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Abstract: This study introduces a new approach for assessing the effects of pediatric epilepsy on a lan-
guage connectome. Two novel data-driven network construction approaches are presented. These
methods rely on connecting different brain regions using either extent or intensity of language related
activations as identified by independent component analysis of fMRI. An auditory word definition
decision task paradigm was used to activate the language network for 29 patients and 30 controls.
Evaluations illustrated that pediatric epilepsy is associated with a network efficiency reduction.
Patients showed a propensity to inefficiently use the whole brain network to perform the language
task; whereas, controls seemed to efficiently use smaller segregated network components to achieve
the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was per-
formed. The analysis revealed substantial global network feature differences between the patients and
controls for the extent of activation network. It also showed that for both subject groups the language
network exhibited small-world characteristics; however, the patient’s extent of activation network
showed a tendency toward randomness. It was also shown that the intensity of activation network dis-
played ipsilateral hub reorganization on the local level. We finally showed that a clustering scheme
was able to fairly separate the subjects into their respective patient or control groups. The clustering
was initiated using local and global nodal measurements. Compared to the intensity of activation net-
work, the extent of activation network clustering demonstrated better precision. This ascertained that
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the network differences presented by the networks were associated with pediatric epilepsy. Hum Brain
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INTRODUCTION

Recent studies have focused on exploring the morphol-
ogy as well the functional activities of the brain as intricate
and often subtle networks of interconnected elements
[Essen et al., 2013; Fornito et al., 2013; Hosseini and Kesler,
2013; Sporns, 2013, 2011; Varoquaux and Craddock, 2013].
Such elements might be structural or functional depending
on the study’s objectives. Graph theory [Chartrand, 1985]
has played an essential role in offering a formal frame-
work to study such networks. For example, language acti-
vation patterns, as captured by functional MRI (fMRI),
have been studied extensively in healthy subjects [Gail-
lard, 2004; Wu et al., 2013]. Yet, new insights are gained
when looking at these activation patterns from a graph
perspective.

Additionally, other studies have highlighted the possible
effects of different neurological disorders on different brain
networks. For example, epilepsy [Killory et al., 2011; Liao
et al.,, 2010a, 2010b; Wang et al., 2012], Parkinson’s disease
[Wu et al., 2009], aphasia [Sonty et al., 2007], attention deficit
hyperactivity disorder [Fair, 2012; Yu-Feng et al., 2007], Alz-
heimer’s disease [Greicius et al., 2004], and depression
[Zeng et al., 2013, 2012]. Epilepsy is a “network disease”
[Bonilha et al., 2012], and its effects have consequently been
investigated by functional connectivity networks [Vlooswijk
et al., 2010; Waites et al., 2006; Zhang et al., 2009], morpho-
logical or structural networks [Bernhardt et al.,, 2011], or a
combination of them [Zhang et al., 2011].

Most functional networks studies rely on resting state
fMRI [Bettus et al., 2010; Chen et al., 2011; Doucet et al.,
2012; Hosseini and Kesler, 2013]. Functional connectivity
within the language network is reduced in adults with epi-
lepsy and is associated with worse language performance
[Besseling et al., 2013; Pravata et al., 2011; Vlooswijk et al.,
2010; Waites et al., 2006]. Less is known about functional
connectivity within language areas in pediatric epilepsy
populations. Language networks are commonly disrupted
in patients with epilepsy; this disruption is present early
in the course of the disease; furthermore, most young
adult focal epilepsy has onset in late childhood and ado-
lescence [Berl et al., 2014; Gaillard et al., 2007]. Functional
connectivity during language tasks has not been investi-
gated in children [Parkinson 2002; Steinberg et al., 2013],
nor has graph theory been applied to these functional
analyses. Therefore, the focus in this study is directed at
language network connectivity in older children and ado-
lescents, during a language task, from a graph theoretical

perspective. The goal was threefold: (1) constructing a
data-driven functional brain network by connecting differ-
ent spatially independent units generated by independent
component analysis (ICA) [Comon, 1994]; (2) investigating
the functional network characteristics using graph theory
by identifying and extracting relevant features for the lan-
guage task at hand; and (3) studying the network topology
and changes induced by pediatric epilepsy on the global
and local levels.

The fMRI ICs were used to construct two distinct net-
works for each subject. The networks were constructed,
capturing the extent and intensity of language related acti-
vation separately. These large-scale whole brain networks
were used to study the effects of epilepsy on the network
reorganization and topology. Afterward, certain network
features were used to blindly cluster the subjects into two
groups representing the patients and controls. The unsu-
pervised clustering was to ascertain that the disease
induced, or was associated with, the changes observed in
the network features.

METHODS
Participants and Data Collection

The data used in this study was collected by a multisite
consortium and repository for pediatric epilepsy. This reposi-
tory is hosted at our institution (mri-cate.fiu.edu) to study the
effects of pediatric epilepsy on the brain structure and func-
tion [Lahlou et al., 2006]. The datasets selected for this study
came from three leading pediatric hospitals: British Columbia
Children’s Hospital, Children’s Healthcare of Atlanta, and
Children’s National Medical Center. All three locations used
a 3-Tesla Siemens Trio MRI scanner. Institutional review
board requirements were followed where the parents gave
written informed consent and children gave assent. The data-
sets were deidentified to insure confidentiality.

All subjects underwent fMRI data acquisition while per-
forming an Auditory Descriptive Decision Task (ADDT)
devised to stimulate the temporal and the inferior frontal
cortex as described in [Berl et al., 2012; Gaillard et al.,
2007]. The subjects were shown an object and then were
subjected to an auditory stimulus describing the object. If
the description matched the object the subjects were
instructed to press the “True” button, otherwise they were
instructed to press the “False” button. The description was
repeated every 3-sec period where a “True” pair appeared
pseudorandomly with a 70% chance. At rest the subjects
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TABLE I. Summary of the demographics for patients and controls

Language
Age (years) Handedness laterality
Min Max Average STD Females Right Left Unknown Left Right
Patients (29) 9.5 18.5 13.5 2.45 14 21 6 2 23 6
Controls (30) 10 20 13.5 2.98 14 18 0 12 30 0

listened to description in reverse speech and were coached
to press a button on beeps generated following the audio.
Furthermore, the difficulty of the paradigm was adjusted
appropriately to match the subject’s age group.

A total of 29 pediatric epilepsy patients and 30 age and
sex matched control subjects were recruited. The patients
were between 9.5 and 18.5 years with an average age of
13.5*+2.45 years, 14 females, 21 right-handed, 17 with a
remote symptomatic seizure etiology, 5.5 + 4.70 years aver-
age age of first seizure, 9 + 4.12 years average age at habit-
ual seizure onset, 24 left hemispheric focus, four right
hemispheric focus, one bilateral focus; all patients went
through presurgical evaluation, and 13 patients underwent
epilepsy surgery. None of the patients had any seizure for
24 h prior to the fMRI study. The controls were between
10 and 20 years of age with an average of 13.5*+2.98
years, 14 females, 18 right-handed, and 12 with unknown
handedness. All controls were native English speakers free
of any current or past neurological or psychiatric disease.
Furthermore, there were six patients with right language
laterality whereas all controls had left language laterality.
Table I summarizes the demographics.

To ascertain that the chosen demographics do not have
an effect on the study, statistical tests were performed on
the age, gender, and language laterality. There was no sig-
nificant age different between the subject groups with P =
0.614. Similarly, no significant gender difference was
found between the subject groups as tested with Fisher’s
exact test (two-sided P = 1, one-sided P = 0.554). There
was slightly significant language laterality difference
between the subject groups using Fisher’s exact text (two-
sided P = 0.011, one-sided P = 0.011).

The language laterality index was calculated by combin-
ing a bootstrap procedure with a histogram analysis
[Wang et al., 2013a; Wilke and Schmithorst, 2006]. The
masked areas were thresholded, and then data was
obtained for the left and right sides. The data was con-
verted into a vector whose elements were used in a boot-
strapped resampling method to compute the lateralization
index as given in Eq. (1):

Z Activationy e — Z Activationggnt

LI = . . . .
Z Activationy e + Z Activationggns

)

All the possible LI values were plotted in a histogram,
from which the mean of the 50% central values was used

as the selected LI value. The threshold was obtained by
the mean intensity of the voxels in the image. The toolbox
used for these calculations is described in [Wilke and
Lidzba, 2007].

In addition, a high resolution isotropic structural T1
MRI scan was acquired for each subject. These T1 scans
aid in registering each subject’s fMRI space to a common
stereotaxic space, which is defined by a brain template.

fMRI Preprocessing

Each subject’s fMRI dataset was preprocessed using the
FMRIB Software Library [Jenkinson et al, 2012; Smith
et al., 2004] as follows: temporally high pass filtered with
a cutoff frequency of 0.01 Hz to remove the MRI scanner’s
baseline wandering effect, head motion corrected using
MCFLIRT [Jenkinson et al., 2002], slice time corrected,
deskulled to remove nonbrain tissues using brain extrac-
tion tool (BET) [Smith, 2002], and spatially smoothed with
a 5 mm full width at half maximum to increase the signal
to noise ratio. Datasets were inspected to ascertain that
head motion did not exceed 1 mm in any of the major
axes directions. Afterward, each of the preprocessed data-
sets was passed to the probabilistic IC analysis (PICA)
algorithm to get its spatially independent latent sources as
implemented in MELODIC [Beckmann, 2012; Beckmann
and Smith, 2004].

Coregistering the AAL90 to the fMRI Space

The Automated Anatomical Labeling (AAL90) atlas
[Tzourio-Mazoyer et al., 2002], which includes 90 cortical
and subcortical regions in the MNI152 space, was registered
to each subject’s fMRI space; afterward, it was superim-
posed over each of the subject’s spatially ICs. For each sub-
ject the registration was as follows: deskulling of the fMRI
dataset, deskulling of its corresponding T1 both using BET,
registering the deskulled fMRI to the deskulled T1 using an
affine transformation (12 degrees of freedom), registering
the deskulled T1 to the MINI152 brain also using an affine
transformation. The two aforementioned registration steps
were concatenated into a single transformation matrix. This
single matrix was then inverted and applied to register the
AAL90 atlas to the subject’s fMRI space. Each registration
step was performed using the FMRIB's Linear Image Regis-
tration Tool (FLIRT) [Jenkinson et al., 2002].
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Figure I.

The thresholding relationship between the absolute value of Pearson’s correlation coefficient and
its corresponding graph density applied to a (a) control’s and (b) patient’s adjacency matrix. The
figure clearly shows that higher correlation thresholds lead to a less dense graph.

Functional Network Construction

Networks or graphs consist of a group of nodes con-
nected by edges. The goal in this implementation step was
to determine a functional brain network, which is essen-
tially defining the nodes and connecting them by valid
edges. The node selection process has an impact on the
nature of the resulting networks; however, when compar-
ing groups of subjects using the same selection process the
effect is counteracted [Zalesky et al., 2010]. Consequently,
the nodes were defined as the different 90 regions of the
AAL90 atlas. These nodes will be comparable across sub-
jects. In this study, two novel methods to connect these
nodes based on the extent and the intensity of activation
are proposed.

Extent of activation network

After coregistering the AAL90 atlas to the subject’s fMRI
space, the atlas is superimposed over each spatial IC.
Hence, each of the 90 atlas regions will have several
accompanying ICs. For each of these regions we count the
number of activated voxels at each IC. The temporal pro-
file of the IC with the highest activated voxel count is
associated with the particular atlas region. Eventually,
every region in the atlas will be associated with a single
temporal signal. A 90 X 90 correlation matrix is thus con-
structed using Pearson’s correlation between the temporal
signals for each subject. The resulting matrix is a graph
adjacency matrix representing the functional brain net-
work of the subject at hand while capturing its extent of
activation.

Intensity of activation network

Similarly, an adjacency matrix capturing the intensity of
activation can be constructed by repeating the same steps as
in section Extent of Activation Network, but instead of
counting the number of activated voxel, the average absolute

z values of the activated voxels is computed within each
region at each IC. The resulting graph adjacency matrix rep-
resents the functional brain network of the subject at hand
while capturing its intensity of activation.

Thresholding the Adjacency Matrix

All graphs constructed using either of the connectivity
methods, extent or intensity, are undirected weighted
graphs. In this study, the focus was placed on connectivity
whether two nodes were connected or not; therefore, the
absolute value of the adjacency matrix was thresholded to
an unweighted form. In this section, a thresholding
scheme based on graph density was used to facilitate the
selection of an objective threshold comparable across all
subjects. A graph density can be defined as:

_ Number of edges
Number of all possible edges

)

For a fully connected graph, where all nodes are con-
nected directly to all other nodes, D=1. On the other
extreme, a disconnected graph will yield D = 0. Density is
thus a measure of a network’s wiring cost. Therefore,
thresholding using this measure would facilitate compari-
son across networks. For example, two brain networks
with the same density will have the same number of
nodes and the same number of edges (same wiring cost).
However, the edges are shifted reflecting the state of the
subject’s network.

Figure 1 shows the relation between thresholding using
Pearson’s correlation coefficient and the graph density.
Clearly, higher correlation threshold values lead to lower
density graphs. Thus, a bidisectional algorithm is used to
determine the corresponding correlation threshold value
given a selected density.

To justify using the graph density as opposed to the
correlation values for thresholding, raw histogram
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Figure 2.
Histograms of the combined correlation values for the patients and controls groups. Controls:
solid blue, Patients: dashed red. (a) Extent of activation network, (b) intensity of activation net-
work, and (c) traditional network. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

correlation values of the patients and the controls are
used to gauge both extent and intensity of the activation
distributions in terms of Pearson’s correlation versus
number of edges. Figure 2 shows these histograms for the
ICA-based methods in contrast to a traditional network
construction method, which uses the blood-oxygen-level
dependent (BOLD) average within each region of the
atlas as the representative temporal profile.

Figure 2 illustrates a slight distinction between the
patients and controls for the traditional method, which
agrees with [Fornito et al., 2013] in schizophrenia; whereas,
our ICA-based methods produced correlation values that
are comparable between the subject groups. This makes the
density threshold selection more neutral toward the correla-
tion value. In other words, selecting a specific density
threshold for all subjects will produce correlation thresholds
that are similar between the groups; whereas, the tradi-
tional method produces different correlation values for the
same density value in each subject group. Using this
approach, the ambiguity as to which threshold is to be
selected (Pearson’s correlation or density) is resolved.

A density threshold that guarantees a connected graph
with the cheapest wiring cost was selected for our study.
A connected graph is a network where every node will
have a path to any other node in the network, directly or
indirectly. To measure a graph connectedness, we use the
normalized size of the largest connected component. A
connected component in a graph is a group of nodes that
can reach each other within the component; that is, in a
connected graph all nodes can reach each other and the
largest connected component contains all nodes, hence its
normalized size is 1. Similarly, if there are several con-
nected components within the network, which do not
have any connecting links, then the size of the largest con-
nected component will be less than 1.

For each network construction method, the normalized
size of the largest connected components is computed for
every subject across a density range (from 10 to 70%)

assumed on the basis of the results in Figure 3. The figure
shows that density thresholds of 65 and 55% will guaran-
tee a connected graph (normalized size of the largest con-
nected component=1) for all subjects in the extent of
activation network and intensity of activation network,
respectively.

Networks with a density higher than 50% are not bio-
logical and tend to be random [Hosseini et al. 2012; Kaiser
and Hilgetag, 2006]. Figure 3 shows that only two patients
and one control subject exceed the 50% density threshold;
therefore, these subjects are considered outliers and are
excluded from further analyses. Consequently, all net-
works, regardless of the method, are thresholded using a
50% density threshold and the resulting binary graphs are
used for further studies. Moreover, this threshold is in the
range suggested in [Reus and van den Heuvel, 2013] for
structural networks. Finally, the areas under the curves in
Figure 3 are determined to investigate any differences
associated with epilepsy.

Graph Measures

Graph theoretical analysis was performed on both func-
tional network methods. Graph theory provides many
global and local quantitative measures to analyze the brain
network dynamics. The following succinctly summarizes
the measures used in this study. Most of these measures
were implemented using functions from the Python Net-
workX library [Hagberg et al., 2008].

Clustering coefficient

The clustering coefficient c; of a node n; captures the cli-
quishness within its neighborhood k;. The clustering coeffi-
cient of a node in a binary undirected graph is calculated
as the fraction of the number of edges E; to the total num-
ber of possible edges within the node’s neighborhood
[Watts and Strogatz, 1998]:
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Figure 3.

The normalized size of the largest connected component across a range of graph densities (10—
70%) for each subject. Controls: solid blue, Patients: dashed red. The insets show box plots of
the areas under the curve for the patients and the controls after excluding the outliers. (a)
Extent of activation network, (b) intensity of activation network. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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Thereafter, the clustering coefficient of the whole net-
work was calculated as the average clustering coefficient
of all its constituent nodes n:

n
2

=1
n

4)

Ci

Characteristic path length

The shortest path length d(n; n;) between all n; and n;
where i#j was calculated. Thereafter, these path lengths

were averaged to get the characteristic path length as
expressed in Eq. (5)

1
n(n—1)

Zi;éjd(ni’ Tl,‘) (5)

Small-world index

Each subjects’ functional brain network was compared
to 100 null networks [Hosseini et al. 2012; Maslov and
Sneppen, 2002]; these null networks had the same degree
and degree distribution of the compared network. The
averages of the 100 clustering coefficients Crangom and the
characteristic path lengths Lingom wWere compared to the
subject’s brain clustering coefficient C,,e; and characteristic
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Figure 4.
Schematic diagram of the dual-level classification system. The system consists of three SOM clas-
sifiers followed by a single k-means classifier. The input feature vectors of each patient were:
degree centrality, clustering coefficient, and eigenvector centrality. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

path length L, Compared to random networks, a
small-world network has greater clustering coefficient
7 = Chet/ Crandom > 1 and similar characteristic path length
A= Lpet/Liandom =~ 1 [Watts and Strogatz, 1998]. The two
small-world features can be combined into a single scalar
index ¢ =17/ which is typically greater than 1 for small-
world networks.

Degree centrality

The normalized degree centrality Cp of a node n; in a
graph with n nodes is simply the fraction of the number
of connection k; the node has over the total number of pos-
sible connections (1 — 1)

ki

CD(TI,‘): (n—l)

(6)

Eigenvector centrality

Eigenvector centrality measures the importance of a
node in a graph; it is a referential measure that gives
higher values to nodes that connect to higher value nodes.
In other words, it assigns high values to nodes communi-
cating with central nodes in the network [Bonacich, 1987].

Unsupervised Clustering

This step aims at classifying the subjects into distinct
groups in an unsupervised and data-driven approach. A
dual-level clustering scheme was used, the first level con-
sisted of three self-organizing map (SOM) classifiers;
whereas, the second level, which aggregates and clusters the

outputs of the first level, consisted of a single k-means classi-
fier with k = 2. Figure 4 describes the structure of this classi-
fication system. Three feature vectors were computed for
each subject based on the degree centrality, clustering coeffi-
cient, and eigenvector centrality; each of these feature vectors
was set up as 1 X 90-dimentional vector on the basis of the
AAL90 atlas. Next, each feature vector was used as an input
for one of the SOM classifiers. SOM is a type of artificial
neural network. In this study, 500 training steps were used
and an initial neighborhood size of 3 was assumed.

RESULTS
Density and Thresholding Analyses

Figure 3 shown earlier provided the normalized size of
the largest connected component as a function of graph
density. It illustrates that both the extent of activation
networks and the intensity of activation networks were
able to delineate the patients from the controls. Further-
more, for both networks, most patients had a very large
connected component with relatively small density val-
ues. This observation implies that patients’ brain tend to
use more regions to perform the language task; whereas,
the controls tend to compartmentalize the brain into sepa-
rate smaller connected components when performing the
ADDT task. To confirm these observations statistically,
we calculated the area under the curve for each subject
then we compared the patient population to the control
population using a boxplot and a t-test. The t-test con-
firmed that both networks could separate the patients/
controls groups with a P=1.59E-9 for the extent of
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Figure 5.

Global network features box plots. (a) Average clustering coefficient of the extent of activation
network, (b) average clustering coefficient of the intensity of activation network, (c) Characteris-
tic path length of the extent of activation network, and (d) characteristic path length of the

intensity of activation network.

activation networks and a P =1.99E-4 for the intensity of
activation networks. The boxplots provided as insets in
Figure 3 show that patients have a greater area as com-
pared to controls.

Global Network Features

To study the brain language network general dynamics
and its topology, the global network features were assessed.
The average clustering coefficients and characteristic path
length were calculated for both networks. The extent of acti-
vation network showed a significant clustering difference
between the patient and control groups P =7.258E-5;
whereas, the intensity of activation network did not yield a
significant clustering difference P =0.47. Similarly, the
extent of activation network showed a significant character-
istic path length difference between the patients and con-
trols P = 0.004; whereas, the intensity of activation network
showed no significant path length difference P = 0.22. Fig-
ure 5 summarizes these findings as box plots.

The functional network topology of each subject was
investigated by comparing it to 100 null random networks
as explained earlier. The average y = Cpet/Crandom for all
subjects was 1.71+0.11 for the extent of activation and
1.68 £0.09 for the intensity of activation networks. Simi-
larly, the average /= Lpnet/Lrandom Of all subjects for the
extent of activation and intensity of activation was
0.94+0.01 and 0.93£0.02, respectively. Subsequently,
each network method thresholded with the 50% density
threshold resulted in small-world indices o =7y/4 greater
than 1 with P=1.0E-13 and averaged 1.82*0.1 and
1.79 = 0.08 for the extent of activation and intensity of acti-
vation, respectively.

We found out that each of the network construction
methods generated small-world networks. To distinguish
the topology differences between the subject groups, we
compared their small-world network parameters using t-
tests. For the extent of activation network the clustering
parameter y was higher for controls as compared to patients
with P = 4.21E-6; similarly, the path length parameter A
was higher for controls as compared to patients with P =
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Figure 6.
Local network differences at 10% FDR. For the extent of activation networks, first row, and for
the intensity of activation networks, second row. Red nodes indicate patients have greater cen-
trality values compared to controls; while, gray nodes indicate no significant difference between
the groups. The figure was generated using BrainNet Viewer [Xia et al., 2013]. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

0.007. Consequently, the small-world index ¢ was higher
for controls compared to patients P = 1.21E-5. On the con-
trary, there was no significant difference between the
groups for any of the small-world parameter in the inten-
sity of activation network P = 0.019 for y, P = 0.284 for 4,
and P = 0.021 for ¢. Recall that ¢ =7/ 4.

Local Network Features

After investigating the global network features, the focus
was shifted to the individual node features and the associ-
ation of epilepsy with such features. Two local network
features were used: degree centrality and eigenvector cen-
trality. Each feature was calculated for every node, and
then the subjects were separated into patients and controls
groups. A t-test was used to highlight nodes that were dif-
ferent between the groups. To control for the multiple test-
ing error rate (90 t-tests), the Benjamini-Hochberg (BH)
method [Benjamini and Hochberg, 1995] was used at 10%
false discovery rate (FDR) for each network.

Figure 6 shows the local network differences between
the subject groups on the nodal level. The figure illustrates

that for the extent of activation network only the eigenvec-
tor centrality of the right inferior temporal gyrus was sig-
nificantly higher for patients compared to controls.
Similarly, Figure 6 shows that for the intensity of activa-
tion network the degree centrality of the left anterior cin-
gulate gyrus, left fusiform gyrus, and left thalamus was
higher for patients compared to controls.

Moreover, Figure 6 shows that except for the right infe-
rior temporal gyrus in the eigenvector centrality measure
of the extent of activation network, all other significant
nodes were left hemispheric. Additionally, Figure 6 illus-
trates that all significant nodes had greater values for
patients compared to controls.

To examine if the local nodal differences or the hemi-
spheric disparity observed above can be explained by
atypical language laterality, the effect of the laterality
index, as defined in Eq. (1), on the centrality measures
was tested for all significant nodes. No effect was found
for either of the networks at 5% FDR using the BH method
[Benjamini and Hochberg, 1995]. In other word, atypical
language laterality does not seem associated with local
hub shifts. It is noted, however, that only six patients had
right language laterality, whereas the rest of the patients
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Clustering Coefficient
Eigenvector Centrality
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. Clustered as a Patient

[l custeredasa convol

Controls

(b) Intensity of Activation

Figure 7.

Clustering results for (a) the extent of activation network and
(b) the intensity of activation network. The first three lines of
each subfigure illustrate the results of the SOMs for the: degree
centrality, clustering coefficent, and eigenvector centrality fea-
ture vectors in order. The last line shows the final and second
level k-means clustering results. The subjects on the left side are

and all controls had typical left language laterality. Addi-
tionally, the epileptogenic focus was left hemispheric for
24 patients, right hemispheric for four patients, and one
patient had a bilateral focus.

Clustering Results

Several studies showed that epilepsy affects brain lan-
guage networks [Campo et al., 2013; Vlooswijk et al., 2010,
2011; Wang et al.,, 2013a; You et al.,, 2011, 2013]. In this
study global and local graph measures were used as fea-
ture vectors in a dual-level clustering scheme. Figure 7a,b
illustrate the results of the unsupervised clustering for the
extent of activation network and intensity of activation
network, respectively. These results show that the extent
of activation network produced better clustering outcomes
compared to those produced from the intensity of activa-
tion network. Table II enumerates the confusion matrices
of both networks and confirms this observation. The table

patients and the subjects on the right side are controls. A red
square represents a subject clustered as a patient; whereas, a
blue square represents a subject clustered as a control. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

shows that the extent of activation network clustering has
70.00% precision, 77.78% sensitivity, 68.97% specificity,
and 73.21% accuracy. Conversely, the intensity of activa-
tion network clustering has 62.07% precision, 66.67% sensi-
tivity, 62.07% specificity, and 64.29% accuracy.

DISCUSSION

In this study, two novel data-driven network construction
methods were introduced. We used these methods to study
the association of epilepsy with the changes in the whole
brain language network during a language task. The results
showed that epilepsy is associated with network changes
where the patients showed less efficient networks compared
to controls. These network changes manifested on the
global and topological levels for the extent of activation net-
work but not for the intensity of activation networks. Con-
versely, the intensity of activation network revealed
changes on the local level. Topologically, all networks were

TABLE Il. Clustering confusion matrix for the extent of activation and intensity of activation networks

Extent of activation

Clustered as

Intensity of activation

Clustered as

Patients Controls Patients Controls
Patients 21 6 Patients 18 9
Actual Controls 9 20 Actual Controls 11 18
Precision 70.00% Precision 62.07%
Sensitivity 77.78% Sensitivity 66.67%
Specificity 68.97% Specificity 62.07%
Accuracy 73.21% Accuracy 64.29%
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shown to have small-world network architecture with
subtle differences between the subject groups. On the local
level, the extent of activation based networks showed ipsi-
lateral nodal centrality reorganization. An unsupervised
clustering system was able to objectively separate the
patients and controls validating the correlation of epilepsy
with the observed network changes.

The thresholding scheme used in this study showed a
difference between the patient and control groups. Patients
had greater area under the curve for both network con-
struction methods. The greater area under the curve for
the patients implies that they can achieve the language
task with less dense graphs. In other words, the patients
reach a connected graph with smaller densities than con-
trols. Hence, the whole brain language network is less effi-
cient in patients compared to controls. Controls tend to
compartmentalize the brain into several smaller connected
components as opposed to using the whole brain to
achieve a single language task. This decrease in efficiency
agrees with other studies that demonstrated effects of epi-
lepsy on memory networks [Campo et al., 2013; Vlooswijk
et al., 2011; Voets et al., 2009], on resting state networks
[Bettus et al., 2010, 2009; Doucet et al., 2012; Liao et al.,
2010a; Mankinen et al., 2012; Morgan et al., 2010; Waites
et al., 2006; Zhang et al., 2010], and on language networks
[Karunanayaka et al., 2011; Vlooswijk et al., 2010].

Karunanayaka et al. [2011] used a semantic/tone decision
fMRI task [Binder et al., 1997] to study the different semantic
networks, detected by ICA, and their correlation with the
performed task. They concluded that epilepsy negatively
affects the left hemispheric language network in patients
with left focused temporal lobe epilepsy; furthermore, they
showed that epilepsy also altered other nodes in the network
in both left and right temporal lobe epilepsy. Likewise,
Vlooswijk et al. [2010] used a covert word-generation and
text reading paradigms to study the effect of epilepsy on lan-
guage networks. They constructed their networks by con-
necting highly active regions identified by the model-
dependent generalized linear model (GLM) analysis. Similar
to our study, they reported a decrease in functional connec-
tivity in the language areas, and general reduction in lan-
guage performance for patients. Unlike these studies, the
findings presented here are based on whole brain functional
networks constructed using an auditory word definition
decision task. Our networks were data-driven and proved to
be useful at detecting brain dynamics while preserving its
temporal characteristics throughout task performance.

To explain the difference that was observed between the
patients and controls, global network features were
assessed to understand the network dynamics and to
define its topology. The extent of activation networks
showed significant global differences; whereas, the inten-
sity of activation networks showed no such differences
between the subject groups. Consequently, the networks
express different information because they were con-
structed on different bases, namely the extent of activation
and intensity of activation.

Moreover, we found, for both network construction
methods, the patient and control networks showed a
small-world network topology. The extent of activation
network showed a lower small-world clustering parameter
compared to controls indicating the tendency of the
patients” network toward a more random network. Con-
versely, the intensity of activation network did not show
any difference between the subject groups. The small-
world network topology has higher information transfer
efficiency and better synchronization when compared to
random networks; hence, the extent of activation network
showed that patients have reduced information transfer
efficiency matching the inefficiency we observed through
thresholding and on the global level. These findings match
other studies that find typical and atypical brain networks
have a small-world architecture and that neurological dis-
orders introduce changes to the network while maintain-
ing the overall small-world network architecture
[Bernhardt et al.,, 2011; Hosseini and Kesler, 2013; Zhang
et al., 2011].

Regardless of the graph global features and topology, it
is unrealistic to assume that neurons are optimally and
intricately connected knowing the whole brain network
topology and structure. It is fair, however, to assume that
neurons act on a local information optimization to achieve
a certain task as explained in [Fornito et al., 2013]. There-
fore, we studied two centrality measures to identify the
local differences in language networks between children
with epilepsy and normal controls.

A node centrality emphasizes its importance as a hub in
the brain information highway. The different centrality
measures used in this study convey certain common, yet
nonredundant information [Zuo et al., 2012]. In this study,
the extent of activation networks showed a single signifi-
cant node between the centrality measures. Conversely,
the intensity of activation networks highlighted several
significant nodes located in the left hemisphere.

Moreover, the significant nodes showed an interesting
phenomenon where the left hemispheric nodes had greater
centrality values for the patients. This observation might
be attributed to the effect of pediatric epilepsy on the reor-
ganization of the language network [You et al., 2013,
2011]. It was also shown that language laterality was not
correlated with this nodal reorganization; however, the
small number of subjects with atypical right language lat-
erality might have biased our observation.

To verify that the global and local network changes
were associated with pediatric epilepsy, the two centrality
measures in addition to a global nodal feature were used
as input vectors to an unsupervised clustering system. The
data-driven clustering system was able to fairly group the
subjects into patients and controls for both networks with
better results for the extent of activation networks com-
pared to the intensity of activation network. The intensity
of activation network yielded clusters with fair precision,
which is close to other studies that reported precision val-
ues around 75% in: epilepsy [Zhang et al., 2012], attention-
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deficit hyperactivity disorder [Colby et al., 2012; Dai et al.,
2012], autism [Anderson et al., 2011], Alzheimer’s disease
[Chen et al., 2011; Wang et al., 2013b], schizophrenia [Bas-
sett et al., 2012], and major depression [Lord et al., 2012;
Zeng et al., 2012]. Therefore, as in previous studies [You
et al.,, 2013, 2011], we concur that pediatric epilepsy can
cause, or is associated with, local hub shifts in the lan-
guage network, similar to the shifts shown in the intensity
of activation network.

There are certain limitations in our study. Some clinical
data such as comorbid conditions was not uniformly
assessed and recorded; hence, the effects of comorbidities,
such as disorders of executive function or language meas-
ures could not be studied. All study patients had focal epi-
lepsy, however, the epilepsy focus, underlying cause, and
use of antiepileptic medications differed among our study
population. Previous work demonstrated common effects
of different seizure focus location and pathology on lan-
guage network expression [Berl et al., 2014; Gaillard et al.,
2007; Stewart et al., 2014]. Future studies should focus on
more homogeneous populations to explore further the
findings presented here. Some medications, such as Topir-
amate, may have an effect on the BOLD response [Szaflar-
ski and Allendorfer, 2012]; the effect of antiepileptic
medications on network connectivity is not known and
remains a subject of additional investigation. The findings
here represent associations with epilepsy. It is not clear
whether epilepsy, its underlying cause or its treatment, is
the primary force underlying the differences observed in
this study.

In addition, many computational and statistical methods
were implemented in this study. Bayesian implementation
could have been used in the multiple comparisons analysis
performed in section Local Network Features. However,
we elected to adopt the BH method [Benjamini and Hoch-
berg, 1995], which is considered a gold standard in theory
and application for controlling the multiple testing error
rate, the so-called FDR. Based on our knowledge, there are
several Bayesian methods of multiple comparisons. Yet,
they all ought to control or minimize other types of error
rate, such as Bayesian FDR (BFDR). As a result, it is unfair
to compare the Bayesian method to the BH methods in
theory. Empirically, however, simulations in various cases,
including the statistical model considered in Section Local
Network Features, showed very similar results to BH,
except for some rare cases were it showed slightly better
results. Several real data applications in gene expression
microarrays analysis support these observations [Muller
et al., 2004; Sarkar et al., 2008; Wu and Pena, 2013]. The
BH method has become widely adopted because of its
ease of computation and implementation. It would be very
interesting to compare BH method’s results shown in this
study to the aforementioned Bayesian methods’ results,
and to develop a computational package that can be used
for other similar applications. This could yield a new
methodology in the field of applied statistics in the way
similar studies could be gauged in future research.

In conclusion, this study has explored the association of
epilepsy with changes in a language connectome. Two
complementary network construction methods were intro-
duced and useed. Patients with epilepsy showed reduced
network efficiency compared to controls. Patients useed
the whole brain network to achieve a language task
whereas controls used segregated network components to
achieve the same task. These network alterations were on
the global level for the extent of activation networks and
on the local level for the intensity of activation networks.
Furthermore, all networks showed a small-world topology.
These observations were confirmed by an unsupervised
classification system, which was able to fairly cluster the
subjects into their corresponding group. Some clinical data
such as, comorbid conditions, IQ, and the effect of antiepi-
leptic medications were not uniformly recorded and eval-
uated, which pointed out certain limitations. Additionally,
the epilepsy type and seizure location of the studied popu-
lation was inhomogeneous, future studies should direct
the focus on a more homogenous population to narrow
down our findings.
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