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Abstract: Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive
dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood.
Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter
(GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate
model-driven methods preventing detection of subtle and spatially distributed differences in brain
anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial
locations yielding a discriminative power beyond that of single voxels. Here we investigated for the
first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach.
We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural
T1-weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in chil-
dren/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univari-
ate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases
(sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate
NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement
with the SVM weight maps representing the most relevant brain regions for group discrimination.
These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-
driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology.
Our results provide further insight into the neuroanatomical correlates of known features of the cogni-
tive phenotype of NF1. Hum Brain Mapp 35:89–106, 2014. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The brain changes during development as a function of
genetic and environmental conditions, as well as in the
context of neurodevelopmental disorders. To understand
abnormal neurodevelopment and its consequences it is
fundamental to investigate the structural phenotype and
its possible role in cognition [Hoeft et al., 2008].

Neurofibromatosis Type 1 (NF1) is a common, single
gene, developmental disorder with an incidence of 1 in
3,500, characterized by increased predisposition for tumor
development and cognitive deficits [Kayl and Moore, 2000].
NF1 features are detectable in infancy or early childhood,
suggesting a role for the NF1 gene in normal development
[Daston and Ratner, 1992]. Previous studies indicated that
the NF1 gene is expressed throughout the brain during de-
velopment and in adulthood, both in neurons and glia
[Daston and Ratner, 1992; Zhu et al., 2005]. While during
development the protein product of the NF1 gene, neurofi-
bromin, is expressed in all organ systems, in adult tissues
expression predominates in the nervous system (including
the cerebral cortex, cerebellum, and brainstem) [Daston and
Ratner, 1992; Gutmann et al., 1995]. Neurofibromin is
involved in cell proliferation and differentiation [Lee et al.,
2010], suggesting that brain structure might be affected in
NF1. Indeed, an increase in total brain volume is a widely
reported structural abnormality [Cutting et al., 2002; Payne
et al., 2010]. Other studies show evidence for more specific
localized structural deficits, e.g., the thalamus and the cor-
pus callosum [Cutting et al., 2000; Dubovsky et al., 2001;
Greenwood et al., 2005; Kayl et al., 2000; Moore et al., 2000;
Payne et al., 2010; Steen et al., 2001].

Importantly, individuals with NF1 and no brain tumors
show impaired cognitive abilities suggesting anomalous
brain function or structure independently of focal lesions
[De Winter et al., 1999; Moore et al., 1994; Schrimsher
et al., 2003]. Furthermore, visuospatial, memory, and
motor deficits have so far been described in individuals
with NF1 without clearly identified brain mechanisms
[Hyman et al., 2006, 2005; Levine et al., 2006; North,
2000]. The prominent visuospatial deficits reported in
these patients suggest parietal dysfunction [Billingsley
et al., 2002; Clements-Stephens, et al., 2008] while studies
using NF1 animal models indicate abnormal function of
the hippocampus, prefrontal cortex and striatum, related
to visuospatial memory, working memory, and atten-
tional deficits, respectively [Costa et al., 2002; Park et al.,
2009].

Magnetic resonance imaging (MRI) is a standard method
for studying brain structure, with studies mainly focusing
either on volume changes in particular anatomical struc-
tures, lobes, or on the whole brain [Bray et al., 2009; Hoeft
et al., 2008; Mietchen and Gaser, 2009]. To date, only uni-
variate analysis methods have been applied to study brain
anatomical alterations in patients with NF1 [Payne et al.,
2010]. In contrast, multivariate methods enable the identifi-
cation of subtle neuroanatomical discriminative patterns

encoded across brain regions, in the absence of a priori
hypotheses. This method determines group differences
from a large number of simultaneously evaluated spatial
locations (voxels). Notably, individual voxels might not be
significantly different between groups but can still contrib-
ute to a significantly different overall spatial pattern [Ecker
et al., 2010; Marzelli et al., 2011; Pereira et al., 2009]. In
NF1, as in other clinical populations, multivariate pattern
analysis techniques are of particular interest for studying
the brain anatomy, as studies have shown that these disor-
ders rarely affect single brain structures [Bray et al., 2009].
We hypothesize that structural brain alterations would
involve multiple and distributed anatomical structures of
the brain, composing a complex spatial pattern that may
not be easily observed using univariate approaches. Here
we used a data-driven multivariate classifier, employing a
support vector machine (SVM) algorithm, which has previ-
ously been employed to investigate group differences with
structural MRI [Ecker et al., 2010; Klöppel et al., 2008;
Marzelli et al., 2011]. We used linear SVM to classify
whole-brain high-resolution anatomical images. We
employed a leave-two-out cross-validation procedure to
discriminate participants with NF1 from non-affected con-
trols and to identify differences in neuroanatomical spatial
patterns. Furthermore, we also used the standard univari-
ate voxel-based morphometry (VBM) analysis, commonly
used for whole brain structural analysis. This method is
not directly comparable with the multivariate classification
technique, but allowed us to better interpret the meaning
of the weights identified by SVM analysis while at the
same time confirming whether the distributed patterns
highlighted with SVM included locations identified by
VBM. The identified spatial patterns and their functional
significance provide novel insights on current pathophys-
iological hypotheses in NF1.

METHODS

Participants

For this study, we recruited 112 individuals, 26 NF1
children/adolescents, 31 control children/adolescents, 20
NF1 adults, and 35 control adults. Although NF1 is an
autosomal dominant genetic disorder, novel mutations are
common and therefore diagnosis does not rely solely on
genetic testing. All participants with NF1 were recruited
and diagnosed in collaboration with the Clinical Genetics
Department of the Pediatrics Hospital of Coimbra accord-
ing to the NIH clinical criteria for NF1 [Neurofibromatosis.
Conference statement. National Institutes of Health Con-
sensus Development Conference, 1988]. The presence of
two or more of the following criteria constitutes definitive
diagnosis:

1. Six or more ‘‘cafe-au-lait’’ spots greater than 5 mm in
diameter in prepubertal children or greater than 15
mm in diameter in postpubertal individuals.
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2. Two or more neurofibromas of any form or one plexi-
form neurofibroma.

3. Freckling in the axillary or inguinal regions.
4. Optic glioma.
5. Two or more Lisch nodules (iris hamartomas).
6. A distinctive osseous lesion such as sphenoid dyspla-

sia or thinning of long bone cortex with or without
pseudoarthrosis.

7. A first-degree relative with NF1 by the above criteria.

Symptom severity is variable from mild symptoms in
most individuals diagnosed with NF1 to some debilitating
cases, characterized by severe cognitive impairments and
serious medical complications [Tonsgard, 2006]. Here, we
investigated individuals without brain tumors to prove
that a phenotype is still present in NF1 in the absence of
severe structural abnormalities.

Children and adolescent controls were recruited among
unaffected siblings and from a local school. Adult controls
were recruited among the unaffected parents or from an
adult education school. Neuroradiological assessments of
FLAIR and T1-weighted MRI scans were carried out by an
experienced neuroradiologist in order to detect central
nervous system pathologies. We excluded participants
with a clinically significant intracranial abnormality on
MRI, as intracranial tumor, optic glioma, or other imaging
abnormalities. T2-hyperintensities were not considered an
exclusion criterion. T2-hyperintensities are the most com-
monly identified abnormalities on T2-weighted MR images
in participants with NF1. T2-hyperintensities tend to
resolve with adulthood and the hypothesis that these
lesions are associated cognitive impairment in children
with NF1 remains controversial [Payne et al., 2010]. None
of the participants had a psychiatric illness and individu-
als with other neurological problems (e.g., epilepsy) were
excluded. We excluded 13 participants based on these
criteria.

T1-weighted MRI brain scans from 99 participants di-
vided in two groups were analyzed: a group of children/
adolescents (7–17 years old), 21 participants diagnosed
with NF1 and 29 age- and gender-matched controls; and a
group of adults (19–50 years old), 18 participants with
NF1 and 31 age- and gender-matched controls. Overall, 95
participants were right handed and only 4 participants
were left handed. Demographic data for the included par-
ticipants are reported in Table I.

In order to correlate the level of cognitive impairments
with the output of SVM classification, we performed the
neuropsychological characterization of the participants. In
the group of children/adolescents, we applied the Portu-
guese adapted version of the Wechsler Intelligence Scale
for children (WISC-III) to measure the IQ [Wechsler, 2003].
For adult participants, we applied the first set of the Raven
Advanced Progressive Matrices [Raven, 1947] as an indica-
tion of non-verbal intelligence. Participants in both age
groups also performed the Benton’s Judgment of Line Ori-
entation (JLO) test, a standardized measure of visuospatial

judgment [Benton et al., 1978]. The neuropsychological
characterization of a subgroup of these patients has al-
ready been reported before in our previous study [Ribeiro
et al., 2012]. Neuropsychological differences between par-
ticipants with NF1 and controls were evaluated using in-
dependent samples t-tests, after testing for normality of
the data. In all cases we failed to reject the null hypothesis
that the samples came from a normal distribution
(except for JLO, in which case non parametric tests were
used). Neuropsychological characterization is reported in
Table II.

Standard Protocol Approvals, Registrations, and

Patient Consents

The study was approved by the Ethics Committees of
the Faculty of Medicine of the University of Coimbra and
of the Pediatrics Hospital of the University of Coimbra.
Written informed consent was obtained from the adult
participants and from the legal representative in the case
of participants under 18 years old. Oral or written consent
was also obtained from participants under 18 years old.

MR Image Acquisition and Preprocessing

All subjects were scanned at the Portuguese Brain Imag-
ing Network facilities in Coimbra, Portugal, on a 3T
research scanner (Magnetom TIM Trio, Siemens) using a
12-channel birdcage head coil. Two high-resolution whole-
brain anatomical T1-weighted MR images (MPRAGE
sequence, 1 � 1 � 1 mm3 voxel size, repetition time (TR)
2.3 s, echo time (TE) 2.98 ms, flip angle (FA) 9�, field of
view (FOV) 256 � 256, 160 slices) were acquired for each
participant, as well as a T2-weighted MR image (FLAIR
sequence, 1 � 1 � 1 mm3 voxel size, TR 5 s, TE 2.98 ms,
inversion time (TI) 1.8 s, FOV 250 � 250, 160 slices).

Data were pre-processed using SPM8 software (Well-
come Trust Centre for Neuroimaging, Institute of Neurol-
ogy, UCL, London, UK, http://www.fil.ion.ucl.ac.uk/
spm) and VBM8 toolbox (http://dbm.neuro.uni-jena.de/
vbm8/) in the Matlab computing environment (version
7.6.0 R2008a, The Mathworks, MA). Each T1-weighted
native image volume was manually aligned onto the axis

TABLE I. Demographic data on study cohort

Group

Children/adolescents Adults

NF1 Controls NF1 Controls

n 21 29 18 31
Age 11.12 (2.35) 12.08 (2.41) 33.05 (5.42) 34.97 (7.93)
Gender

(F/M)
14/7 16/13 17/1 25/6

Data expressed as mean (SD). There were no significant statistical
differences in age (using independent samples t-tests) and gender
ratios (using Chi-square test) between the clinical groups.
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of the anterior and posterior commisures. Images were
automatically corrected for inhomogeneity of the magnetic
field and segmented into grey matter (GM), white matter
(WM), and cerebrospinal fluid, with the value at each
voxel representing the proportion of the corresponding tis-
sue type [Ashburner and Friston, 2005]. For the adults’
group, we used the standard MNI template for spatial
normalization and segmentation. For the children/adoles-
cents’ group, we created a custom template with the
TOM toolbox [Wilke et al., 2008]. We used the high-
dimensional registration DARTEL algorithm in SPM
[Ashburner, 2007] to spatially align each subject’s image
with the corresponding template. This high-dimensional
normalization procedure in SPM includes both linear
(affine) and nonlinear components. The affine scaling
matches the subject brain to the template in overall shape
and the nonlinear component expands and contracts
some brain regions on a locally specific basis. To correct
for the effects of spatial normalization in our study, we
used a non-linear only ‘‘modulation’’ step. This accounts
for local amount of expansion or contraction of brain
structures, so that the total amount of GM/WM in the
modulated images remains the same as it would be in
the original images. For instance, if spatial normalization
doubles the volume of a certain structure, then the correc-
tion will halve the intensity of the signal in this region.
With the adjustment, we can compare the total volume of
tissue in each structure corrected for individual brain size
(tissue volume per unit volume of spatially normalized
image) [Ashburner, 2009; Ashburner and Friston, 2000],
which we will denominate as relative volume. If the lin-
ear (affine) component of the modulation had been
included, through the determinant of the affine matrix
[see Buckner et al., 2004 for a complete review of the
method] the same corrections would have been applied
on a global scale: i.e., larger brains would show a globally
higher intensity due to the necessary global contraction
to fit the template, and vice-versa. We have chosen to
ignore the affine modulation step, so the GM/WM maps
are also corrected for overall global size and shape and

there is no need to include global measures as nuisance
covariates in subsequent statistical models [Ashburner,
2009].

We also generated custom GM and WM templates for
each group (children/adolescents and adults) from GM
and WM images of each group’s subjects, for optimization
of the segmentation procedure and for presentation of the
results. Global brain volumes were determined through
these automatic segmentation procedures. Differences
between participants with NF1 and controls were eval-
uated using independent samples t-tests. Volumetric meas-
ures for the included participants are reported in Table II.

Support Vector Pattern Classification

As a supervised learning method, the SVM algorithm
determines a map between features of the data and the
associated label. In the context of our study, the features
of the data are the intensity values in each voxel of the
segmented and modulated volume images (GM or WM),
which represent the relative volume of tissue (as discussed
earlier) and the label of each image is the group to which
it belongs (NF1 or Control). Aiming at distinguishing the
images into two discrete classes, we perform a binary clas-
sification task, in which each image is classified individu-
ally as ‘‘NF1’’ or ‘‘Control.’’ Prior to classification, each
feature is scaled to a z-score in the matrix containing all
the participants. The z-score is computed for each voxel
(corresponding to a column in the data matrix while each
image of an individual is a row of the matrix) using the
mean and standard deviation along the column. After scal-
ing, each voxel will have mean 0 and standard deviation
1, compensating for a possible wider variation in signal
amplitude in some voxels than others [Pereira et al., 2009].
A set of images is used to train the classifier to learn the
neuroanatomical relationships between the relative volume
across voxels and the group membership. In the training
of the classifier, a mathematical decision function that best
distinguishes the images of the two groups is established.

TABLE II. Volumetric and neuropsychological measures on patients and control groups

Group

Children/adolescents Adults

NF1 Controls NF1 Controls

Grey matter (ml) 701.63 (111.73) 740.79 (88.85) 654.97* (55.50) 616.51* (51.06)
White matter (ml) 498.33* (59.44) 456.76* (54.08) 556.02** (51.62) 475.50** (56.75)
Cerebral spinal Fluid (ml) 237.82 (79.94) 210.76 (30.29) 206.79 (34.94) 195.71 (19.12)
Brain total (ml) 1437.78 (136.96) 1408.31 (141.82) 1417.78** (113.37) 1287.72** (111.82)
Full-scale IQ 96.60* (15.21)a 114.42* (20.53)b — —
Raven score — — 0.50* (0.23)c 0.66* (0.23)d

JLO score 16.89** (6.29)e 24.26** (3.97)f 17.94* (4.22)g 22.43* (6.05)a

Data expressed as mean (SD). Significant group differences (NF1 vs. Controls) are marked: *P < 0.05, **P < 0.001.
JLO: Judgment of Line Orientation test.
a,b,c,d,e,f,gn ¼ 21, 24, 18, 22, 19, 23, 18.
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Once the decision function is learned, the model can be
applied to predict the group assignment of a previously
unseen test image [Pereira et al., 2009]. We used a linear
SVM due to its simplicity, interpretability, and generally
good performance [Pereira et al., 2009]. The linear classi-
fier predicts the class of the test image based on a linear
combination of the features.

In high-dimensional problems, as is the case of the
whole-brain approach in our study, it is likely that only a
subset of voxels will actually provide enough information
for classification. In order to reduce the number of voxels
used in the classification task, we used a simple filtering
approach, the Fisher score, which allows choosing the vox-
els that are most discriminative between classes. The
Fisher criterion score is a simple filtering approach, inde-
pendent of the classifier that uses inter- and intra-class
variance to measure the power of the feature in discrimi-
nating the examples’ labels [Chang and Lin, 2008]. The
higher the F-score the more discriminative is the feature.
The voxels were ranked by discriminative power regard-
ing the class and we selected the n voxels with highest dis-
criminative power for classification. We analyzed images
from the different age groups (children/adolescents or
adults) and tissue type (GM or WM) separately, using 100,
1,000, 10,000, 50,000, 100,000, or 150,000 voxels. Impor-
tantly, the feature selection step was performed on the
training set only.

To extract more general conclusions about the structural
patterns distinguishing patients with NF1 from controls
we used a Leave-Two-Out Cross-Validation (L2OCV)
method [Bray et al., 2009; Pereira et al., 2009]. In the
L2OCV method, pairs of images (one from each class) are
left out for testing the model in each L2OCV iteration. In
our procedure, each image of one class was tested paired
with each image of the other class and this procedure was
repeated 100 times. Given the larger number of controls
than participants with NF1 in our data set, a number of
control participants (8 in the children/adolescents and 13
in the adults) were randomly excluded in each of the 100
L2OCV repetitions, ensuring that the classification was
performed with the same number of participants for each
clinical group. After constructing the training set of each
cross-validation fold, the F-score ranking of all the voxels
was computed only in this set. Then the highest n ranked
voxels were selected to form the reduced training set and
the same voxels were selected in the test set to test the
examples in the test fold of the cross-validation iteration.
We repeated the L2OCV 100 times, an arbitrary value, to
ensure that each participant would be tested several times
and to build a sample of classification accuracy values to
compare with the sample of accuracy values obtained with
permuted labels. Each participant was included in L2OCV
procedure 84 times, on average. We then computed the
mean sensitivity (measuring correct identification of NF1
images), specificity (measuring correct identification of
control images), and classification accuracy (the proportion
of correct predictions) over all iterations of the procedure.

To evaluate the statistical significance of the classification
results we needed to determine the probability of obtaining
the observed classification results if the null hypothesis
was true (that there is no information about the label in the
data). Due to the large number of voxels and training/test-
ing trials it was not computationally feasible to generate
the null distribution by permutation for each cross-valida-
tion fold in each repetition [Golland and Fischl, 2003; Pe-
reira et al., 2009]. We rather repeated 200 times the same
L2OCV procedure with a different shuffling of the labels
each time. Over many repetitions, this yields a sample of
classification results under the null hypothesis that there is
no class information in the data [Pereira and Botvinick,
2011]. Normality of the distribution was assessed with the
Shapiro–Wilk test (in all cases failed to reject the null hy-
pothesis) and we used the t distribution to assess the sig-
nificance of the classification results. We performed
independent sample t-tests to compare the mean classifica-
tion performance values (accuracy, sensitivity and specific-
ity) between the real tests distribution and the distribution
from the tests with randomized labels to extract the corre-
sponding P-values [Kaplan and Meyer, 2012].

Discriminative Patterns

Linear SVM determines the weights of the classification
model during training. The weights, one for each voxel,
can be used to characterize the specific pattern of brain
differences between NF1 and control brains. Although not
in all cases, the absolute values of the weights often indi-
cate which voxels are more important for classification
[Cristianini and Shawe-Taylor, 2000]. A higher absolute
weight indicates that the voxel is considered more in
determining the group assignment than another voxel
with lower weight. This helps to identify the brain regions
that strongly contributed, albeit not alone, to the discrimi-
nation between individuals with NF1 and controls in the
GM or WM tissues. Note that the interpretation of the vox-
els’ weights of a linear SVM classifier must be done with
care, because although the sign and strength of the weight
of a voxel may often imply the sign and strength of the
correlation that a feature has with the labels, this does not
always hold true, given the multivariate nature of the deci-
sion boundary [Pereira and Botvinick, 2011]. In principle,
a positive/negative weight means higher/lower tissue rel-
ative volume in patients than in controls [Ecker et al.,
2010], respectively, but it can really only be determined
from univariate assessment (which our VBM approach
provides). Thus, we examined how the combined relation-
ships between the voxels contribute to the discrimination
by analyzing the distribution of the voxels’ weights, and
used VBM results to inform the meaning of SVM patterns.
We mapped the voxels’ weights in the custom GM and
WM templates for each group. As the cross-validation
method comprises the training of many SVM models, we
averaged the voxels’ weights across iterations to determine
the spatial discriminative pattern of tissue relative volume
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differences. We also extracted the discriminative map from
an SVM model trained with the entire datasets (children/
adolescents and adults separately), which resulted in a
pattern very similar to the weight vector of each L2OCV
iteration. We discuss the discriminative maps in terms of
the regions with strong weights, contained within the
identified distributed patterns, and its probable functional
significance to the cognitive phenotype of NF1. Note that
these regions should be seen as components of a complex
and distributed network of subtle differences in the NF1
brain.

Voxel-Based Morphometry Analysis

Univariate VBM is a traditionally used univariate
method to study whole brain morphometry, when no a
priori hypotheses are available [Ashburner and Friston,
2000]. Thus, we performed VBM in the same GM/WM
segments used in the classification analysis in order to
gain information about voxel-wise local volumetric differ-
ences that can help the interpretation of the SVM findings.
We performed VBM analysis comparing NF1 and control
brains in each group, adults and children/adolescents.
First, we smoothed the modulated normalized GM and
WM volume images with 3-dimensional 8-mm full-width-
at-half-maximum (FWHM) isotropic Gaussian kernels.
Smoothing in VBM is required to guarantee normality of
the data for subsequent statistical analysis. We then
applied the general linear model (GLM) at each voxel
using SPM8 and VBM8 toolbox to investigate between-
group differences in GM or WM regional volume. Statisti-
cal inference of significant clusters of volumetric differen-
ces (NF1 vs. controls) in GM and WM was performed
using a voxel-wise two-sample t-test corrected for multiple
comparisons. We used a voxel level P-value < 0.05 cor-
rected employing the family wise error (FWE) rate and
accounting for non-uniform smoothness of the data [Haya-
saka et al., 2004; Worsley et al., 1999]. When there were no
suprathreshold voxels, we lowered the statistical strin-
gency to uncorrected P-value < 0.001 to provide heuristic
information on the meaning of the sign of SVM weight
maps. To display the regions showing changes that might
be involved in NF1, the output maps were overlaid onto
custom GM and WM templates for each group.

RESULTS

Neuropsychological Characterization and

Volumetric Measurements

Volumetric and neuropsychological measures for the
included participants are reported in Table II.

Children and adolescents with NF1 had significantly
higher WM volumes than controls (P < 0.05). In contrast,
GM volume and total intracranial volume were not signifi-
cantly different from control levels. In adult participants,

statistically significant volumetric differences were found
in the global volume of GM (P < 0.05), WM (P < 0.001),
and whole brain (P < 0.05). In both children/adolescents
and adults, we found statistically significant differences
between NF1 and controls in intelligence measures [full-
scale IQ (P < 0.05) for children and adolescents and Raven
test score (P < 0.05) for adults] and visuospatial abilities
(JLO test score: P < 0.05 in children/adolescents, P <
0.001 in adults). For all these measures the scores of the
individuals with NF1 were lower than the scores of the
control participants.

SVM Classification Performance

The results of the classification between individuals
with NF1 and controls using GM and WM images are
shown in Table III. The best classification accuracy was
obtained in the adult’s group using the GM images. Here,
individuals with NF1 were correctly classified in 93.60% of
all cases (sensitivity ¼ 91.65%; specificity ¼ 95.56%).
Slightly lower classification accuracies were observed on
the basis of the WM images, which resulted in correct clas-
sification in 91.96% of adults with sensitivity of 89.64%
and specificity of 94.28%. In the children/adolescents
group, the classification accuracy using GM was 89.91%
(sensitivity ¼ 90.54%; specificity ¼ 89.29%) and using WM
was 87.10% (sensitivity ¼ 88.99%; specificity ¼ 85.22%).
The performance (accuracy, sensitivity and specificity) of
the classification was always significantly higher than that
derived with the null distribution obtained with permuted
labels (P < 0.001) for both age groups (children/adoles-
cents and adults), number of voxels used and tissue types
(GM and WM).

Multivariate SVM Classifier Weight Vectors

The WM discriminative maps showing spatially distrib-
uted patterns of differences between NF1 and controls are
displayed in Figures 1 and 2 for children/adolescents and
adults, respectively, while the GM discriminative maps are
shown in Figures 3 and 4, for children/adolescents and
adults, respectively. Due to the multivariate nature of
SVM, the discriminative maps should be interpreted as
spatially distributed patterns of local volumetric differen-
ces. Nonetheless, we have highlighted the regions that
contributed with higher absolute weights to the discrimi-
nation between patients with NF1 and controls. Despite
the fact that the relationship between the sign and strength
of the voxels’ weights and the increase/decrease in rela-
tive volume is not necessarily direct, it usually holds true
[Pereira and Botvinick, 2011]. A positive weight in the dis-
criminative map suggests relatively higher tissue volume
in patients than in controls and a negative weight means
relatively lower tissue volume in patients. As changes in
relative volumes can only be definitely determined by uni-
variate assessment, we also employed the VBM approach.
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We found an overall agreement between the directions of
the local volumetric differences in VBM and the voxels’
weights in SVM discriminative maps [e.g. in the thalamus,
with VBM we observed higher relative volume in NF1
images (see Supporting Information Figs. 1 and 2) and
positive weights in the same voxels of the SVM multivari-
ate maps (see Figs. 3 and 4)]. Notably, the discriminative
patterns further covered regions with differences that were
not discernible at voxel level using P corrected VBM anal-
ysis. Still, the multivariate discriminative maps should
always be considered as so rather than claiming one single
region to influence a phenotypic trait.

White matter multivariate differences

The WM discriminative maps, for both adults and chil-
dren/adolescents, show a similar pattern displaying a pre-
dominance of positive weights in participants with NF1
relative to controls (see Figs. 1 and 2). Differences were
mainly observed in anterior frontal and temporal WM
regions and the corpus callosum. Few voxels showed neg-
ative weights in WM, and those identified had small abso-
lute values.

Grey matter multivariate differences

Discriminative GM patterns contain positive and nega-
tive discriminant weights, in both children/adolescents
and adults (see Figs. 3 and 4). Voxels with strongly posi-
tive weights were mainly found in subcortical structures:
the caudate nuclei, the hippocampus, the vermis, and the
thalamus. Other strongly positive weighted voxels contrib-
uting to the discrimination pattern were located in tempo-

ral and occipital regions. In NF1 children/adolescents but
not in adults, we could also observe positively weighted
GM voxels in the cerebellum. On the other hand, nega-
tively weighted GM voxels were found in both NF1 clini-
cal groups mostly in the occipital cortex, including the
calcarine fissure, the cuneus, and the lingual gyrus. We
also found voxels with negative weights in other cortical
regions such as the temporal gyrus and the cingulate cor-
tex. In NF1 adults (but not in the younger age group), we
observed GM voxels with negative weights in the puta-
men, whilst only in children/adolescents we observed
negative weights in GM voxels located bilaterally in the
insula.

Univariate VBM Analyses

Using the VBM approach, we found similar maps of dif-
ferences in WM relative volume as observed using the
SVM approach. The statistical maps of VBM analysis of
WM with significant tissue relative volume differences,
corrected for multiple comparisons, are reported in Figures
5 and 6 for children/adolescents and adults, respectively.
In Supporting Information, Table SI provides the identifi-
cation of the regions that are significantly different
between the groups. We did not find any statistically sig-
nificant differences in univariate VBM analysis of GM tis-
sue, when using corrected thresholds (data not shown). To
compare the results obtained with VBM and SVM, we
used VBM threshold at P < 0.001 (uncorrected). Interest-
ingly, these VBM maps highlighted group differences in
regions also identified in the SVM weights’ maps. The out-
put maps are presented in Supporting Information Figures
1 and 2 for children/adolescents and adults, respectively.

TABLE III. Results of support vector machine pattern classification of whole-brain grey and white matter images of

NF1 patients and Controls

Number of voxels

Grey matter White matter

Accuracy (%) Sensitivity (%)a Specificity (%)a Accuracy (%) Sensitivity (%)a Specificity (%)a

Children
100 83.12 81.41 84.82 78.60 75.75 81.46
1,000 86.40 85.29 87.51 81.18 77.92 84.44
10,000 88.70 89.61 87.79 84.75 83.86 85.63
50,000 88.35 90.36 86.34 86.32 87.13 85.51
100,000 89.38 90.62 88.13 86.94 88.19 85.68
150,000 89.91 90.54 89.29 87.10 88.99 85.22
Adults
100 78.62 76.80 80.44 79.56 80.17 78.95
1,000 86.50 84.80 88.19 86.52 87.23 85.81
10,000 90.15 86.89 93.41 91.69 90.92 92.47
50,000 92.35 89.36 95.33 92.09 89.96 94.22
100,000 93.20 90.82 95.58 92.07 89.69 94.44
150,000 93.60 91.65 95.56 91.96 89.64 94.28

Results of SVM classification using different number of voxels containing grey matter or white matter, selected from the whole brain
for image analysis.
aWe consider a correctly identified NF1 case a true positive.
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Figure 1.

Whole-brain representation of the discriminative map for WM

relative volume classification in children/adolescents. The weight

vectors are displayed from a leave-two-out linear SVM using

150,000 voxels. Positively weighted voxels in NF1 vs. controls

are displayed in red/yellow, while negatively weighted voxels are

displayed in blue/green. Regions with relatively stronger classifi-

cation absolute weights are identified. The map is overlayed on

the group WM template from all subjects. The z-coordinate for

each axial slice in the standard MNI space is given.
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Figure 2.

Whole-brain representation of the discriminative map for WM

relative volume classification in adults. The weight vectors are

displayed from a leave-two-out linear SVM using 150,000 voxels.

Positively weighted voxels in NF1 vs. controls are displayed in

red/yellow, while negatively weighted voxels are displayed in

blue/green. Regions with relatively stronger classification abso-

lute weights are identified. The map is overlayed on the group

WM template from all subjects. The z-coordinate for each axial

slice in the standard MNI space is given.
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Figure 3.

Whole-brain representation of the discriminative map for GM

relative volume classification in children/adolescents. The weight

vectors are displayed from a leave-two-out linear SVM using

150,000 voxels. Positively weighted voxels in NF1 vs. controls

are displayed in red/yellow, while negatively weighted voxels are

displayed in blue/green. Regions with relatively stronger classifi-

cation absolute weights are identified. The map is overlayed on

the group GM template from all subjects. The z-coordinate for

each axial slice in the standard MNI space is given.
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Figure 4.

Whole-brain representation of the discriminative map for GM

relative volume classification in adults. The weight vectors are

displayed from a leave-two-out linear SVM using 150,000 GM

voxels. Positively weighted voxels in NF1 vs. controls are dis-

played in red/yellow, while negatively weighted voxels are dis-

played in blue/green. Regions with relatively stronger

classification absolute weights are identified. The map is over-

layed on the group GM template from all subjects. The z-coordi-

nate for each axial slice in the standard MNI space is given.
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Figure 5.

Results of VBM analysis of WM in children/adolescents. Results are presented at a voxel-level P-

value < 0.05, corrected for FWE and non-stationary smoothness. Voxels showing significant

WM relative volume differences are overlaid on group-customized WM template.
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Figure 6.

Results of VBM analysis of WM in adults. Results are presented at a voxel-level P-value < 0.05,

corrected for FWE and non-stationary smoothness. Voxels showing significant WM relative vol-

ume differences are overlaid on group-customized WM template.
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White matter VBM results

We observed significantly higher WM relative volume in
individuals with NF1 compared to controls in the regions
adjacent to the lingual gyrus, cingulate gyrus, temporal
gyrus, parahippocampal gyrus, and in the body of the cor-
pus callosum (voxel-level FWE corrected P < 0.05). We also
found WM relative volume increases in brainstem of NF1
children/adolescents and near the putamen of NF1 adults
(see Figs. 5 and 6 and Supporting Information Table SI).

Grey Matter VBM results

No significant between-group (NF1 vs. Control) differen-
ces in GM relative volume of either children/adolescents or
adults were observed when correcting for multiple compari-
sons at the voxel-level (FWE P < 0.05). Nonetheless, the ex-
ploratory analysis of uncorrected univariate VBM maps of
GM also revealed regions, mainly with GM relative volume
deficits in the NF1 groups, covered by the multivariate SVM
discriminative maps. These were the vermis, hippocampus,
lingual gyrus, and the cuneus. Lower relative GM volume
was also detectable bilaterally in the insula of children/ado-
lescents with NF1. On the other hand, in accordance with the
multivariate analysis, the thalamus was identified with
higher GM relative volume in NF1 children/adolescents and
adult participants (see Supporting Information Figs. 1 and 2).

Correlation of SVM output with neuropsychological

measures

We computed the correlation of the SVM test margins
with Full-scale IQ (for children/adolescents), Raven matri-
ces scores (an indication of non-verbal intelligence for
adults), and JLO scores (a measure of visuospatial per-
formance consistently impaired in patients with NF1). For
all these measures, we found univariate significant differ-
ences between clinical groups (NF1 vs. Controls, P < 0.05).
We computed the correlations including the examples
from both classes (NF1 and Controls) and we did not find
any significant correlation between the neuropsychological
measurements and the output of the SVM (distance of
each example to the separating boundary).

DISCUSSION

This study is, to our knowledge, the first to use multi-
variate pattern analysis of whole-brain GM and WM volu-
metric segments of structural MRI scans in individuals
with NF1. Linear SVM were able to correctly discriminate
between NF1 and control images with high accuracy based
on T1-weighted anatomical images in two different popu-
lations, children/adolescents and adults. The high classifi-
cation performance demonstrates that the SVM is a
powerful method to predict group separation. Addition-
ally, it confirms the presence of neuroanatomical differen-
ces between individuals with NF1 and controls.

Macrocephaly, associated with bigger brain global vol-
umes, is commonly found in individuals with NF1 [Payne
et al., 2010]. Indeed, in our cohorts, we also found differ-
ences in global brain volume measures (Table II). How-
ever, our aim was to determine whether patients with NF1
could be discriminated based on local relative volume
anomalies that could be related to the cognitive profile of
these patients. Thus, we discarded global brain volume
differences between the groups, by only applying nonlin-
ear modulation to the data. Note that, in the preprocessing
of the data, the normalization applied to the whole brain
does not introduce a biased intensification of the local
effects [Ashburner, 2009; Ashburner and Friston, 2000].
Thus, global volume differences are not a likely explana-
tion for the distributed discriminative patterns found (in
fact GM global differences are even absent in our children
cohort) suggesting that different brain regions are affected
by the disease in different ways.

Our data driven analysis allowed the identification of
abnormal structural patterns that may be relevant to
understanding disease mechanisms. In our sample, the tra-
ditional VBM analysis detected no significant between-
group differences in GM relative volumes after correcting
for multiple comparisons. Furthermore, only few signifi-
cant differences were identified in WM maps. This sup-
ports the idea that the univariate nature of the VBM
method makes subtle or distributed differences hard to
find [Ecker et al., 2010; Marzelli et al., 2011], possibly as a
consequence of the necessary smoothing step in VBM.
This step ensures the normality of the data for statistical
analysis and it inevitably produces loss of spatial resolu-
tion. Nonetheless, the spatial maps of WM as well as the
uncorrected exploratory analysis of GM were in agreement
with the multivariate discrimination results.

Unlike VBM, which considers each voxel as a spatially
independent unit, SVM is a multivariate technique. Due to
the method inputs and preprocessing steps, the discrimi-
native maps should be interpreted as spatially distributed
networks of local relative volume differences rather than
strong claims about effects in individual regions. The SVM
discriminative map contains information about the relative
importance of each voxel to the classification but its inter-
pretation needs to be done with caution. We do not claim
any specific region to be individually responsible for a cer-
tain phenotypic feature but we note its contribution to the
multi-part neuroanatomical pattern. Voxels with positive/
negative high weights in the multivariate analysis are
likely to present true higher/lower relative tissue volume
in NF1 group but other scenarios are also possible. The
combination with VBM analysis is thus useful to confirm
whether local volumetric differences are consistent with
the discriminative pattern.

It is worth to note, as a limitation of this study, that, due
to the nature of the MR signal, besides pure volumetric dif-
ferences our results could also reflect differences in tissue
content that might give rise to differences in signal T1 prop-
erties. These differences could lead the segmentation
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algorithm to interpret signal intensity differences as volu-
metric differences and miss-assign these as more/less tissue
volume. Thus, the differences in discriminative maps could
also arise, at least in part, from different water content in
GM and WM, different myelin composition or myelin thick-
ness, different neural or neuropil density, or different neural
size between groups. Recent diffusion weighted imaging
and diffusion tensor imaging (DWI/DTI) data in NF1 is
consistent with this notion [Wignall et al., 2010; Zamboni
et al., 2007]. Further investigation is needed to elucidate this
issue. Nevertheless, even if the discriminative voxels do not
represent true differences in relative volume they still point
out regions with structural alterations and provide starting
points for localized investigations (e.g., ROI - Region of In-
terest - analysis). Accordingly, we discuss the plausible
influence of these regions, as constituents of a complex net-
work, to the phenotypic profile in NF1.

Distributed Neuroanatomical Networks

Discriminating NF1 Brains

Regarding WM, discriminative maps show mainly posi-
tively weighted voxels discriminating between NF1 and
controls mostly located in frontal, temporal, and occipital
regions and were detected also with voxel-wise VBM, sug-
gesting that these differences are more pronounced than
GM anomalies. Our data span regions such as corpus cal-
losum (genu, body, and splenium) in children/adolescents
which corroborates other morphometric findings in children
with NF1 [Cutting et al., 2000; Dubovsky et al., 2001; Kayl
et al., 2000; Moore et al., 2000; Steen et al., 2001]. Also our
VBM results of higher local relative WM volume are in ac-
cordance with the sign of the weights attributed by SVM to
these regions. Increased callosal volume has been found to
be related to low IQ, impaired visuospatial, and motor skills
and learning problems in NF1 children [Moore et al., 2000;
Pride et al., 2010]. In line with our results, it is also known
that besides being larger than normal, the NF1 corpus cal-
losum has abnormal microstructure as measured by DTI,
most likely compromising callosal function [Wignall et al.,
2010; Zamboni et al., 2007]. Our data revealed abnormal
structure in other strongly weighted WM voxels, such as
premotor and frontal WM regions. We further detected
increased relative volume of frontal WM in NF1 brain with
VBM. These findings are also in accordance with other mor-
phometric NF1 studies reporting significant increases in cer-
ebral WM volume, predominantly in frontal regions of the
brain [Cutting et al., 2000; Greenwood et al., 2005]. The fron-
tal cortex is involved in executive function, abnormal in
patients with NF1 [Levine et al., 2006; Roy et al., 2010].
Thus, this deficit might be related to abnormal connectivity
in the frontal lobe. Noteworthy, frontal WM was also found
to have abnormal microstructure in a previous DTI study
[Zamboni et al., 2007]. The concordance of our findings with
previous reports using different approaches, suggest con-
sistent frontal WM structural anomalies in NF1.

We could also identify positive and negative weighted
WM discriminative voxels in the temporal lobe, in a region
crossed by the superior longitudinal fasciculus, a major
associative intrahemispheric fiber tract that connects pari-
eto-temporal association areas with the frontal lobe and vice
versa [Makris et al., 2005]. Structural abnormalities in this
pathway suggest associative memory deficits. In addition,
we observed positively weighted WM voxels in a region of
the temporal lobe that might comprise part of the posterior
thalamic radiation, a projection fiber from the posterior part
of the thalamus to the occipital cortex, which also includes
the optic radiation [Cheon et al., 2011; Wakana et al., 2004].
These results are consistent with visual and/or memory
deficits found in individuals with NF1.

We have identified more complex discriminative pat-
terns of differences in GM voxels. As discussed before,
their interpretation benefits from joint consideration of
other methods. However, in our study we did not find
statistically significant voxel-wise relative volume differen-
ces with VBM analysis of GM relative volume. Neverthe-
less, with pattern recognition we have identified regions,
as part of a complex network important for patient classifi-
cation, which could potentially underlie the cognitive
problems that are commonly found in NF1, such as defi-
cient visuospatial function, memory, executive function,
and motor function.

Visuospatial deficits are considered the hallmark of the
cognitive profile of NF1 [Levine et al., 2006]. Notably, we
found between-group differences in discriminative pat-
terns including the visual cortex; the parahippocampal
gyrus, involved in visual navigation [Epstein, 2008]; the
angular gyrus, involved in high-level vision [Seghier et al.,
2010]; and the pulvinar nucleus of the thalamus, which
was also detected with uncorrected exploratory VBM anal-
ysis, involved in visual attention [Smith et al., 2009]. Con-
current alteration of these structures might therefore
underlie the visuospatial deficits observed in the NF1 pop-
ulation. Memory deficits in NF1þ/� mice are related to
abnormal physiology of the hippocampus [Costa and
Silva, 2003; Costa et al., 2002; Cui et al., 2008; Donarum
et al., 2006; Park et al., 2009]. Notably, in our study we
observed positively weighted GM discriminative voxels in
this structure in participants with NF1. In addition, VBM
also revealed (below corrected statistical significance) uni-
variate local differences in this region with patients with
NF1 showing higher relative GM volume than controls. As
the hippocampus plays an important role in visual and
spatial learning and memory function [Morgado-Bernal,
2011], affected in patients with NF1 [Levine et al., 2006],
our results suggest a structural hippocampal abnormality
underlying these deficits. Thus, our findings of abnormal
structure in the hippocampus are suggestive of its non-
optimal functioning and implicate for the first time this
structure in the human NF1, in line with the findings from
the animal model.

Our findings of generalized discriminant contribution of
voxels in the thalamus are in line with previous studies
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reporting abnormal thalamic function and metabolic con-
tent in patients with NF1 [Barbier et al., 2011; Kaplan
et al., 1997; Wang et al., 2000]. The thalamus, acting as a
relay station, receives sensory information and projects to
several areas of the cortex, including the frontal cortex
(involved in executive function) and the visual cortex.
Indeed, global thalamic dysfunction can lead to memory
problems, sensory perception deficits, and executive dys-
function, all being features of NF1 [Barbier et al., 2011;
Hyman et al., 2007; Levine et al., 2006; Moore et al., 1996;
Roy et al., 2010]. Furthermore, we observed between-group
differences in the caudate nucleus and the putamen, the
former involved in goal oriented and executive function
and the latter in motor planning and implementation of
automatic routines. Interestingly, reduced striatal dopa-
mine levels have been linked to attentional deficits in an
NF1 mouse model [Brown et al., 2010]. In addition, a
human study reported clusters of dysplastic cells in the
caudate nucleus and putamen of individuals with NF1
[Yokota et al., 2008]. Our results further support the
hypothesis that these structures have abnormal constitu-
tion and might contribute to the executive and motor
dysfunction in NF1. Also parts of the cerebellum were
observed to contribute to the discriminative pattern of GM
differences in the children with NF1 involved in this
study. Our findings thus suggest that the basis of the
motor deficits in NF1 population could be an abnormal
structural network including this brain region [Puttemans
et al., 2005]. However, the interpretation of such complex
patterns in terms of region-specific differences must be
cautious, particularly regarding heterogeneous samples.

In the present study, we did not find a significant corre-
lation of cognitive impairment measures with the SVM
output (distance from each example and the separating
boundary). On the one hand, this lack of correlation might
reflect the fact that neuropsychological measures are gen-
erally associated with large coefficients of variation. Fur-
thermore, the association of brain tissue volumes with IQ
is still controversial, even in studies with large samples
[see e.g. Brain Development Cooperative Group, 2012]. On
the other hand, cognitive deficits in patients with NF1
might be more closely related with abnormal function
than with structural anomalies. Finally, it should be taken
into account that care must be taken when using the test
margin to correlate with behavioral variables given that
the test margin depends crucially on the training margin
[Marquand et al., 2010]. The SVM algorithm employed in
our study was based on the binary separation between
patients with NF1 and the control group. In this type of
approach, the test margins therefore ignore specific cogni-
tive profiles [Ecker et al., 2010].

CONCLUSION

This work showed that SVMs, in the context of a multi-
variate pattern analysis of whole-brain T1-weighted struc-

tural images, can be used to distinguish between
individuals diagnosed with NF1 and control participants
on the basis of neuroanatomical differences. Furthermore,
this data-driven analysis indicated biologically plausible,
spatially distributed networks of brain regions with abnor-
mal structure in individuals with NF1 providing important
clues for the pathophysiology of the cognitive phenotype
associated with this disorder. A causal link still remains
however to be established as it could also be that abnor-
mal function of these areas lead to abnormal development
of structure and not the other way around.
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