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Abstract: Thalamic atrophy is known to be one of the most important predictors for clinical dys-
function in multiple sclerosis (MS). As the thalamus is highly connected to many cortical areas, this
suggests that thalamic atrophy is associated with disruption of cortical functional networks. We
investigated this thalamo-cortical system to explain the presence of physical and cognitive prob-
lems in MS. Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG)
were performed in 86 MS patients and 21 healthy subjects. We computed cortical functional net-
works for fMRI and MEG by respectively the PearsonÇs correlation coefficient and the phase lag
index using the same automated anatomical labeling atlas for both modalities. Thalamo-cortical
functional connectivity was only estimated using fMRI. We computed conventional network met-
rics such as clustering coefficient and path length and analyzed the minimum spanning tree (MST),
a subnetwork and backbone of the original network. MS patients showed reduced thalamic vol-
umes and increased thalamo-cortical connectivity. MEG cortical functional networks showed a
lower level of integration in MS in terms of the MST, whereas fMRI cortical networks did not differ
between groups. Lower integration of MEG cortical functional networks was both related to tha-
lamic atrophy as well as to increased thalamo-cortical functional connectivity in fMRI and to worse
cognitive and clinical status. This study demonstrated for the first time that thalamic atrophy is
associated with global disruption of cortical functional networks in MS and this global disruption
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INTRODUCTION

Multiple sclerosis (MS) is a chronic demyelinating and neu-
rodegenerative disease, leading to both cognitive impairment
and physical disability. Thalamic atrophy and disruption of
cortical functional networks have both been reported and
found to be associated with cognitive impairment and physical
disability in MS [Batista et al., 2012; Gamboa et al., 2013;
Houtchens et al., 2007]. Based on the widespread connectivity
of the thalamus with cortical regions throughout the brain, one
would expect a mutual influence between thalamic atrophy
and disruption of cortical functional networks in MS. How-
ever, the relationship between thalamic atrophy and cortical
functional networks is largely unknown. Shedding more light
on this relationship might help to understand disease mecha-
nisms and clinical and cognitive deterioration in MS.

Cortical functional networks can be analyzed using met-
rics from modern network theory where a network is con-
sidered as a set of nodes and links [Bullmore and Sporns,
2012; Stam and van Straaten, 2012]. Nodes refer to brain
regions and links to communication between distinct brain
regions (i.e., functional connectivity). Cortical functional net-
works robustly show a highly nonrandom organization that
is characterized by dense local connectivity and relatively
sparse long range connections [Bullmore and Sporns, 2009].
Such a topology has been associated with a balance of inte-
gration and segregation together with a minimization of wir-
ing costs and maximization of efficiency [Bullmore and
Sporns, 2012]. However, the quantification and comparison
of functional network topology is accompanied by methodo-
logical problems as associated with differences in connectiv-
ity density or average connectivity strength [Fornito et al.,
2013; van Wijk et al., 2010]. Usage of conventional metrics
leads to mixing of information about topology with informa-
tion about functional connectivity. Even corrections for these
biases by normalization procedures are not adequate [van
Wijk et al., 2010]. Computation of a minimum spanning tree
(MST), an acyclic subnetwork containing the strongest con-
nections, enables comparison of networks without the afore-
mentioned biases (see Methods for more details) [Lee et al.,
2006; Lee et al., 2010; Schoen et al., 2011].

The organization of functional networks in MS has
received relatively little attention as most studies have
merely focused on changes in raw functional connectivity
[Cader et al., 2006; Hawellek et al., 2011; Parisi et al., 2012;
Prakash et al., 2011; Rocca et al., 2007; Rocca et al., 2012; Val-
sasina et al., 2011]. Previous studies on the organization of
functional networks in MS using either functional magnetic

resonance imaging (fMRI) or magnetoencephalography
(MEG) have demonstrated less integration in functional net-
works [Gamboa et al., 2013; Hardmeier et al., 2012; Schoon-
heim et al., 2011]. We recently showed in an MEG study
that, in comparison to healthy subjects, the MSTs of MS
patients are indeed characterized by less integration of infor-
mation and loss of hierarchical structure of functional net-
works, which was related to worse cognitive performance in
MS [Tewarie et al., 2013a]. Previous fMRI and MEG studies
on the relationship between functional network connectivity
and thalamic atrophy have revealed that abnormalities in
functional connectivity between the thalamus and the cortex
or even between cortical areas was associated with thalamic
atrophy, especially for occipito-parietal and motor areas
[Dogonowski et al., 2013; Schoonheim et al., 2013b; Tewarie
et al., 2013b; Tona et al., 2014]. However, these previous
studies were performed using various modalities and meth-
odologies, hampering comparison of the results of these
studies. A multimodal imaging approach employing the
same methodology on both fMRI and MEG may help to
quantify functional network disruption in MS and may fur-
ther increase the interpretability of these results between
modalities. Furthermore, the high temporal resolution of
MEG and the ability of fMRI to assess functional connectiv-
ity between the cortex and the thalamus may provide com-
plementary information, and therefore, be an advantage
over unimodal functional imaging approaches.

In this study, we included subjects that have been
described in previous work, where we demonstrated that
thalamic atrophy and related increased thalamo-cortical
functional connectivity (fMRI) were important features in
MS patients [Schoonheim et al., in press]. The novel aspect
of this study is that we now link thalamic atrophy and
changes in thalamo-cortical functional connectivity to the
organization of cortical functional networks in MS, using
both fMRI and MEG. Therefore, the aim of this study is to
test the hypothesis that thalamic atrophy and a disintegra-
tion of cortical functional networks co-occur and are linked
by thalamo-cortical functional connectivity. We further
hypothesize that disruption of this thalamo-cortical system
is associated with clinical and cognitive dysfunction (Fig. 1).

METHODS

Study Design

In this cross-sectional study, we analyzed cortical func-
tional networks, thalamic volumes, thalamo-cortical func-
tional connectivity, neurological- and neuropsychological
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status in MS patients and healthy subjects. Differences in
thalamic volumes and thalamo-cortical functional connec-
tivity between MS patients and healthy subjects from this
cohort (in a larger but overlapping group) have been
reported before [Schoonheim et al., 2012; Schoonheim
et al., 2013b; Schoonheim et al., in press] and will be
reported in this article as descriptive information and as
Supporting Information. The aim of this study was, how-
ever, to investigate if these changes were related to disrup-
tion of cortical functional networks, where we also made
use of a novel atlas-based approach (not reported before).
We quantified resting state cortical functional networks
using MEG and fMRI, whereas we quantified thalamo-
cortical functional connectivity using fMRI. For both MEG
and fMRI obtained cortical functional networks, we com-
puted conventional graph theoretical measures such as the
clustering coefficient and path length to increase the inter-
pretability of our results within the context of previous
studies. In addition, we investigated MST measures (MST
leaf fraction, MST diameter, MST degree divergence and
MST tree hierarchy), as these are unaffected by potential
biases that may arise as a consequence of constructing net-
works from different imaging modalities. An overview of
the applied methods is given in Figure 2.

Participants

All MS patients were part of a six-year follow-up of an
early inception cohort and were also included in previous
studies [Schoonheim et al., 2012; Schoonheim et al., 2013a;
Schoonheim et al., 2013b; Schoonheim et al., in press]. In this

study, we only included subjects who underwent both fMRI
and MEG, during their most recent visit at around six years
after diagnosis. Initially, 100 patients (mean age 41.6 6 8.9
years) and 24 healthy subjects (mean age 41.8 6 10.3 years)
were included in this study and were matched for gender,
age, and education. Seventeen subjects were excluded from
this study due to absent or corrupt fMRI data (N 5 4), mis-
match between normalized MRI and template before apply-
ing beamforming (N 5 2), an excess of noise and artefacts in
the raw MEG data (N 5 5) and having a diagnosis of clinical
isolated syndrome not converted to clinically definite MS
(N 5 6). Consequently, 86 MS patients (mean age 41.6 6 8.8
years) and 21 subjects (mean age 42.5 6 10.3 years) remained
in this study (Table I). Subsequently, all patients were diag-
nosed with clinically definite MS by experienced neurolo-
gists and all patients were recruited from the VU University
Medical Centre [Polman et al., 2005]. Ethics approval for this
study was granted by the institutional ethics review board
and written informed consent was obtained from all subjects
prior to participation.

Neurological and Neuropsychological Assessment

Participants underwent a set of neurological and neuro-
psychological tests as described earlier [Schoonheim et al.,
2012]. The physical disability of MS patients was evaluated
using the Expanded Disability Status Scale (EDSS) [Kurtzke,
1983]. In order to assess cognitive functioning, we used an
expanded version of the brief repeatable battery for neuro-
logical disease, which was administered to all subjects. This
set of neuropsychological tests included the selective
reminding test, the 10/36 spatial recall test (SPART), the
symbol digit modalities test (SDMT), the word list genera-
tion test (WLG), the concept shifting test (CST), the Stroop
color-word test, and the memory comparison test (MCT;
see previous studies for details [Schoonheim et al., 2011;
Schoonheim et al., 2012]). Z-scores were summarized into
seven cognitive domains: executive functioning (CST,
WLG), verbal memory (SRT), information processing speed
(SDMT), visuospatial memory (SPART), working memory
(MCT), attention (Stroop), and psychomotor speed (CST,
SDMT). In addition, a Z-score for overall cognition was cal-
culated by averaging Z-scores over all separate cognitive
domains. This overall cognition score was used in further
analyses. The rationale behind using an overall cognition
score was to reduce the number of statistical tests in order
to avoid correction for a large number of tests.

Data Acquisition

MRI scans were performed using a 3T-MRI system (GE
SignaHDxt) with a 3D-T1 weighted fast-spoiled gradient-
echo (FSPGR, repetition time (TR) 7.8 ms, echo time (TE)
3.0 ms, inversion time (TI) 450 ms, flip angle 12, 0.9 3 0.9
3 1 mm voxel size), 2D T2-weighted fast spin-echo (repeti-
tion time 9680 ms, echo time 22/112 ms, flip angle 90,

Figure 1.

The thalamo-cortical loop. Depicted is our hypothesis: a loop

consisting of the thalamus connected to the cortex through

thalamo-cortical connections is affected. This is potentially

caused by thalamic atrophy, disruption of cortical functional net-

works and changes in BOLD thalamo-cortical functional connec-

tivity. We further hypothesize that these alterations are

interrelated and important for explaining clinical and cognitive

dysfunction. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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3 mm contiguous axial slices, in-plane resolution 0.6 3

0.6 mm), 2D spin-echo T1-weighted imaging (repetition
time 475 ms, echo time 9.0 ms, flip angle 90, 3 mm contig-
uous axial slices, inplane resolution 0.7 3 1 mm), and a

resting-state fMRI sequence containing 202 volumes, of
which the first two were discarded (echo planar imaging
(EPI), TR 2200 ms, TE 35 ms, flip angle 80, 3 mm contigu-
ous axial slices covering the entire brain, in-plane

Figure 2.

Overview of applied methods. (A) cortical functional networks:

for both fMRI and MEG, time signals were projected onto the

cortical AAL atlas consisting of 78 regions. For MEG, beamform-

ing was used as source localization method. Based on time sig-

nals in the AAL atlas we computed functional connectivity

matrices (weighted networks) by the Pearson correlation coeffi-

cient and the Phase lag index for fMRI and MEG respectively.

The average functional connectivity matrices over subjects are

displayed (alpha2 band for MEG). Path length and clustering

coefficient were computed based on these weighted networks.

Subsequently, we computed the MST and the corresponding

MST metrics; (B) thalamic atrophy was computed using FIRST

(FSL); (C) we computed BOLD thalamo-cortical functional con-

nectivity from all 78 cortical regions to the thalamus and aver-

aged over hemispheres. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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resolution 3.3 3 3.3 mm). All lesion volumetric analyses
were performed using Alice (Perceptive informatics Inc.)
applying a local thresholding technique. Preprocessing
was performed by an experienced rater (MMS) using FSL
5 (FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/
fsl), and included brain extraction for the FSPGR sequence.
Total gray matter (normalized GM volume [NGMV]), nor-
malized white matter volume [NWMV]), and whole brain
volumes (normalized brain volume [NBV]), corrected for
head size, were measured using SIENAX [Smith et al.,
2002]. Thalamic volumes were measured using FIRST (part
of FSL), providing left and right volumes for the thalamus
and were corrected for head size using the V-scaling factor
of SIENAX. Left and right thalamic volumes were
summed to give the total thalamic volume. The fMRI data
were processed as part of the pipeline of MELODIC (part
of FSL) using default settings, including masking, motion
correction, smoothing, and high-pass filtering (100 s cut-
off). All pre-processed fMRI images were kept in subject
space; the automated anatomical labeling (AAL) atlas was
nonlinearly registered back to each subject using nearest-
neighbor interpolation. This was done by inverting the
registration steps calculated by a boundary-based registra-
tion (BBR, part of FSL) between fMRI and 3D-T1 sequen-
ces, and nonlinear registration between 3D-T1 and
standard space using FNIRT (part of FSL). After registra-
tion, the average time-series were calculated for each indi-
vidual AAL and thalamus region, which were used for the
connectivity analyses.

MEG data were recorded using a 306-channel whole-
head MEG system (Elekta Neuromag, Oy, Helsinki, Fin-
land) while participants were in a supine position in a
magnetically shielded room (Vacuumschmelze, Hanau,
Germany). Fluctuations in magnetic field strength were
recorded during a no-task, eyes-open condition for 3
minutes (not analysed here) and eyes-closed condition for
5 consecutive minutes with a sample frequency of 1250 Hz.

An antialiasing filter of 410 Hz and a high-pass filter of 0.1
Hz were applied online and other artefacts were removed
offline using the temporal extension of Signal Space Sepa-
ration (tSSS) in MaxFilter software (Elekta Neuromag Oy,
version 2.2.10) [Taulu and Hari, 2009; Taulu and Simola,
2006]. Channels that were malfunctioning during the
recording, for example due to excessive noise, were identi-
fied by automatic and visual inspection of the data and
removed before applying tSSS. Automatic inspection
involved SSS (Taulu et al., 2006). The number of excluded
channels varied between 1 and 12 and did not differ
between MS patients and healthy subjects (Mann-Whitney
U 5 7.23, P 5 0.076). SSS and tSSS method can be explained
as follows: SSS decomposes the recorded magnetic fields
into those that have their origin inside the helmet (brain
signals) and those that originate outside the helmet (noise
signals). The noise signals are then discarded. The temporal
extension of SSS was used to remove noise signals that SSS
failed to discard, typically from noise sources near the
head. Such noise signals have a signature in both the brain
and noise signals, and can therefore be detected (and dis-
carded) using a simple correlation approach. In this work,
we used a subspace correlation limit of 0.9 and a sliding
window of 10 seconds, as done in previous studies
[Tewarie et al., 2014; van Dellen et al., 2013; van Dellen
et al., 2014]. The head position relative to the MEG sensors
was recorded continuously using the signals from four
head-localization coils. The head-localization coil positions
were digitized, as well as the outline of the participants
scalp (�500 points), using a 3D digitizer (3SpaceFastTrack,
Polhemus, Colchester, VT). Each subject’s scalp surface was
coregistered to their structural MRI using a surface-
matching procedure, with an estimated resulting accuracy
of 4 mm [Whalen et al., 2008]. A single best fitting sphere
was fitted to the outline of the scalp as obtained from the
coregistered MRI, which was used as a volume conductor
model for the beamformer approach described below.

TABLE I. Demographic, clinical, and MRI measures for MS patients and healthy subjects

MS patients, n 5 86 Healthy subjects, n 5 21

P valueMean 6SD Mean 6SD

Age (in years) 41.58 8.82 42.48 10.29 >0.05
Gender (F in %) 61.9% 65.1% >0.05
Disease duration (years) 7.15 2.11
Disease type (RR/SP/PP) 68/5/9 — —
EDSS (median and range) 2.5 (0–6.5) — —
Cognition (Z-score) 20.83 0.76 0.06 0.48 <0.001
Thalamic volume (mL) 18.91 2.17 20.10 1.29 <0.001
NBV (L) 1.47 0.07 1.53 0.07 <0.001
NGMV (L) 0.82 0.05 0.84 0.05 <0.001
NDGMV (mL) 58.60 6.18 64.79 4.25 <0.001
T1 lesion load 2.00 2.36 — —
T2 lesion load 4.50 5.35 — —

Abbreviations: R, relapsing-remitting; S, secondary-progressive; P, primary-progressive; NBV, normalized brain volume; NGMV, nor-
malized GM volume; NDGMV, normalized deep gray matter volume.

r Functional Brain Networks r

r 607 r

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


Estimation of Functional Connectivity

For fMRI we computed functional connectivity between
BOLD signals of 78 cortical AAL regions by computing
the Pearson correlation coefficient [Gong et al., 2009]. To
all functional connectivity values, based on these Pearson
correlation coefficients, we added one and subsequently
divided by two to avoid negative associations. This trans-
formation was performed to ensure that all matrix ele-
ments were positive since most algorithms that we used to
compute topological measures require positive weights.
Subsequently, network parameters were computed on this
cortical fMRI network (see below). In addition, average
functional connectivity was also computed for the left and
right thalamus, where we averaged over hemispheres, that
is, for each hemisphere we averaged functional connectiv-
ity values from the left or right thalamus to one of the 39
AAL regions in the corresponding hemisphere. For clarity,
thalamo-cortical functional connectivity is in the rest of the
paper mentioned as BOLD thalamo-cortical functional con-
nectivity to remind the reader that this measure is exclu-
sively estimated by fMRI.

For MEG, a beamformer approach was adopted to map
MEG data from sensor level to source space [Hillebrand
et al., 2012]. First the coregistered MRI was spatially nor-
malized to a template MRI using the SEG-toolbox in SPM8
[Ashburner and Friston, 2005; Weiskopf et al., 2011]. The
cortical regions of the AAL atlas were used to label the
voxels in a subject’s normalized coregistered MRI
[Tzourio-Mazoyer et al., 2002]. Subcortical structures were
removed, and the voxels in the remaining 78 cortical
regions of interest (ROIs) were used for further analysis
[Gong et al., 2009], after a nonlinear inverse transformation
to the patient’s coregistered MRI. Next, neuronal activity
in the labeled voxels was reconstructed using a scalar
beamformer implementation (Elekta Neuromag Oy, beam-
former, version 2.1.27) similar to Synthetic Aperture Mag-
netometry [Robinson and Vrba, 1999]. Briefly, this
beamformer sequentially reconstructs the activity for each
voxel in a predefined grid covering the entire brain (spac-
ing 2 mm) by selectively weighting the contribution from
each MEG sensor to a voxel’s time-series. The beamformer
weights are based on the covariance of the recorded time-
series and the forward solution (lead field) of a dipolar
source at the voxel location, where data were band-pass
filtered from 0.5–48 Hz. A time-window of, on average,
299 seconds (range healthy subjects patients 258–297 s;
range MS patients 159–595 s, independent t-test, t 5 1.45,
P 5 0.15) was used to compute the covariance matrix of
the recorded time-series. Singular value truncation was
used when inverting the data covariance matrix, using a
default setting of 1e-06 for the ratio between the largest
and smallest acceptable singular value. The sensor-level
data were subsequently projected through the beamformer
weights, resulting in a time series for each voxel. Each
ROI contains many voxels and the number of voxels per
ROI differed. In order to represent a ROI by a single time-

series, we selected, for each ROI and frequency band sepa-
rately, the voxel with maximum power in that frequency
band. Six frequency bands were analyzed: delta (0.5–4
Hz), theta (4–8 Hz), lower alpha (8–10 Hz), upper alpha
(10–13 Hz), beta (13–30 Hz), and lower gamma bands (30–
48 Hz). The time-series were visually inspected for each
subject and frequency band separately and the first 20
artefact-free epochs of 4096 samples (3.2768 s) were
selected from the ROI time-series using Brainwave (ver-
sion 0.9.98 available from http://home.kpn.nl/stam7883/
brainwave.html).

Then, for each subject and MEG epoch separately, we
computed the phase lag index (PLI) between the time-
series for each pair of ROIs to obtain a (78 3 78) functional
connectivity matrix. For this purpose, the phase was com-
puted by taking the argument of the analytical signal
[Stam et al., 2007]. The PLI calculates the asymmetry of
the distribution of (instantaneous) phase differences
between two time-series:

PLI5j < sign½sin ðDuðtkÞÞ� > j (1)

where the phase difference Du is defined in the interval
[-p, p], <> denotes the mean value, sign stands for signum
function, jj indicates the absolute value, and tk corresponds
to time with k 5 1. . .Ns where Ns is the number of samples.
The PLI ranges between 0 (completely symmetric phase
distribution) and 1 (completely asymmetric phase distribu-
tion). As field spread and volume conduction causes a
zero phase lag (modulus p) between two time-series, this
hardly influences the PLI since this metric captures only
consistent, non-zero, phase lag between two time-series
[Stam et al., 2007]. For PLI analyses, we averaged for each
subject the PLI for the 20 epochs, yielding one PLI matrix
per subject for each frequency band.

Network Analysis

Nodes in all networks were defined by the 78 cortical
AAL regions. For fMRI this indicated that left and right
thalami were not included as nodes. This was necessary to
keep the size of MEG and fMRI functional networks equal
to preserve comparability between modalities (see also the
methodological considerations in the discussion [Fornito
et al., 2013; van Wijk et al., 2010]). All networks were
weighted: in fMRI functional networks links had weights
corresponding to the Pearson correlation coefficient
between AAL regions and in MEG functional networks
links had weights corresponding to the PLI values
between AAL regions. For all networks, we computed
weighted network properties (average connectivity, clus-
tering coefficient, path length and their normalized ver-
sions) and the MST (see below). This was done for each
subject, epoch and frequency band for the MEG functional
networks (where for each subject frequency-band specific
averages over the 20 epochs were then computed), and for
each subject for fMRI functional networks.
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The weighted clustering coefficient C is a measure of
segregation and is defined as the geometric mean of trian-
gles around a node [Rubinov and Sporns, 2010]:

Ci5

P

k6¼i

P

l6¼i
l 6¼k

wikwilwkl

P

k 6¼i

P

l6¼i
l 6¼k

wikwil

(2)

where wik and wil is the weight between node i and nodes
k and l, respectively, and wkl is the weight between nodes
k and l. The average weighted clustering coefficient is
computed by averaging Ci over all nodes.

The average weighted shortest path length indicates the
amount of global integration. The weighted shortest paths
are computed using Dijkstra’s algorithm, where distance is
defined as the inverse of the link weight and the length of
a path is the sum of the inverse weights for all the edges
in the path. The average weighted shortest path length is
computed by averaging path length over all nodes [Rubi-
nov and Sporns, 2010]. Both measures were normalized by
the average weighted clustering and path length obtained
from 500 random surrogate networks. A high normalized
clustering and shortest path length correspond to a more
regular network topology, whereas value close to 1 implies
a random network topology [Watts and Strogatz, 1998].

MSTs were constructed using Kruskal’s algorithm [Kruskal,
1956], although in our case, we started the algorithm with the
highest link weights as we were interested in the strongest con-
nections (highest PLI values) in the network. In short, the algo-
rithm first orders the weights of all links in a descending order
and starts the construction of the MST with the highest link
weight and adds the following highest link weight until all N
nodes are connected in a loopless (i.e., not containing cycles)
subnetwork that consists of M 5 N21 links. A link is ignored if
its addition would form a loop. After construction of the MST,
all link weights are assigned a value of one. We computed the
following MST properties: leaf fraction (L), diameter (d), tree
hierarchy (TH) and degree divergence (j). Leaf number LN is
the number of nodes in the tree with a degree of one, where
the degree, (k), refers to the number of links connected to a
node. Leaf number has a lower bound of 2 and an upper
bound of M 5 N 2 1. We report the leaf fraction (5LN/M)
which is bounded between 0 and 1. The diameter of the tree is
defined as the largest distance between any two nodes in the
tree. The upper limit of the diameter is d 5 M 2 L 1 2, imply-
ing that the largest possible diameter decreases with increasing
leaf number. Furthermore, we computed tree hierarchy TH,
that measures the tradeoff between diameter reduction and
overload prevention of the central nodes, which is necessary
for efficient communication [Boersma et al., 2012]:

TH5
L

2MBCmax
: (3)

To assure TH ranges between 0 and 1, the denominator
is multiplied by 2. If L 5 2, that is, a path-like topology,

and M approaches infinity, TH approaches 0. If L 5 M, that
is, a star-like topology, TH approaches 0.5. BCmax refers to
the maximum betweenness centrality in the tree network,
where betweenness centrality is the fraction of all shortest
paths that transverse through a specific node. Finally, we
computed degree divergence j, which is a measure of the
broadness of the degree distribution [Barrat et al., 2008]:

j5
hk2i
hki : (4)

Here, <> denotes the average. See Table II for a brief
description of all network metrics. Note that all network
metrics in the present study are global measures. All net-
work metrics were calculated using Brainwave (version
0.9.98 available from http://home.kpn.nl/stam7883/brain-
wave.html).

Statistical Analysis

Statistical analyses were performed using SPSS for win-
dows v.20. The data were checked for normality using the
Kolmogorov-Smirnov test and by visually inspecting histo-
grams. Either independent samples t-tests or the Chi-
square test were used to assess differences in gender, age
and education between MS patients and healthy subjects.
Structural metrics such as thalamic volumes were com-
pared between groups by means of regression analysis
with age, gender and education as covariates. We then fol-
lowed a two-step approach:

TABLE II. Network properties (Definitions are based on

[Stam and van Straaten, 2012])

N Nodes Number of nodes in the network

M Links Number of links in the MST
C Clustering The unweighted clustering coefficient

describes the likelihood that neighbours
of a node are also connected, and it
quantifies the tendency of network ele-
ments to form local clusters. We used
the weighted equivalent of this measure
to characterize local clustering.

Path length Measure for integration; path with lowest
sum of link weights between two nodes

k Degree Number of neighbors for a given node
L Leaf fraction Fraction of leaf nodes in the MST where a

leaf node is defined as a node with
degree one

D Diameter Longest shortest path of an MST
Th Tree hierarchy A hierarchical metric that quantifies the

tradeoff between large scale integration
in the MST and the overload of central
nodes.

j Degree
divergence

Measure of the broadness of the degree
distribution
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1. First, we first compared mean cortical functional con-
nectivity and functional network measures between
MS patients and healthy subjects for fMRI and MEG
separately using a multivariate general linear model
(GLM) with age, gender, and education as covariates.
The used multivariate GLM can be considered as a
one-way MANOVA or a multivariate regression anal-
ysis with more than one dependent variable, mean
cortical functional connectivity and functional net-
work measures in this case. Group membership (MS
patients versus healthy controls) was considered as
independent variable. Since effect size in males and
females may be different, effect size in each gender
group was also estimated by computing the relative
change within females or males between groups.

2. Second, only for those metrics that significantly differed
between groups, we computed Spearman correlations
between functional network properties on the one hand
and thalamic volumes, thalamo-cortical functional con-
nectivity, clinical disability (EDSS), and average cogni-
tion on the other hand in the MS patient group only
[Rousselet and Pernet, 2012]. For these analyses, we
used the average thalamo-cortical functional connectiv-
ity in the MS patient group.

For both steps, we corrected for the number of tests
with the false discovery rate (FDR) [Benjamini and Hoch-
berg, 1995].

RESULTS

Table Ireports subject characteristics. MS patients and
healthy subjects did not differ in gender or age distribu-
tion. Patient group of 83% consisted of relapsing-remitting
MS patients, 6% of secondary, and 11% of primary pro-
gressive MS patients. EDSS values ranged between 0 and
6.5 and average cognitive performance was significantly
worse (P< 0.001) in the MS patient group. Furthermore,
MS patients showed significant reduction in thalamic vol-
umes (Table I).

Functional Connectivity

In the first step of the analysis, differences in mean
cortical functional connectivity (i.e., averaged over cort-
ical ROIs) were assessed between groups for each MEG
frequency band separately and for fMRI. We found sig-
nificantly higher MEG cortical functional connectivity
in the theta band and significantly lower MEG cortical
functional connectivity in the gamma band for MS
patients (Fig. 3 and Supporting Information Table S1).
No significant differences between groups in mean
fMRI functional connectivity were found at the cortical
level.

However, BOLD thalamo-cortical functional connectiv-
ity was already studied region-wise in an overlapping
but larger cohort, and shown to be higher with respect to
especially occipital and temporal areas in MS patients
[Schoonheim et al., in press]. Also in this subpopulation,
we demonstrate a higher BOLD thalamo-cortical func-
tional connectivity in MS patients with especially tempo-
ral and occipital regions (see Supporting Information
Table S2).

Cortical Functional Networks

Conventional network analysis revealed that normalized
clustering values were significantly lower in MS patients
for all MEG frequency bands, except for the beta band.
Normalized path length was only significantly lower in
the theta band in MS patients (Fig. 4 and Supporting Infor-
mation Table S1). Together this indicates that cortical func-
tional networks obtained by MEG are shifted towards
more random network topology in MS patients, irrespec-
tive of the MEG frequency band. This was more promi-
nent for men than for women, as can be noted from the
effect sizes for the groups (Fig. 4 and Supporting Informa-
tion Table S1). For fMRI, no differences in conventional
network measures were found between the groups. How-
ever, note that within groups both clustering and path
length were higher for fMRI than for MEG, indicating that
the topology of fMRI obtained cortical functional networks
is more regular-like.

To characterize MST topology in both groups, we computed
MST leaf fraction, MST degree divergence, MST diameter and
MST tree hierarchy. MST analyses for MEG revealed lower

Figure 3.

Cortical functional connectivity. Mean cortical functional connec-

tivity (i.e., averaged over cortical ROIs and epochs [MEG]) is

compared between groups. Note the significantly higher func-

tional connectivity in the theta band for MS patients and lower

functional connectivity in the gamma band in MS patients. Com-

parison for fMRI based cortical functional connectivity revealed

no significant group differences. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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leaf fraction for the delta, theta, and alpha2 band in MS
patients compared to healthy subjects (Fig. 4 and Supporting
Information Table S1). This was accompanied by a lower
degree divergence in the delta, theta, and alpha1 alpha2 bands
in MS patients (Fig. 4 and Supporting Information Table S1).
Analysis of the remaining MST measures for MEG data only
revealed that the diameter of MSTs was larger in the theta
band in MS patients. Therefore, MSTs in MS patients obtained
with MEG tended to have a more path like (less integrated)
topology for the delta, theta, alpha1, and alpha2 frequency
bands, however, most prominently for the theta and alpha2
band (Fig. 5). In contrast to MEG, we did not find any differen-
ces between groups with respect to the MST analysis for fMRI
(Fig. 4 and Supporting Information Table S1). However, by
inspecting within group differences it is clear that MSTs
obtained from fMRI are characterized by lower leaf fraction
and lower degree divergence, indicating a more path-like
topology MST topology.

Cortical Functional Networks vs Thalamic

Volume and BOLD Thalamo-Cortical Functional

Connectivity

In the second step of the analysis, we computed correla-
tions between the network properties that significantly dif-
fered between groups and thalamic volume and BOLD
thalamo-cortical functional connectivity, only for MS
patients (Table III).

� With respect to conventional network measures, we
observed that thalamic volume was positively associ-
ated with normalized clustering (alpha1, alpha2, and
gamma band) and normalized path length (theta
band). This suggests that decreased thalamic volumes
in MS patients are associated with more random corti-
cal functional network topology. With respect to MST
measures, we observed that thalamic volumes in MS

Figure 4.

Conventional network and MST findings. Conventional network

measures (A) normalized clustering and (B) normalized path

length were compared between groups. MEG obtained cortical

functional networks were characterized by significantly lower nor-

malized clustering (delta, theta, alpha1, alpha2, and gamma band)

and lower normalized path length (theta band), indicating that

these networks are shifted towards random networks [Watts and

Strogatz 1998]. The MSTs of MS patients were characterized by

(C) lower leaf fraction (delta, theta, and alpha2 band) and (D)

lower degree divergence (delta, theta, alpha1, and alpha2 band).

This suggests that the MSTs of MS patients are shifted towards

more path-like trees (Fig. 5). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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patients were positively correlated with MST leaf frac-
tion (theta and alpha2 band) and MST degree diver-
gence (theta and alpha2 band). Thus, a more path-like
topology in MS patients is associated with decreased
thalamic volumes.

� BOLD thalamo-cortical functional connectivity was
also associated with MEG obtained network measures
in MS, however, only in the theta band. We found
negative correlations between BOLD thalamo-cortical
functional connectivity and clustering, MST leaf

Figure 5.

Main MST findings. Three MST configurations are depicted. The

MST on the left is known as a path which has a high diameter

(d 5 8), low number of leaf nodes (end nodes, depicted as dark

blue) and is characterized by low tree hierarchy, a measure that

quantifies the tradeoff between large scale integration and the

overload of central nodes. The MST on the extreme right is known

as a star which has a short diameter (d 5 2), a large number of leaf

nodes and is characterized by a high tree hierarchy. The MST in

the middle is an intermediate configuration between these two

extremes. For MEG we found a shift towards a more path-like

configuration in MS patients, that is, less efficient and less inte-

grated. In contrast to MEG, we found a shift towards a more star-

like configuration for fMRI. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

TABLE III. Correlations between functional network measures and BOLD thalamo-cortical functional connectivity,

thalamic atrophy, and clinical cognitive measures

Thalamic volume
BOLD thalamo-cortical
functional connectivity

Average
Cognition EDSS

Normalized clustering Delta 0.16 (0.15) 20.18 (0.10) 0.09 (0.40) 20.40 (<0.001)

Normalized clustering Theta 0.23 (0.03) 20.42 (<0.001) 0.13 (0.23) 20.17 (0.12)
Normalized clustering Alpha1 0.32 (0.003) 20.17 (0.13) 0.15 (0.19) 20.31 (0.004)

Normalized clustering Alpha2 0.42 (<0.001) 20.09 (0.42) 0.16 (0.14) 20.27 (0.01)

Normalized clustering Gamma 0.36 (0.001) 20.22 (0.05) 0.12 (0.28) 20.19 (0.08)
Normalized path length Theta 0.36 (0.001) 20.23 (0.04) 0.26 (0.02) 20.09 (0.40)
MST Leaf fraction Delta 0.09 (0.41) 20.24 (0.03) 0.12 (0.30) 20.40 (<0.001)

MST Leaf fraction Theta 0.33 (0.002) 20.31 (0.005) 0.22 (0.05) 20.30 (0.001)

MST Leaf fraction Alpha2 0.28 (0.01) 20.26 (0.02) 0.06 (0.56) 20.17 (0.13)
MST Diameter Theta 20.14 (0.21) 0.19 (0.1) 20.08 (0.46) 0.05 (0.65)
MST Degree divergence Delta 0.05 (0.67) 20.14 (0.23) 0.07 (0.54) 20.36 (0.001)

MST Degree divergence Theta 0.29 (0.007) 20.35 (0.001) 0.16 (0.14) 20.28 (0.01)

MST Degree divergence Alpha1 0.23 (0.04) 20.23 (0.04) 0.29 (0.007) 20.35 (0.001)

MST Degree divergence Alpha2 0.34 (0.002) 20.22 (0.05) 0.16 (0.15) 20.13 (0.23)

Values are reported as Spearman correlation values (P-value) (step 2 of the analysis).
Bold, significant after correcting for multiple comparisons by the FDR. Italic, the result is not significant anymore after correction for
multiple comparisons using the FDR (corrected for 4 3 14 tests) with FDR 5 pFDR *i/N. Here, pFDR 5 0.05 (usual significance value in
most statistical tests), i refers to the ranked index of the P-values that are computed and N to the number of tests.
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fraction and MST degree divergence in this frequency
band. Again, a more random and path-like topology
seemed to be associated with other disease effects in
MS such as increased BOLD thalamo-cortical func-
tional connectivity. Also, note that some MST meas-
ures, especially in the theta band, such as leaf fraction
and degree divergence were both associated with tha-
lamic atrophy and BOLD thalamo-cortical functional
connectivity (Fig. 6).

Cortical Functional Networks vs Clinical and

Cognitive Dysfunction

To investigate if a more random or path-like network
topology in MS had clinical significance, we computed cor-
relations between MEG network measures that signifi-

cantly differed between the groups and average cognition
and physical disability (EDSS). These correlations were
only computed for the MS patient group (Table III).

� With respect to average cognition, we only found a
positive correlation between this outcome variable
with MST degree divergence in the alpha1 band.
� For EDSS, we found significant negative correlations

with several MEG obtained network measures in sev-
eral frequency bands: normalized clustering (delta,
alpha1, and alpha2 band), MST leaf fraction (delta,
theta, alpha1), MST degree divergence (delta, theta,
alpha1) and MST tree hierarchy (alpha2 band). These
findings demonstrate that a more random or path-like
network topology in MS in several frequency bands is
indeed related to clinical and cognitive status. Note
that some network measures that had significant cor-
relations with EDSS were also associated with

Figure 6.

Correlation analysis. These scatter plots illustrate the relation-

ship between disruption of cortical functional network topology

in the theta band with other pathological characteristics of the

disease, such as thalamic atrophy and increased BOLD thalamo-

cortical functional connectivity, and with clinical status in MS

(EDSS). Although other network measures were also related to

thalamic pathology and clinical status, we illustrate that two net-

work measures itself were related to both thalamic pathology

and clinical status. MST leaf fraction in the theta band in MS

patients was positively correlated to thalamic volume (A), but

negatively correlated to BOLD thalamo-cortical functional con-

nectivity (B) and EDSS (C). Similarly, MST degree divergence in

the theta band in MS patients was positively correlated to tha-

lamic volume (D), but also negatively correlated to BOLD

thalamo-cortical functional connectivity (E) and EDSS (F), that

is, general decrease in the degree of nodes seemed to be a sign

of damage. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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reduced thalamic volume and increased BOLD
thalamo-cortical functional connectivity. This was
especially the case for MST measures in the theta
band, such as the degree divergence and the leaf
fraction.

DISCUSSION

We hypothesized that widespread disruption of the
thalamocortical system, consisting of cortical functional
networks connected with the thalamus, would be asso-
ciated with physical disability and cognitive dysfunc-
tion (Fig. 1). Our main findings were: (1) a disruption
of cortical functional connectivity, as measured with
MEG, and a shift towards a more random functional
network topology in several MEG frequency bands in
early MS. This was confirmed by MST findings that
showed a less integrated (more path-like) tree topology
for the same MEG frequency bands; (2) MS patients
showed increased thalamocortical functional connectiv-
ity and thalamic atrophy, which (3) was associated
with the shift towards a more random network topol-
ogy or more path-like tree topology; (4) last, for only
MS patients, we demonstrated that this shift in network
topology was associated with worse cognitive and
physical disability.

Functional Connectivity

Functional connectivity analyses revealed higher MEG
functional connectivity in the theta band and lower func-
tional connectivity in the gamma band. Higher functional
connectivity in the theta band has been reported in pre-
vious studies in different disease cohorts and has been
positively associated with disruption of gray matter
thickness correlations in MS [Schoonheim et al., 2011;
Tewarie et al., 2014]. Lower functional connectivity in
the gamma band has not been a consistent finding in
MEG and electroencephalography (EEG) studies so far,
which makes the interpretation of this finding less
straightforward, especially considering the potential for
biases due to contamination by muscle activity [Pope
et al., 2009]. We also mention a trend of lower functional
connectivity in the alpha2 band and a trend of higher
functional connectivity in the beta band as these current
findings, especially for the alpha2 band, have also been
reported consistently in previous studies and have been
linked to clinical and cognitive dysfunction [Cover et al.,
2006; Leocani et al., 2000; Schoonheim et al., 2011;
Tewarie et al., 2013b; Tewarie et al., 2014].

Cortical Functional Networks

MEG functional network analyses revealed disruption of
cortical functional networks in early MS quantified by
both conventional network measures as well as MST meas-

ures. Using conventional network measures, we found a
shift toward a more random network topology in MS
patients for several MEG frequency bands (delta, theta,
alpha1, alpha2, and gamma band). A more random net-
work topology in the alpha2 band has also been reported
in a previous MEG study in an MS sample with longer
disease duration [Tewarie et al., 2014]. The same study
reported a more regular network topology in the theta
band, which was also in agreement with one earlier MEG
study analyzing an MS sample with similar disease dura-
tion as this study [Schoonheim et al., 2011]. Discrepancy
between the latter studies and this study may be caused
by the use of a different functional connectivity metric,
analysis at the sensor level in one of the previous study,
due to biases inherent to conventional network analysis
such as differences in average functional connectivity, dif-
ferences in density between networks or due to difference
in disease duration. Therefore, we also computed MST
measures to control for these biases and we found that
MSTs in MS patients displayed a less integrated, more
path-like, tree topology (delta, theta, alpha1, alpha2). This
type of topology was also accompanied with lower degree
divergence, indicative of a loss of high degree nodes or an
overall decrease in degrees of nodes in the network, which
is generally observed in neurological disorders [Crossley
et al., 2014]. The shift toward a more path-like tree topol-
ogy and thus less integrated MEG network has been a
consistent finding in MS as has also been linked to worse
cognitive performance [Tewarie et al., 2013a; Tewarie
et al., 2014]. Other recent MEG studies involving patients
with Parkinson’s disease or gliomas also found that shifts
toward more path-like tree topologies were signs of mal-
adaptation or cognitive dysfunction [Olde Dubbelink, in
preparation; van Dellen E. et al., 2014]. The hypothesis is
that an optimal configuration for a tree should allow for
large scale integration and at the same time it has to pre-
vent overload of central nodes. Such an optimal configura-
tion is probably somewhere between a path-like topology
and a star-like topology and may constitute an optimum
level of hierarchy and allows for efficiency. A shift toward
a more path-like topology in MS could therefore also indi-
cate a less efficient and hierarchical network which is
required for integration of distinct cognitive functions.

Cortical Functional Networks vs Thalamic

Pathology and Disability

The thalamus plays a central role in transferring infor-
mation in the brain and is one of the most important pre-
dictors for clinical and cognitive status in MS [Schoonheim
et al., 2012]. We therefore hypothesized that atrophy of
this important structure would co-occur with widespread
disintegration of functional brain connectivity. In this
study, we indeed found that thalamic atrophy was associ-
ated with a shift to a more random cortical network topol-
ogy or a more path-like tree topology. We suggest that
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this relation between thalamic atrophy and disintegration
may partially be mediated by increased BOLD thalamo-
cortical functional connectivity, which might be maladap-
tive in this context. The clinical relevance of disruption of
this thalamo-cortical system is that less integrated func-
tional networks were associated with worse cognitive per-
formance and especially with worse physical disability.
This indicates that physical disability is not only explained
by pathology in the motor cortex or pyramidal tract alone
but is also influenced by global network damage. The cor-
relations between network measures and clinical status
were moderate, which indicates that a part of the occur-
ring physical disability needs to be explained by other
measures, such as spinal cord damage since these are not
captured by brain related measures [Daams et al., 2014].

Not all frequency bands that showed an abnormal net-

work layout were related to thalamic pathology. For exam-

ple, network disruption in the delta band showed

associations with worse physical disability, but not with

BOLD thalamo-cortical functional connectivity or thalamic

atrophy, indicating that worse physical disability may not

merely be associated by changes due to thalamic atrophy

but also with cortical pathology that may be independent

of thalamic atrophy. This also indicates that the relation

between disintegration of cortical functional brain net-

works and thalamic atrophy is frequency dependent,

which makes sense given the knowledge that the role of

the thalamus as cogenerator of brain rhythms and oscilla-

tions is frequency specific [Grossberg and Versace, 2008;

Hughes and Crunelli, 2005; Klimesch et al., 2007; Steriade,

1997].
In this study, we analyzed associations between func-

tional networks and thalamic atrophy in early MS and
therefore we have to stress that we cannot make causal
claims that thalamic atrophy causes disruption of cortical
functional networks. In other words: this relation might be
reverse, causally bidirectional or driven by a third com-
mon source. However, in analyses of a previous study, we
showed that increased BOLD thalamo-cortical functional
connectivity was only present in more severely cognitively
impaired patients. Thalamic atrophy was worst in these
patients as well, although it was also significantly present
in cognitively preserved patients [Schoonheim et al., in
press]. Therefore, it is likely that thalamic atrophy may
precede increases in BOLD thalamo-cortical functional
connectivity, and as a result may also play a causal role
for disintegration of cortical functional networks. Future
longitudinal studies are needed to explore this hypothesis
further. However, on the other hand, increased BOLD
thalamo-cortical functional connectivity itself may lead to
structural damage and thus contribute to thalamic atrophy
since it has been demonstrated in modelling studies that
increased firing rates or functional connectivity due to dis-
inhibition may lead to synaptic damage, especially in cen-
tral regions, such as the thalamus [de Haan W. et al., 2012;
Kostic et al., 2013]. It is also plausible that increased tha-

lamic connectivity might lead to increased local neuro-
transmitter levels, perhaps leading to excitotoxicity.

Furthermore, the thalamus is involved in feedback pro-
jections (first order relays) and in feedforward cortico-
thalamo-cortical routes (higher order relays) [Sherman,
2007]. These feedforward routes that travel trough the
thalamus may serve as parallel pathways to cortico-
cortical projections and could play an important role in
integration of information in functional cortical networks.
Therefore, thalamic atrophy in MS could impact these par-
allel feedforward cortico-thalamo-cortical projections,
which could eventually lead to less integrated cortical
functional networks. Last, we have to stress that the rela-
tionship between thalamic atrophy and disruption of corti-
cal functional networks could also be driven by a third
common global process. For example, white matter lesions
or decreased white matter integrity could be associated
with structural disconnection between the cortex and the
thalamus [Steenwijk et al., 2014]. Similarly, diffuse occur-
rence of gray matter lesions in both the cortex and the
thalamus [Minagar et al., 2013] may lead to both thalamic
atrophy and altered cortical functional networks. Future
studies are needed to tease these factors apart.

Methodological Considerations

We need to mention some methodological disadvan-
tages and advantages of our approach. First, in our beam-
forming analysis of MEG data we selected the time-series
of one voxel (i.e., the voxel with the highest power) as a
representation for the whole ROI. This can be regarded as
a reduction of data. However, averaging over voxels in a
ROI could introduce biases due to differences in ROI size
leading to time-series having different signal-to-noise-
ratios. Given these biases with averaging over sources, we
chose to adhere to methods used previously in our group
[Hillebrand et al., 2012]. Furthermore, we used a single
sphere as a volume conductor model, which may have
lead to localisation inaccuracies, particularly near temporal
regions [Lalancette et al., 2011]. However, we have
assumed that the effects of these potential inaccuracies are
negligible, given the spatial resolution of the AAL atlas in
these regions. Second, functional network analyses
revealed widespread disruption of cortical MEG functional
networks, which was not reflected in cortical fMRI func-
tional networks. This could be caused by either higher sen-
sitivity of MEG due to its higher temporal resolution,
and/or due to use of an atlas as most fMRI findings in MS
have been found at the voxel level and usage of an atlas
might minimize the advantage of having a high spatial
resolution for fMRI [Bonavita et al., 2011; Hawellek et al.,
2011; Rocca et al., 2012; Schoonheim et al., 2013b]. Third,
MSTs mainly capture the strongest functional connections
in the functional networks, which were not the same for
MEG and fMRI. For fMRI we observed the highest func-
tional connectivity in homologous interhemispheric
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connectivity, which was not the case for MEG. Neverthe-
less, the inclusion of fMRI in addition to MEG proved to
provide important additional information regarding func-
tional connectivity of the thalamus, as it enabled the obser-
vation that increased BOLD thalamo-cortical functional
connectivity was related to disruption of MEG functional
networks.

Fourth, we did not include the left and right thalamus
as a node in the fMRI functional network. The rationale
behind this was to construct functional networks for MEG
and fMRI with equal size (equal number of nodes) since
differences in network size can cause biases in network
comparisons [van Wijk et al., 2010]. The rationale to leave
out subcortical ROIs in the AAL atlas and therefore in the
MEG functional networks is that the MEG sensitivity for
activity in these ROIs is very low [Hillebrand and Barnes,
2002]. Estimated time-series for these regions are conse-
quently very noisy, and the spatial resolution for these
deep structures is poor. One would therefore not be sure
whether an estimated source corresponding to the thala-
mus was only associated with thalamus activity or also
with activity from surrounding deep gray matter struc-
tures or even from the cortex. Fifth, there was a mismatch
between the numbers of MS patients and healthy subjects.
A larger healthy subject group could have led to more reli-
able results for this group and a higher sensitivity to pick
up disease effects. Sixth, in this first multimodal fMRI/
MEG analysis in MS, we omitted computation of nodal
network properties in order to preserve a clear message.
However, future studies could examine whether regions
with different roles in the functional network are affected
differentially by thalamic atrophy and thalamo-cortical
interactions, and how this relates to clinical symptoms and
cognition. Last, the main advantages of the used MEG
atlas-based beamformer approach over sensor-level analy-
ses is that it improves the signal-to-noise of the recon-
structed timeseries [Adjamian et al., 2009], eases
interpretation in terms of involved anatomical structures,
and the usage of an atlas allows for direct comparison of
MEG with fMRI.

CONCLUSIONS

There is a need for an integrated and cross-modal
framework that is able to clarify how complex pathological
alterations affecting both structure and function are related
to each other and how the interplay between these eventu-
ally lead to clinical and cognitive problems in MS. This
study was a step toward such an integrated framework
where we found that thalamic atrophy, one of the most
important predictors of clinical and cognitive dysfunction
in MS, was associated with less integrated cortical func-
tional networks, possibly mediated by increased BOLD
thalamo-cortical functional connectivity. This is the first
multimodal fMRI and MEG study that analyzed disinte-
gration of functional networks in relation to thalamic atro-

phy in early MS, in which we have demonstrated that a
multimodal approach has an advantage over an unimodal
approach as MEG and fMRI findings were complemen-
tary. The importance of these findings is that it demon-
strates how two different pathological features in early MS
are indeed related and how they are associated with phys-
ical disability and cognitive dysfunction. Future studies
are warranted to investigate to what extent disruption of
this thalamo-cortical system occurs in latter stages of the
disease or whether it is different between MS disease
types.
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