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Abstract: Previous studies have shown that hippocampal volume is an early marker for dementia. We
investigated whether hippocampal shape characteristics extracted from MRI scans are predictive for
the development of dementia during follow up in subjects who were nondemented at baseline. Fur-
thermore, we assessed whether hippocampal shape provides additional predictive value independent
of hippocampal volume. Five hundred eleven brain MRI scans from elderly nondemented participants
of a prospective population-based imaging study were used. During the 10-year follow-up period, 52
of these subjects developed dementia. For training and evaluation independent of age and gender, a
subset of 50 cases and 150 matched controls was selected. The hippocampus was segmented using an
automated method. From the segmentation, the volume was determined and a statistical shape model
was constructed. We trained a classifier to distinguish between subjects who developed dementia and
subjects who stayed cognitively healthy. For all subjects the a posteriori probability to develop demen-
tia was estimated using the classifier in a cross-validation experiment. The area under the ROC curve
for volume, shape, and the combination of both were, respectively, 0.724, 0.743, and 0.766. A logistic
regression model showed that adding shape to a model using volume corrected for age and gender
increased the global model-fit significantly (P 5 0.0063). We conclude that hippocampal shape derived
from MRI scans is predictive for dementia before clinical symptoms arise, independent of age and gen-
der. Furthermore, the results suggest that hippocampal shape provides additional predictive value
over hippocampal volume and that combining shape and volume leads to better prediction. Hum Brain
Mapp 35:2359–2371, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

There are 5.4 million individuals suffering from Alzhei-
mer’s disease (AD) in the USA [Thies and Bleiler, 2011].
Furthermore, it is estimated that on average patients suf-
fering from dementia use three times more medical care
compared to people not suffering from dementia in the
same age range. Although there are currently no cures or
drugs to prevent dementia, recent studies show the prom-
ise of better drugs to slow or halt the progression of de-
mentia [Neugroschl and Sano, 2010; Scarpini et al., 2003].
Still, all damage suffered by the brain as a result of de-
mentia is irreversible. This makes early detection—prefera-
bly before clinical symptoms appear—of great importance.

Experienced radiologists can recognize the typical brain
atrophy patterns associated with dementia and can sup-
port the traditional diagnosis based on cognitive tests
[Scheltens et al., 1992]. In recent years, a large number of
articles have explored the possibilities of computer-aided
diagnosis and prediction of dementia in MRI.

Chan et al. [2001] showed that atrophy in demented
subjects is most pronounced in the hippocampus, amyg-
dala, and entorhinal cortex. Also, it has been shown that
the hippocampal subregions are not equally affected by
dementia and that localized atrophy within the hippocam-
pus can be linked to dementia [Apostolova et al., 2006;
Csernansky et al., 2005; Scher et al., 2007]. Hippocampal
shape can be used as a measure for very localized atrophy.
Hippocampal shape in relation to dementia has been stud-
ied and shown to contain information to distinguish
demented subjects from healthy controls [Ferrarini et al.,
2009; Gerardin et al., 2009].

It is well established that gray matter atrophy related to
dementia is visible on MRI, even before clinical symptoms
become apparent [den Heijer et al., 2006; Jack et al., 1999;
Philip Scheltens et al., 2002]. Additionally, histology stud-
ies show that certain hippocampal subfields are affected
stronger and earlier by atrophy [West et al., 2004], suggest-
ing that local analysis is best suited to detect dementia in
an early stage. Considering that the hippocampus is one of
the brain structures affected earliest and strongest by de-
mentia, in this study we used hippocampal shape to inves-
tigate localized hippocampal atrophy.

Many studies investigating dementia using MRI, have
focused on distinguishing demented subjects from controls
[DeCarli et al., 1995; Li et al., 2007]. Other studies com-
pared MR images of cognitively normal subjects to sub-
jects with mild cognitive impairment (MCI), which is
considered a precursor of dementia. However, not all MCI

subjects develop dementia; some remain MCI for a long
time and some even revert to cognitively normal.

To be able to create a model for dementia prediction,
longitudinal clinical data is required. This allows research-
ers to check the cognitive function of subjects over time.
When this data is available, new subject groups can be
identified: MCI converters (MCI-c), subjects with MCI who
develop dementia during a follow-up period, and MCI
nonconverters (MCI-nc). Some studies try to distinguish
between MCI-c and MCI-nc [Apostolova et al., 2006; Fer-
rarini et al., 2009; Jack et al., 1999]. Other studies try to
detect very early dementia by comparing MCI-c subjects
to controls [Davatzikos et al., 2008]. In contrast to these
studies, the subjects in our population were all nonde-
mented at baseline. Furthermore, they form a cross section
of middle aged and elderly people from the general
population.

This article aims to answer the following questions: Is
hippocampal shape extracted from MRI scans predictive
for the development of dementia before clinical symp-
toms? If so, does hippocampal shape provide extra predic-
tive value over hippocampal volume?

A preliminary version of this study has already been
made available in a workshop article [Achterberg et al.,
2010]. In the current study, we included 511 instead of 94
subjects and evaluated the models more extensively.

MATERIALS AND METHODS

MRI scans of the brain were acquired from 511 nonde-
mented, elderly persons (Data section). During the 10-year
clinical follow-up period, 52 subjects (10%) developed de-
mentia (any type). For these subjects, MRI scans taken up
to 10 years before the clinical diagnosis were available,
allowing the evaluation of the predictive value of imaging
biomarkers.

From the MRI scans, the hippocampus was segmented
using an automated method (Hippocampus Segmentation
section). Subsequently, a statistical shape model was con-
structed using the segmented data (Shape Representation
section). Features from this model were used to train a
classifier that distinguishes subjects who will develop de-
mentia from subjects who will stay cognitively healthy
(Classification section). The performance of this classifier
was evaluated in a cross-validation manner (Evaluation
section). A schematic overview of the methods is shown in
Figure 1. The predictive value of hippocampal volume,
shape, and the combination of both shape and volume
were compared to each other.
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Data

The imaging data used in this study was a subset taken

from the Rotterdam Scan Study: a prospective, population-

based MRI study on age-related neurological diseases [den

Heijer et al., 2003; Ikram, 2011]. For 511 nondemented, el-

derly subjects, MRI scans and the age, gender, dementia

diagnosis, and time of follow-up were available.
All subjects were scanned in 1995–1996 on a Siemens

1.5T scanner. The sequence used was a custom designed,
inversion recovery, three-dimensional (3D) half-Fourier ac-
quisition single-shot turbo spin echo sequence. This
sequence had the following characteristics: inversion time
4,400 ms, repetition time 2,800 ms, effective echo time 29
ms, matrix size 192 3 256, flip angle 180�, slice thickness
1.25 mm, acquired in sagittal direction. The images were
reconstructed to a 128 3 256 3 256 matrix with a voxel
dimension of 1.25 3 1.0 3 1.0 mm.

Study participants were followed during a 10-year period.
During this period, they were invited for four cognitive fol-
low-up tests, and the general practitioners records were
tracked for diagnosis of dementia. Dementia screening fol-
lowed a strict two-step protocol [den Heijer et al., 2006]; ini-
tially, participants were cognitively screened with the Mini
Mental State Examination (MMSE) and the Geriatric Mental
Schedule. If the results of this initial screening indicated
possible dementia, a more thorough cognitive testing was
performed for verification. During the study period, 52 per-
sons were diagnosed with dementia. The median interval

between MRI acquisition and dementia diagnosis was 4.0
years with an interquartile range of 4.8 years.

The entire dataset, hereafter referred to as the cohort set,
contained 52 prodromal dementia cases and 459 persons
who did not develop dementia. To train and test a model
independent of age and gender, an age- and gender-
matched subset of 50 prodromal dementia subjects and
150 controls was identified, hereafter referred to as the
matched set. Characteristics of the cohort set and matched
set can be found in Table I. None of the subjects were
demented at the time the MRI scan was taken.

Because memory impairment is the first detectable neu-
ropsychological sign of incipient dementia, we questioned
persons on subjective memory complaints. This was done
by a single question: “Do you have complaints about your
memory performance?” Furthermore, objective memory
performance was assessed using a 15-word verbal learning
task [den Heijer et al., 2006] resulting in a memory score.

To increase the sample size in the matched set, we
selected three unique controls per case; this was possible
for 50 cases. The matching was performed using the fol-
lowing criteria: the gender had to be the same, the follow-
up time of the controls should be at least as long as the
time to diagnosis of the corresponding case, and the age
could not differ more than 1.5 years. To avoid significant
age differences, the mean age of the controls was kept as
close as possible to the age of the case. We verified that
the age matching resulted in no significant difference
between groups with a paired t-test.

Figure 1.

Overview of methods used: (1) MRI scans of the brain were

acquired. (2) In each scan, the left and right hippocampus was seg-

mented. (3) The segmentations were postprocessed. (4) Points were

distributed over each surface, such that points on a different scans

correspond with each other, and were concatenated to create one

feature vector per scan. (5) The dimensionality of the feature

vectors was reduced using principal component analysis. (6) A Sup-

port Vector Machine classifier was used to predict dementia devel-

opment for each scan. Step (5) and (6) were performed in a cross-

validation manner (for a colored delineation in the figure, refer to

the web version of this article.) [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Hippocampus Segmentation

Hippocampi were automatically segmented using a seg-
mentation method based on multiatlas registration, a statis-
tical intensity model, and a regularizer to promote smooth
segmentations [van der Lijn et al., 2008]. These components
were combined in an energy model, which is globally opti-
mized using graph cuts. As training data, we used manually
delineated images from 20 participants from the same popu-
lation. Leave-one-out experiments on the training images
showed mean Dice similarity indices of 0.85 6 0.04 and 0.86
6 0.02 for the left and right side. The final segmentation
results of the 511 images used in this study were inspected
by a trained observer (TdH) and manually corrected in case
of large errors; two cases and 69 controls were manually
corrected.

Because the creation of the shape model requires one
single-body object, we extracted the largest single body
from the segmentation and applied a hole-fill. This ensures
that the object can be described by one single surface. Fur-
thermore, an antialiasing step was used to smooth the bi-
nary segmentation [Whitaker, 2000].

From the segmentation, the hippocampal volume was cal-
culated, which was subsequently corrected for intracranial
volume. The intracranial volume was calculated by registra-
tion of a single brain mask to the target image and calculat-
ing the volume inside the brain mask [Ikram et al., 2008].

Shape Representation

The hippocampal shapes were described by correspond-
ing points on the surfaces using the entropy-based particle
system as presented before [Cates et al., 2006, 2007]1. This
method aims at finding a uniform sampling of the shapes
while minimizing the information content of the resulting
shape model, leading to a compact model with optimal

point correspondences. By describing both these criteria as
entropies, they can be combined in a single model in a
natural way.

When describing shapes by a set of N points on their
surface, shapes can be seen as points in a 3N-dimensional
space and a collection of shapes forms a distribution in
this space. The variance in this distribution can be caused
by real shape differences or by errors in the point corre-
spondence between the shapes. By moving the points over
the surface for the individual shapes, the point correspon-
dence error can be reduced. However, when the sampling
is approximately uniform, the real shape differences will
not change. While minimizing the variance in the distribu-
tion of shapes will thus change the description of the
shape, in our case the point sampling, in such a way the
correspondence is optimal without losing the real variation
between shapes. This optimization is performed using a
gradient descent algorithm. During gradient descent opti-
mization, the points are constrained to lie on the surfaces
of original segmentations.

All hippocampus segmentations were isotropically
scaled to have equal volumes before the creation of the
shape model, to exclude any volume information from the
model. We created a shape model for both the left and the
right hippocampus separately. The number of points (N)
to represent each shape was set to 1,024. The shapes were
aligned rigidly using Procrustes analysis [Goodall, 1991] at
regular intervals of 25 iterations. To determine the number
of iterations required for convergence, one optimization
was run for 1,600 iterations, saving intermediate results
every 10 iterations. For every intermediate output, the
point displacements in the last 10 iterations were calcu-
lated. The optimization converged after 150–200 iterations.
In all our following experiments, we ran the optimization
for 200 iterations.

Classification

We trained statistical pattern classifiers to discriminate
between subjects who developed dementia and those who
remained cognitively healthy during the follow up period.

TABLE I. Characteristics of the subjects in cohort set and matched set

Cohort set Matched set

Prodromal dementia (N 5 52) Controls (N 5 459) Prodromal dementia (N 5 50) Controls (N 5 150)

Women (%) 61.5 48.6 60.0 60.0
Age (years) 79.02 (6.44 std) 72.87 (7.81 std) 78.75 (6.41 std) 78.72 (6.43 std)

[64.37–88.73] [58.96–89.83] [64.37–88.73] [64.37–89.83]
Memory complainers (%) 57.7 26.8 58.0 27.3
MMSE 27 (3 iqr) 28 (2 iqr) 27 (3 iqr) 28 (2 iqr)

[20–30] [14–30] [20–30] [21–30]
Time to diagnosis 4.0 (4.8 iqr) n/a 4.0 (4.9 iqr) n/a

[0.73–10.28] n/a [0.73–10.28] n/a

Values given as mean (standard deviation) or median (interquartile range), and range given as [min–max].

1We used the software provided by the authors. ShapeWorks: An
open-source tool for constructing compact statistical point-based
models of ensembles of similar shapes. Scientific Computing and
Imaging Institute (SCI). Can be found at http://www.sci.utah.edu/
software.html
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This resulted in an estimated class for each subject, allow-
ing us to evaluate how well we can predict dementia de-
velopment in our dataset.

For classification three different feature sets were used:
volume (normalized for intracranial volume), shape and a
combination of both (hereafter referenced to as shape1vo-
lume). Volume and shape were combined by scaling the
volume and shape feature vectors to have equal total var-
iance and then concatenating them. All feature sets were
created by concatenating the feature vectors derived from
left and right hippocampus.

The dense sampling of points on a shape leads to a high
dimensional feature space: two shapes with 1,024 points in
a 3D space results in a 6,144 dimensional feature space. To
reduce the dimensionality of the feature space a principal
component analysis (PCA) retaining 99% of the variance
was applied. After PCA, the number of dimensions was
reduced to around 175.

A Support Vector Machine (SVM) classifier was used in
all experiments. For completeness, we tested other classi-
fiers, but none outperformed the SVM. For the shape and
shape1volume features, the SVM classifier used a radial
basis kernel. For the volume features, the SVM classifier
used a linear kernel; the dimensionality was only two
(right and left hippocampal volume) and a radial basis
kernel did not improve classification performance.

The slack parameter (controlling the trade-off between a
large margin and small error on the training data) and the
scale parameter of the radial basis function were estimated
automatically by a grid search using leave-group-out
cross-validation on the training data. Each fold of the
cross-validation contained one case and its corresponding
controls, thus preserving the age- and gender-matching.
An SVM results in a signed distance to the decision
boundary for each subject. To convert this distance to the
posterior probability that a subject belongs to a class, we
use the inverse logit function

PðdÞ5 1

11expð2dÞ ;

with d the distance to the decision boundary. We used
these posterior probabilities both to compute receiver
operating characteristic (ROC) curves and for regression
analysis. All classification tests were performed using the
PRTools [Duin et al., 2005] Matlab toolbox and libsvm
[Chang and Lin, 2001].

Evaluation

All classification tests were performed in a leave-group-
out cross-validation loop. We trained (including the
dimension reduction by PCA and parameter estimation of
the SVM) on the matched dataset, except for one case and
its matching controls, and estimated classification rate on
the left out subjects. This was repeated for every case in
the set. This keeps the age-and gender-matching intact,

but still allows for as many cross-validation folds as
possible.

The results were stratified for time to diagnosis; using only
results of cases (and the corresponding controls) who devel-
oped dementia within a certain time interval. The following
time intervals were used: less than 3 years (N 5 72), 3–6 years
(N 5 60), and more than 6 years (N 5 68) until diagnosis.

To evaluate the predictive value of hippocampal volume
and shape in a population setting, we added the remain-
ing 311 subjects who were not in the matched set. The
class label for these subjects was estimated using a classi-
fier trained on the entire matched set. These results com-
bined with the cross-validation results on the matched set,
constituted a predicted class label and posterior probabil-
ity for all 511 subjects in the cohort. Even though the vast
majority of the additional 311 subjects were controls, we
add these subjects so we can evaluate a cross section of a
normal, elderly population.

For all classification experiments, ROC curves were com-
puted. We used the area under the ROC curve (AUC) as a
measure of predictive value. Furthermore, we calculated
the sensitivity, specificity, and risk ratio for specific points
on the ROC curve. These points were chosen so that they
had either a sensitivity or specificity of 0.8.

In practice, any imaging biomarker for dementia will
be used in combination with other variables. To investi-
gate the predictive value of the posterior probabilities in
such a situation, we used SAS 9.2 to fit a logistic regres-
sion model with the posterior probabilities of the cohort
set as an independent variable and the future develop-
ment of dementia as the dependent variable. We consid-
ered three models: the classical model with only volume
posterior as an independent variable, the classical model
extended with shape information, and finally, the new
model using the shape1volume posterior. All models
were corrected for age and gender by including these as
covariates in the model. These regressions provide insight
in the relation between posterior probabilities and actual
development of dementia. In addition, the significance
level can be computed for every term in every model,
indicating the value of a posterior as an imaging bio-
marker. Finally, we investigated the overall fit of the
model by comparing the log-likelihood of the models; a
higher log-likelihood means a better model fit. A likeli-
hood-ratio test was used to estimate the significance of
model fit improvements. The likelihood-ratio test is based
on the fact that the log-likelihood ratio of two comparable
models follows a v2

1 distribution.
Our data were taken from a population-based study and

includes subjects who have varying cognitive abilities;
there were no demented subjects present at inclusion, but
some subjects might have memory complaints or lesser
cognitive impairment. To investigate the predictive value
of hippocampal shape and volume before any symptoms
arise, we stratified the data into groups that exclude differ-
ent forms of decreased cognitive function. We created four
subgroups by excluding groups with various levels of
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cognitive impairment: (1) subjective memory complaints, (2)
a memory score lower than the average memory score
minus one standard deviation, (3) a memory score lower
than the average memory score minus one and a half stand-
ard deviations, and (4) considered having MCI (see Fig. 4).
We defined subjects to belong to the MCI group if they have
both a memory complaint and a memory score lower than
the average minus one and a half standard deviation.

The experiments described above do not make a distinc-
tion between dementia subtypes. Our database does not
have a complete subtype differential diagnosis, but we
know which subjects were clinically diagnosed with AD.
To see if predictive value is different for the more homog-
enous group of patients with AD, we repeated the classi-
fier training and testing for a subset of the data, including
only the subjects with AD.

To investigate left–right hippocampal asymmetry, we
performed the classification using only one of the two hip-
pocampi. We did this for the left and the right hippocam-
pus and with each feature set (volume, shape and the
combination shape1volume).

Finally, we visualized the areas (see Fig. 7) that contrib-
ute most to the classifier by calculating the discriminative
direction of the classifier. We used the method introduced
by Golland [2002] to locally approximate the discrimina-
tive direction at a representative point. As a representative
point, we selected the point where the line between the
class means intersects the decision boundary.

We standardized the elements of the discriminative
direction by multiplying the coefficients with the standard
deviation of the feature. These standardized coefficients
indicate how much each feature contributes to the final
classification results. The strength and sign of the contribu-
tion for each surface-point on the classifier is color-coded
(see Fig. 7). The color contains the contribution of the
point when moving in the direction of the surface normal.

RESULTS

The ROC curve for both the matched set and the cohort
set using volume, shape, and the shape1volume features
is shown in Figure 2. Shape performs best performance
when the specificity is high, whereas volume performs
best when the sensitivity is around 80%. Overall, the com-
bination shape1volume outperforms both volume and
shape individually. On the matched set, the AUC for vol-
ume, shape, and shape1volume posteriors was, respec-
tively, 0.734, 0.715, and 0.769. On the cohort set, the AUC
was, respectively, 0.724, 0.743, and 0.766. Figure 3 shows
the AUC for the matched set stratified by time to diagno-
sis. It can be seen that the predictive value of the volume
features is very good for a short time to diagnosis,
whereas more than 3 years before diagnosis the predictive
value of volume decreases. For shape and especially the
shape1volume features, the predictive value does not
decrease when the time to diagnosis increases.

The sensitivity and specificity for the specified points on
the ROC curve are presented in Table II. In most cases,
volume has a better specificity, sensitivity, and risk ratio
than shape at the two selected points on the ROC curve.
Combining volume and shape improves the sensitivity
when the specificity is fixed at 80%, but only has values in
between shape and volume when fixing the sensitivity at
80%. Figure 2 however shows that although at 80% sensi-
tivity volume shows a high specificity, overall shape1vo-
lume will still outperform volume only.

For the logistic regression, we present three models in
Table III. In the first model, we show the results of a
regression of volume, corrected for age and gender. In this
model, volume is highly significant (P < 0.0001). In the
second model, shape is added as an extra term to the
regression. In the new model, volume posteriors (P 5

0.0012) and shape posteriors (P 5 0.0071) both are

Figure 2.

The receiver operating characteristic (ROC) curve. Left: the matched set. right: the cohort set.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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significant. In the last model, we show a model with the
combined shape1volume feature posterior, corrected for
age and gender. The shape1volume posterior is highly
significant (P < 0.0001).

For the model with the volume, the log likelihood was
2139.1; for the model with volume and shape, it was
2135.4; and for the model with shape1volume features, it
was 2132.0. A likelihood-ratio test revealed that the model
improvement when adding shape to the first model is sig-
nificant (P 5 0.0063). When replacing the separate shape
and volume posteriors with the shape1volume posterior,
the model again improves significantly (P 5 0.0098).

In Figure 4, it can be seen that excluding the subjects con-
sidered to have MCI or with a memory score of lower than
the mean minus 1.5 standard deviations has little effect on
the results; for shape1volume features AUC decreases by

0.007 and 0.006, respectively. When excluding subjects with
subjective memory complaints or a memory score lower
than the mean minus 1.0 standard deviation, the AUC
decreases with 0.057 and 0.072, respectively, for shape1vo-
lume features. However, even with a loss of 0.072, there is
still significant predictive value with an AUC of 0.69.

In Figure 5, we show a figure similar to Figure 3, but
using only the cases that were diagnosed with dementia of
Alzheimer’s type. Cases with other types of dementia, and
their controls, were excluded from the dataset. This
resulted in a dataset with 41 cases in the cohort set and 39
cases in the matched set. On that matched set, the AUC
was 0.690, 0.662, and 0.722 for volume, shape, and shape-
volume, respectively. This is lower in than in the original
dataset.

Figure 6 shows the classification results when only using
the left or right hippocampus, as well as the combination
of both.

Finally, the discriminative direction of the classifier is pre-
sented in Figure 7. For the left hippocampus, the most influ-
ential points appear to be in the CA1 and subiculum
subfields. Also, the tip of the hippocampal tail contains
points with very high coefficients. For the right hippocam-
pus, the pattern is different; there are influential points
located on the inferior side of the subiculum and CA2 sub-
field. Additionally, there is a group of points on the head of
the right hippocampus, which appears to be on the interface
of the CA1 and subiculum. Lastly, the right hippocampus
also shows very high coefficients at the tip of the tail.

DISCUSSION

Hippocampal shape extracted from MRI scans is predic-
tive for dementia before clinical symptoms arise, inde-
pendent of age, gender, and hippocampal volume: we
clearly show that shape contains predictive information
with an AUC for shape of 0.715 on the matched set and
0.743 on the cohort set.

Stratification of the results on the time to dementia diag-
nosis shows that the predictive value of hippocampal vol-
ume is largest for the subjects who developed dementia
soon after scan time, while with an increasing time
between scan and diagnosis, the predictive value

Figure 3.

The area under the ROC curve. The results on the matched set

stratified by time to diagnosis in years, and the results on the

complete matched and cohort sets. Time until dementia diagno-

sis is a continuous variable, and the interval is defined in interval

notation. In interval notation, a bracket means inclusive and a

parentheses means exclusive. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

TABLE II. Senstivity, specificity, and risk ratio for fixed locations on the ROC curve

Feature set

Cohort set Matched set

Volume Shape
Volume 1

shape Volume Shape
Volume 1

shape

Sensitivity 53.8 80.0 61.5 80.0 67.3 80.0 64.0 80.0 62.0 80.0 68.0 80.0
Specificity 80.0 61.4 80.0 45.8 80.0 56.0 80.0 62.7 80.0 38.7 80.0 53.3
Risk ratio 3.92 5.60 5.05 3.17 6.29 4.60 4.05 4.33 3.72 2.06 4.52 3.27

The points on the ROC used were those that had either a sensitivity or specificity of 0.8.
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decreases. In contrast, for shape, there is no clear relation
between the predictive value and time to diagnosis; this
might indicate that shape features are less dependent on
the time to diagnosis. Therefore, shape seems to provide
valuable information for early detection. This is in line
with the findings on histology [West et al., 2004]; the fact
that the early neuronal loss caused by AD is localized in
the CA1 and subiculum subfields of the hippocampus,
indicates that hippocampal shape might be more suited to
detect dementia in a prodromal phase than hippocampal
volume. In Figure 7, it appears indeed that the CA1 and
subiculum subfields play a role in the early prediction of
dementia.

It is not only important to identify subjects who will de-
velop dementia early, but also before any symptoms arise;
subjects might have memory complaints or MCIs years
before dementia diagnosis, and this damage is irreversible.
Excluding subjects with MCI or a very low memory score
(more than 1.5 standard deviations lower than the mean)

does not change the results considerably, indicating that
hippocampal shape is also predictive for the development
of dementia in subjects who did not yet have MCI. When
we exclude subjects with subjective memory complaints or
with a memory score lower than the mean minus a stand-
ard deviation, the predictive value is not as high as in the
complete dataset, but we can still predict dementia with
an AUC of over 0.67. This shows that hippocampal vol-
ume and shape are predictive for dementia development
in cognitively normal subjects.

Hippocampal shape provides additional predictive
value over hippocampal volume: Figure 2 shows that clas-
sification based on shape has similar predictive value as
volume and that combining shape and volume increases
predictive value. When looking at the AUC’s this is even
more clear: shape has an AUC of 0.715 on the matched set
and 0.743 on the cohort set, and volume has 0.734 on the
matched set and 0.724 on the cohort set. This suggests that
on the matched set volume has more predictive value than

TABLE III. Logistic regression models fitted on the cohort set

Parameter Estimate
Wald 95% confidence

limits P value

Model 1: volume posterior (Log Likelihood: 2139.0860)
Volume 0.0575 (0.034220.0809) <0.0001

Model 2: volume and shape posterior (Log Likelihood: 2135.3668)
Volume 0.0423 (0.016720.0678) 0.0012
Shape 0.0283 (0.007720.0489) 0.0071

Model 3: shape 1 volume posterior (Log Likelihood: 2132.0318)
Shape 1 volume 0.0478 (0.032220.0633) <0.0001

All models are corrected for age and gender; in all cases, age and gender were significant (P < 0.05).

Figure 4.

Left: the AUC results on subsets of the cohort. Right: informa-

tion about subsets used. The subsets were created by excluding:

(1) subjects with memory complaints, (2) subjects with a Smem

(memory score) lower than the population mean minus a stand-

ard deviation, (3) subjects with a Smem 1.5 standard deviations

lower than the population mean, (4) subjects considered MCI

(memory complaints and Smem 1.5 standard deviations lower

than the population mean), and finally (5) no one, the entire

cohort without exclusions. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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shape, while on the cohort set, shape has more predictive
value than volume. However, when shape and volume
features are combined in a single classifier, in both data-
sets the AUC increases. These observations are reinforced
when taking into account the ROC curves and the sensitiv-
ity, specificity, and risk ratio for predefined points on the
ROC curve.

If hippocampal volume and shape would be used in

the prediction of development of dementia, it would be

combined with other predictors (e.g., genetic biomarkers)

which might increase the predictive value of a model.

We created simple models, corrected for age and gender,

to estimate the added value of using both volume and

shape over just volume (see Table III). In the first model,

the volume posterior probability was a highly significant

term. When we added the shape posterior probability to

this model, the model improved significantly and both

volume and shape were significant. In the third model,

the separate volume and shape posterior probabilities

where substituted by the shape1volume posterior proba-

bility, which resulted in a model with a better global fit.
When considering only cases who develop AD instead

of cases who develop any type of dementia, the trends in
the results appear to remain the same, but the absolute
performance seems to be worse. This may be explained by
the smaller number of shapes available for training in

these experiments. For a reliable subgroup analysis, more
data will be required.

The regression analysis indicates that shape is more pre-
dictive than volume, just as the classification results show
in the cohort set. However, in all cases the shape1volume
features resulted in a better predictive value than volume
alone; in the regression using both volume and shape pos-
terior probabilities even increased the model fit
significantly.

Relation to Literature

In this article, we predicted dementia development with
pattern recognition methods using hippocampal shape and
volume, in a normal, elderly population. Dementia classifi-
cation based on hippocampal shape has been investigated
in various diagnostic studies before. Li et al. [2007] have
performed classification to distinguish AD subjects from
controls with up to 94.9% accuracy. Gerardin et al. [2009]
reported accuracies of up to 83%, sensitivity 83%, and
specificity 84% for MCI versus control classification. Fer-
rarini et al. [2009] reported accuracies of up to 90%, sensi-
tivity 88%, specificity 92% for AD versus control
classification and accuracies of up to 80%, sensitivity 80%,
specificity 80% on MCI-converter (MCI-c) versus MCI-non
converter (MCI-nc). Leung et al. [2010b] reported an AUC
of up 0.67 on MCI-c versus MCI-nc subjects.

These studies use similar methods to our study, but
given their case–control design were diagnostic of nature.
Therefore, our work cannot be compared to the mentioned
studies. Diagnostic accuracy in extreme groups (dementia
or MCI patients vs. healthy controls) is very different from

Figure 6.

The area under the ROC curve for left and right hippocampus

separate and combined. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 5.

The area under the ROC curve. The dataset only contained

cases that have AD, other types of dementia were excluded.

The results on the matched set stratified by time to diagnosis in

years, and the results on the complete matched and cohort

sets. Time until dementia diagnosis is a continuous variable and

the interval is defined in interval notation. In interval notation, a

bracket means inclusive and a parentheses means exclusive.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

r Hippocampal Shape Is Predictive for Dementia r

r 2367 r



prediction of disease development in an asymptomatic
population, as differences between subjects in the latter
group are much more subtle. In our study, all persons
were nondemented at scan time and developed dementia
only later. Therefore, our results support the use of shape
as a predictive marker.

The most notable other imaging methods used for
extracting features for dementia classification are based on
voxel-based morphometry (VBM) [e.g., Fan et al., 2007;
Kl€oppel et al., 2008] and cortical thickness [e.g., Desikan
et al., 2009; Querbes et al., 2009]. Cuingnet et al. [2010]
compared these methods of dementia classification, using
a large dataset from the AD Neuroimaging Initiative data-
base. They compared three groups of methods: VBM, cort-
ical thickness measurements and hippocampus volume/
shape based methods. They found that for AD versus con-
trol classification the whole brain methods outperformed
the hippocampus-based methods. However, for MCI-c ver-
sus control classification the hippocampal methods were
competitive with the whole-brain methods. This result
confirms that the hippocampus is one of the regions in the
brain where atrophy is noticeable first in subjects with
dementia.

We are not aware of any work using pattern recognition
techniques to evaluate predictive value of hippocampal
shape on similar data used in our study. There are studies
which use statistical methods (e.g., regression or analysis
of variance) to evaluate predictive value. Csernansky et al.
[2005] and Apostolova et al. [2010] studied hippocampal
shape using comparable subject groups. Their studies
were more descriptive of nature making it impossible to
quantitatively compare their results to our study. We can,
however, qualitatively compare the discriminative direc-
tion obtained in our study to the maps obtained by

Csernansky et al. [2005, Fig. 3] and Apostolova et al. [2010,
Fig. 1]. For the left hippocampus, the discriminative direc-
tion maps presented in Figure 7 appears to match the atro-
phy and significance maps presented by Csernansky and
Apostolova respectively: most influential points are found
in the CA1 and Subiculum subfields. Csernansky also pro-
vides the direction of change, which corresponds with our
results. For the right hippocampus, the similarity between
the studies is lower: there are areas which contribute to
our classification in the CA2 subfield that Csernansky or
Apostolova do not find. This may be partly due to the fact
that the discriminative direction in our work is based on
the classifier that uses all points jointly, rather than the
group differences per point as used by Csernasky and
Apostolova. Also, Figure 6 shows asymmetry in the classi-
fication performance of the left and right hippocampus,
indicating that the right hippocampus might not contrib-
ute much discriminative information to the classifier.

Many studies have shown asymmetry in hippocampal
volume [Karas et al., 2004; Morra et al., 2009b; Scher et al.,
2011], atrophy rates [Morra et al., 2009a; Zhou et al., 2009],
or report differences in the diagnostic value of the left and
right hippocampus [Csernansky et al., 2005; Tepest et al.,
2008]. However, the asymmetry and the direction of asym-
metry are not consistent across studies. It has been sug-
gested that the asymmetry depends on the stage of
dementia; the left hippocampus is affected first by dementia
related atrophy and the right hippocampus follows with a
time lag [Morra et al., 2009b; Thompson et al., 2003, 2004;
Zhou et al., 2009]. In our data, the left hippocampus was
found to be more predictive for dementia, which fits the
suggested pattern for asymmetry; in our subjects, the dis-
ease is in a very early stage, and it is possible that the left
hippocampus is already affected, while the right

Figure 7.

The discriminative direction of the classifier. The colors represent coefficients of the classifier

localized on the hippocampal surface. The posterior probability of developing dementia increases

if the points move in the direction indicated by the colors: blue points further inward and red/

yellow points further outward indicate a higher chance of developing dementia. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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hippocampus is still unaffected. The combination of the left
and the right hippocampal features in one classifier gener-
ally improves the classification result, indicating that asym-
metry might be relevant for the prediction of dementia.

The quality of the segmentation method obviously has
an important influence on the accuracy of the predictions.
The automatic method used in this work has been shown
to produce accurate segmentations; in a leave-one-out
experiment on a manually labeled subset of the dataset
used in our experiments a mean SI of 0.86 was obtained
[van der Lijn et al., 2008]. The technique did occasionally
label parts of the parahippocampal gyrus or the entorhinal
cortex as foreground. However, these errors were man-
ually corrected so we expect their influence on the classifi-
cation results to be negligible. Furthermore, the leave one
out experiments showed that as an atlas based method,
the segmentation method has a tendency to underestimate
the volume of large hippocampi and to overestimate the
volume of small hippocampi. This bias toward the popula-
tion mean is also likely to affect the shape of the segmen-
tations, and could therefore negatively influence the
classification accuracy. This effect may be reduced by
selecting a more representative subset of atlases from a
larger library. Segmentation methods based on this strat-
egy tend to yield a higher overall accuracy than using all
atlases [Aljabar et al., 2009; Barnes et al., 2008; Collins and
Pruessner, 2010; Leung et al., 2010a]. Unfortunately, we
could not experimentally verify this, since we did not
have access to a larger template library.

In our work, we represented hippocampal shape by
points on the surfaces of the hippocampus and optimized
point correspondence using an entropy-based particle
method [Cates et al., 2007]. Ferrarini et al. [2009] and
Leung et al. [2010b] also use point clouds to represent hip-
pocampal shape but optimize correspondence by using,
respectively, adaptive mesh optimization [Ferrarini et al.,
2007] and minimal description length [Davies et al., 2002].

Besides other correspondence optimization methods,
also different shape descriptions have been used.
Brechb€uhler et al. [1995] described shapes using spherical
harmonics, which was the representation used in Gerardin
et al. [2009] to describe hippocampi. Both Morra et al.
[2009a] and Qiu et al. [2009] use a map-based representa-
tion for hippocampal shape, creating a deformation map
to a template surface for each subject. Morra et al. [2009a]
use a medial axis method for creating correspondence,
where Qiu et al. [2009] uses a large diffeomorphic defor-
mation metric matching method (LDDMM). In Qiu et al.
[2008], shape differences derived by LDDMM are
described directly by the deformation field, via the Jaco-
bian of the transformation.

We decided to use the entropy-based particles method for
shape correspondence modeling in our study, as it allows
explicit optimization of correspondence. Moreover, an
implementation of this method is publicly available and has
been successfully used to study the shape of the hippocam-
pus in patients with schizophrenia [Cates et al., 2007].

CONCLUSIONS

In this article, we have shown that hippocampal shape
extracted from MRI scans is predictive for dementia before
clinical symptoms arise, independent of age and gender.
Furthermore, hippocampal shape provides additional pre-
dictive value over hippocampal volume.

Shape seems to have more predictive value for subjects
who develop dementia more than 6 years after scan time or
exhibit less symptoms, while volume is more predictive for
subjects who develop dementia shortly after scan time or
exhibit more symptoms. Therefore, shape can be of great
value for prodromal prediction of dementia onset.

Future treatment trials in AD will include persons with
the most early and maybe even presymptomatic stage of
the disease. It will therefore be increasingly important to
detect persons in these stages. We show in this article that
hippocampal shape may be used to partially identify these
stages. Combination of hippocampal shape with other
early biomarkers such as PET imaging and cerebrospinal
fluid markers will be ultimately necessary for most opti-
mal prodromal diagnosis.
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