algorithms and different seed regions

Seed Algorithm

Clustering consistency

Patient (%) Control (%) Total (%)

Subgenual
cingulate

MMC 100 86.2 92.5
Ncut 70.8 93.1 83.0

C-means 84.6 � 7.0 80.0 � 7.1 82.1 � 5.1
Pregenual

cingulate
MMC 87.5 82.8 84.9
Ncut 66.7 93.1 81.1

C-means 62.0 � 7.3 82.0 � 3.3 72.9 � 3.8

MMC, Maximum Margin Clustering; Ncut, Normalized Cuts
Spectral Clustering.
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These connections were primarily located between the
sACC and certain cortical regions and limbic structures
(Table 4). The cortical regions primarily included the ven-
trolateral prefrontal cortex (vlPFC, BA47/11), superior
temporal gyri (BA21/22), and vmPFC (BA10/32/24), while
the limbic areas mainly comprised the bilateral lentiform
nucleus, right hippocampus, bilateral insula, bilateral thal-
amus, brainstem and right amygdala.

The most discriminative functional connections of the
pACC were primarily located between the pACC and the
central default mode regions, i.e., the medial prefrontal
cortex (mPFC, BA10/11/32), precuneus/posterior cingu-
late cortex (BA7/23/31), orbitofrontal cortex (BA11),

TABLE 3. Classification results in leave-one-out cross-

validation using the functional connectivity maps of the

subgenual and pregenual anterior cingulate cortex

Seed Algorithm

Classification consistency

Patient (%) Control (%) Total (%)

Subgenual
cingulate

MMC 100 86.2 92.5
SVM 95.8 89.7 92.5
LDA 95.8 82.8 88.7

Pregenual
cingulate

MMC 83.3 82.8 83.0
SVM 87.5 75.9 81.1
LDA 66.7 93.1 81.1

LDA, Linear Discriminant Analysis; MMC, Maximum Margin
Clustering; SVM, Support Vector Machine.

Figure 3.

The most discriminative functional connectivity networks of the

subgenual (A) and pregenual (B) anterior cingulate cortex. The

voxels with the most discriminative subgenual cingulate func-

tional connectivity are located primarily within the prefrontal

lobe, some limbic areas and the temporal lobe, while the voxels

with the most discriminative pregenual cingulate functional con-

nectivity are located primarily within the medial prefrontal cor-

tex, precuneus/posterior cingulate cortex, insula, bilateral

angular gyri and temporal lobe. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

TABLE 4. Regions with the most discriminative

functional connectivity of the subgenual anterior

cingulate cortex in major depression

Regionsa Side BA Voxels

MNI coordinates
(mm)

x y z

vlPFC L 47 685 �32 31 �15
R 47/11 252 32 30 �14

Lentiform nucleus L 247 �27 3 �7
R 255 24 6 �7

Hippocampus R 166 24 �42 �6
Superior temporal

gyrus
L 22 152 �49 �14 �6
R 22/21 101 52 �9 �9

Insula L 13 122 �35 11 �10
R 13 88 33 22 �11

vmPFC/ACC R 10/32/24 107 6 64 11
L 10/32/24 68 �13 64 11

Thalamus R 89 15 �25 �3
L 74 �15 �8 �3

Superior frontal
gyrus

R 10 39 22 60 14
L 10 20 �20 57 5

Brainstem R 32 14 �24 4
L 31 �5 �23 �2

Calcarine gyrus R 19 24 25 �51 4
Amygdala R 16 24 �8 �14

aThese regions were identified by setting the threshold to the top
5% most discriminative functional connectivity with cluster size
>10 voxels. ACC, anterior cingulate cortex; BA, Brodmann area;
MNI, Montreal Neurological Institute; vlPFC, ventrolateral prefron-
tal cortex; vmPFC, ventromedial prefrontal cortex; L, left; R, right.
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bilateral angular gyri (BA39/40), and thalamus (see Table 5
and Fig. 3B). The most discriminative functional connections
also included those between the pACC and the right supe-
rior frontal gyrus (BA8/9), bilateral insula (BA13), and tem-
poral lobe (BA21/22) (Table 5 and Fig. 3B).

DISCUSSION

This study demonstrates that the subgenual and prege-
nual portions of the ACC have distinct functional connec-
tivity patterns and that the sACC functional connectivity
could achieve a promising clustering and classification
consistency of 92.5% in identifying major depression using
the unsupervised MMC algorithm, whereas the pACC
functional connectivity reached only relatively low consis-
tencies. Moreover, the most discriminative functional con-
nectivity network related to the sACC primarily included
the prefrontal lobe, limbic areas and temporal lobe, while
the most discriminative pACC-related network mainly
encompassed the insula and some default mode regions.

Functional Connectivity-Based Parcellation of the

Perigenual Cingulate

In the current study, major differences between the rest-
ing-state functional connectivity patterns of the pregenual
and subgenual portions of human ACC were observed.
Although there was some overlap between the functional
connectivity patterns of the two subregions, the pACC
was also strongly connected with the precuneus/posterior
cingulate cortex and bilateral angular gyri. It is likely that
these apparent differences drove the functional connectiv-
ity-based parcellation. Note that our parcellation of the
perigenual cingulate is similar to the anatomical connectiv-
ity-based parcellation in Johansen-Berg et al. [2008] and
the structural MRI-based parcellation in McCormick et al.
[2006], although we performed our parcellation using
functional connectivity. In addition, we used a C-means
algorithm to perform the parcellation [Zhang and Li,
2012], which yielded results similar to those of MMC.
However, the group consistency [Shen et al., 2010b] of the
MMC results (group consistency ¼ 0.3392) was better than
that of the C-means results (group consistency ¼ 0.3861),
indicating that MMC achieved better agreement between
parcellations across all subjects (a smaller group consis-
tency value indicates better agreement between parcella-
tions across all subjects) [Shen et al., 2010b].

In addition, this study demonstrated that the sACC
exhibited higher discriminative power than the pACC in
identifying major depression, indicating that the parcella-
tion benefited the identification of major depression.
Briefly, our results further confirm that there are two dis-
tinct subregions within the perigenual cingulate and sug-
gest, in addition to the distinct anatomical connectivity
maps [Johansen-Berg et al., 2008], that the two subregions
may also have distinct resting-state functional connectivity
patterns [Margulies et al., 2007]. By characterizing the vari-
ability of functional connectivity of the perigenual cingu-
late, the current study may have important clinical
implications for studies of functional connectivity network
variability in depressed patients.

Unsupervised Classification of Major Depression

Using the functional connectivity maps of the sACC, the
MMC-based unsupervised machine learning approach
achieved group-level clustering consistency of 92.5%. The
current results demonstrate that this unsupervised
approach reliably captured the intrinsic disease-related
functional connectivity pattern underlying the rs-fcMRI
data. In our previous study, we used supervised SVM to
identify major depression based on whole-brain functional
connectivity [Zeng et al., 2012], and several other brain
imaging studies have also attempted to distinguish
depressed patients from healthy controls using supervised
methods [Costafreda et al., 2009; Craddock et al., 2009;
Fang et al., 2012; Fu et al., 2008; Mwangi et al., 2012].
Mourão-Miranda et al. [2011] used one-class SVM to

TABLE 5. Regions with the most discriminative

functional connectivity of the pregenual anterior

cingulate cortex in major depression

Regionsa Side BA Voxels

MNI
coordinates

(mm)

x y z

mPFC/ACC L/R 10/11/32 697 �3 57 12
Precuneus/posterior

cingulate
L/R 7/31/23 347 1 �70 39

Superior frontal
gyrus

R 8/9 155 24 36 53

Insula R 13 138 41 �3 0
L 13 57 �45 0 0

Orbitofrontal cortex L 11 75 �14 42 �24
R 11 44 11 29 �21

Rolandic oper gyrus R 44 71 49 6 2
Middle temporal

gyrus
R 21 45 45 �34 1

Superior temporal
gyrus

L 22 35 �60 �6 2

Thalamus R 28 18 �21 0
Angular gyrus L 40 27 �39 �69 48

R 39 22 57 �61 25
Infeiror temporal

gyrus
R 21 27 60 �12 �29

supramarginal
gyrus

R 1 25 66 �17 21

Putamen R 23 32 4 0

aThese regions were identified by setting the threshold to the top
5% most discriminative functional connectivity with cluster size
>10 voxels. ACC, anterior cingulate cortex; BA, Brodmann area;
MNI, Montreal Neurological Institute; mPFC, medial prefrontal
cortex; L, left; R, right.
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investigate whether patterns of fMRI responses to sad fa-
cial expressions in depressed patients would be classified
as outliers in relation to patterns of healthy controls.
Supervised classification requires the prior diagnosis of all
subjects based on clinical signs and symptoms; thus, these
methods may be prone to the subjects’ behaviors and self-
reported symptoms, as well as clinical psychiatrists’ bias
[Buckner et al., 2007; Caplan and Cosgrove, 2004; Sue,
1998]. In contrast, unsupervised classification methods can
perform classification without any prior labeling knowl-
edge; thus, these methods can avoid the above biases
[Bishop, 2006], and provide relatively objective biomarkers.
To the best of our knowledge, the current study was the
first time unsupervised machine learning methods have
been used to identify psychiatric disorders based on neu-
roimaging data.

In the current study, MMC outperformed both the
C-means and Ncut algorithms to some extent, which is
consistent with previous studies [Ding et al., 2009]. In
C-means algorithms, it is supposed that the samples of
each class exhibit a hyperspherical or Gaussian distribu-
tion in the high-dimension feature space and that these
samples are located symmetrically around the center of
the hypersphere. However, due to the diversity of psychi-
atric patients, the neuroimaging data of the subjects are
not likely to be hyperspherical or symmetrical in feature
space. The Ncut algorithm is robust to outliers and exhib-
its favorable performance relative to other graph clustering
methods [Shen et al., 2010b; Shi and Malik, 2000], but
it does not always lead to particularly good solutions
[Luxburg, 2006]. The MMC algorithm, as a scalable and
global optimization method, learns the optimal hyperplane
with the maximum margin between two clusters, ignoring
the internal data distribution structure of each cluster.
Thus, the MMC algorithm is very robust to the data
distribution. In this study, it was conceivable that our
MMC-based unsupervised approach achieved higher clus-
tering consistencies than both C-means and Ncut.

We used an LOOCV strategy to estimate the generaliza-
tion ability of the unsupervised MMC method and
obtained an individual-level classification consistency of
92.5% based on the functional connectivity maps of the
sACC. The results are equivalent to, or better than, the
results of supervised SVM and LDA classifiers, indicating
that the MMC-based unsupervised machine learning
approach has promising generalization ability and the
potential to inform clinical practice and research, as it can
make accurate predictions about brain scans at an individ-
ual subject level.

To highlight the promising contribution of the sACC to
the classification, we also tested other seed regions, includ-
ing the posterior cingulate cortex within the default net-
work, the anterior lateral prefrontal cortex within the
frontoparietal network, and the motor cortex within the
motor network [Van Dijk et al., 2012], obtaining classifica-
tion consistencies of 73.6%, 62.3%, and 60.4%, respectively.
Obviously, these classification results are not as good as

the results obtained by using the sACC as the seed and
are a further indication of the vital role of the sACC in the
pathophysiology of major depression.

Spatial smoothing may degrade classification perform-
ance [Kriegeskorte et al., 2006]. We performed smoothing
with 2-, 4-, 6-, and 8-mm FWHM widths, obtaining classifi-
cation consistencies of 90.6%, 90.6%, 88.7%, and 84.9%,
respectively. Spatial smoothing may blur the subtle infor-
mation hidden in the fMRI data and reduce the discrimi-
native power of the features.

Most Discriminative Functional Connectivity

Networks in Major Depression

The most discriminative functional connections of the
sACC were located primarily between the sACC and the
prefrontal lobe, limbic areas and temporal lobe. The pre-
frontal lobe referred to in this study included mainly the
vlPFC and vmPFC. Abnormal functional coupling of the
sACC and some parts of the prefrontal lobe has been
found in numerous previous studies [Greicius et al., 2007;
Mayberg et al., 1999] and may be responsible for some
aspects of emotional dysregulation in depression. For
example, using positron emission tomography (PET), May-
berg et al. [1999] reported a significantly altered correla-
tion between the sACC and the right dorsal prefrontal
cortex in depressed patients. Greicius et al. [2007] demon-
strated increased connectivity between the sACC and the
default network, including the medial prefrontal and orbi-
tofrontal cortex. Our findings share certain features with
these results. The limbic areas, including the striatum, hip-
pocampus, insula, thalamus, brainstem and amygdala, are
fundamentally involved in critical aspects of motivational,
affective and emotional behaviors [LeDoux, 2000]. As piv-
otal nodes in the limbic-cortical dysregulation model in
depression [Drevets et al., 2008; Mayberg, 2003], the limbic
structures may mediate the vegetative and somatic aspects
of the disorder, including sleep, appetite, libido and endo-
crine disturbances [Mayberg, 1997; Sheline et al., 2010].
Here, altered functional connectivity of the sACC with
these regions may account for at least a portion of the
complex of cognitive and emotional deficits in depression.
In addition, the functional connectivity between the sACC
and superior temporal gyri exhibited high discriminative
power in classification. The superior temporal gyri are
involved in the perception of emotions in facial stimuli
[Radua et al., 2010]; thus, altered functional connectivity
between the sACC and this region may result in the social
avoidance observed in depressed patients through the
reinforcement of negative cognitive models. We speculate
that this region should also be included in the limbic-corti-
cal dysregulation model in depression.

The most discriminative functional connections related
to the pACC were found primarily between the pACC
and the default mode regions, i.e., the mPFC, precuneus/
posterior cingulate cortex, orbitofrontal cortex, bilateral

r Zeng et al. r

r 1638 r



angular gyri, and thalamus. In addition, the functional
connections between the pACC and the right superior
frontal gyrus, bilateral insula, and temporal lobe also
exhibited high discriminative power. In a previous study,
abnormalities in the functional connectivity between the
pACC and the bilateral dorsomedial prefrontal cortex
were found in major depression using univariate statistical
analyses [Sheline et al., 2010]. In the current study, using
multivariate pattern analyses, we extended the brain areas
with aberrant coupling of the pACC to include the key
regions in the default network, similar to the pACC-
related limbic-cortical dysregulation model in depression
[Mayberg, 2003]. The default network is known to be
involved in self-referential activity [Greicius et al., 2003;
Raichle, 2001], and abnormality of the default network in
depression has been reported in several previous studies
[Greicius et al., 2007; Sheline et al., 2009; Zhu et al., 2012].
Our results may provide new evidence for the importance
of the default network in the pathophysiology of major
depression and suggest that abnormal functional connec-
tivity between the pACC and the default network may be
a major depressive trait. Discriminative functional connec-
tions were also found between the pACC and bilateral
insula, in line with the previous studies [Horn et al., 2010].
Altered functional coupling of the pACC and the insula
may play an important role in major depressive symp-
toms, such as anhedonia and impaired emotion processing
[Horn et al., 2010].

Limitations and Future Directions

There are several limitations to this study. First, our
classification results of depressed patients and healthy
controls may be negatively influenced by the small sample
size, scanner variability and the lack of large independent
datasets. Therefore, it is important to confirm the classifi-
cation results with larger sample size and multicenter
imaging data in the future. Second, due to the limitations
of the small sample size, we performed the characteriza-
tion of perigenual cingulate connectivity patterns and the
classification of depression using the same group of
healthy controls. The use of the same healthy control
participants in both arms of the experiment is a potential
confound that may influence the classification results,
although LOOCV was used to address this possibility. The
impact of this issue on classification performance remains
to be determined. Further studies with independent data-
sets to characterize the perigenual cingulate connectivity
patterns and classify depressed patients will allow us to
avoid this potential confound. Third, although our unsu-
pervised classification results are promising, additional
brain imaging evidence, including structural abnormalities,
is needed to develop synthesized biomarkers for a more
reliable clinical diagnosis of depression. In addition,
although linear clustering algorithms were used here to
allow the reconstruction of the most discriminative fea-

tures, some other advanced unsupervised machine learn-
ing techniques, including low-dimensional manifold
embedding and nonlinear kernel methods, may have the
potential to improve the classification performance [Kout-
souleris et al., 2009; Shen et al., 2010a].
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