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Abstract: Brain functional and cytoarchitectural maturation continue until adulthood, but little is
known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and
intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and
gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19–33 years) using a
three-dimensional T1-weighted magnetic resonance imaging sequence and surface-based methods.
Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new
finding, age- and gender-related variations significantly affected brain complexity (P< 0.01) on poste-
rior cingulate and middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right
hemisphere. Regions of interest analyses showed age and gender significant interaction (P< 0.05) on
the temporopolar, inferior, and middle temporal-entorrhinal cortices bilaterally, as well as left inferior
parietal. In addition, we found significant inverse correlations between CT and CC and between CT
and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in
details from previous reports and may correlate with late brain maturation and learning plasticity in
young adults’ brain in the third decade. Hum Brain Mapp 35:2817–2835, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

In the recent years, magnetic resonance imaging (MRI)
three-dimensional (3D) acquisition of the brain volume in
vivo has allowed automatic segmentation of brain cortical
and subcortical structures, using specific post-processing
methods and software, which become more and more
sophisticated [Clarkson et al., 2011; Dale et al., 1999; Fischl,
2012; Fischl et al., 1999; Gronenschild et al., 2012; Kabani
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et al., 2001; Lerch and Evans, 2005; MacDonald et al., 1999;
Van Essen et al., 1997]. The cortex has a complex geometry
of a highly folded layer with spatially varying curvature
and thickness. The cortical layer on a brain hemisphere
can be represented as the inner space between: (i) an inner
surface at the white matter (WM)/gray matter (GM) junc-
tion, and (ii) an outer or pial surface at the GM/CSF (cere-
brospinal fluid) interface. Defining, with some
simplification, each surface unit of the brain cortex as
topologically equivalent to a 3D sphere helps in assessing
its thickness (CT), folding pattern or complexity (CC), and
the mean variation of MR signal intensity within the corti-
cal ribbon and at its borders (reflecting the WM/GM tran-
sition) that we call gradient (CG) [Fischl, 2012].

Previous studies have shown that various factors may
influence CT, gyrification or CC, and GM/WM signal
intensity in normal human brains: age, gender, genetics,
and epigenetics. These variations reflect brain develop-
ment and maturation from new-borns to late childhood
and adolescence and, to some extent, aging-related
changes in older [Gogtay et al., 2004; Lemaitre et al.,
2012; McGinnis et al., 2011; Shaw et al., 2006; Sowell
et al., 2007; Westlye et al., 2010]. After a continued
growth, up to the first decade, the global brain cortical
CT declines during life span [Fjell et al., 2009; McGinnis
et al., 2011; Magnotta et al., 1999; Raznahan et al., 2011;
Salat et al., 2009; Tamnes et al., 2010]. This trajectory
varies depending on the age group and the brain regions.
As reported in quite all studies CT declines first and sta-
bilizes between 20 and 40 years. However, CT has been
reported to increase in rostral middle frontal and tempo-
ral regions in young adults [Salat et al., 2009; Sowell
et al., 2007]. CT is described as thicker in women, mostly
in frontal and parietal lobes [Im et al., 2006a; Luders and
Toga, 2010; Lv et al., 2010; Sowell et al., 2007].

The gyral pattern is determined by the degree of sulca-
tion during brain development and has been assessed
using different calculation methods such as: fractal dimen-
sion, gyrification index (GI), and CC [Mustafa et al., 2012;
Raznahan et al., 2011; Zilles et al., 1997]. CC increases in
the early life, with regional differences in a caudo-rostral
gradient, and then undergoes a progressive decrease
[Blanton et al., 2001; Magnotta et al., 1999; Zilles et al.,
1988]. As reported, CC is greater in women frontal and
parietal lobes [Awate et al., 2009, 2010; Luders et al., 2004,
2006,b, 2008; Nopoulos et al., 2000; Zilles et al., 1988].

The MR signal intensity of the cortex and subjacent
areas also change over life as reflecting brain maturation
as well as brain iron load. According to the literature,
intracortical T1 signals show an inverted U pattern with a
peak between 8 and approximately 30 years of age, fol-
lowing a posterior anterior gradient [Salat et al., 2009;
Westlyes et al., 2010]. Analyses of intracortical relaxation
rate of T2* (R�2) showed a similar pattern [Westlyes et al.,
2010]. No significant gender effect on CG was found
[Blackmon et al., 2011; Salat et al., 2009; Westlyes et al.,
2010].

In studies mentioned above, results regarding young
adults were not analyzed separately and, sometimes
young adults were mixed with other age groups (younger
or older). Therefore, the variations observed could not be
applied specifically to individuals in the third decade. We
wondered whether global and regional changes within the
cortex in that period of late brain development and matu-
ration could be demonstrated using surface-based cortical
analyses. In this study, we aimed at assessing cortical CT,
CC, and CG age- and gender-related variations over the
entire brain and in specific regions of interest (ROIs) as
well as correlations between these three parameters.

MATERIALS AND METHODS

Participants

Participants were recruited among students of our uni-
versity and written informed consent was obtained from
all. At the time of participation, subjects had no self or
parent-reported clinical history of mild cognitive impair-
ment, dementia, general neurological or psychiatric ill-
ness, or general medical illness with potential impact
upon cognitive status. They were all right-handed, as
reported in a structured interview, and known to speak
French fluently (mother tongue), to have normal or
corrected-to-normal hearing and vision, and to have no
MRI contraindication. Images were obtained in 28 subjects
aged 19.80 through 33.01 years (mean: 25.52; sd 5 3.64).
There were 16 males ranged from 19.8 through 33.01
years (mean: 26.23; sd 5 4.27) and 12 females ranged from
22.32 to 30.78 years (mean: 24.57; sd 5 2.44) (Table I). No
difference was found between both groups in age distri-
bution (P 5 0.397). All participants were in the first
through third year of the school of Physiotherapy, having
at least a high school education level and a minimum of
2 h physical training (fitness) a week. Their individual
hobbies were not recorded.

MR Acquisition

Sagittal 3D MR images were acquired on a 3T scanner
(Achieva Philips, Best, The Netherlands) using a T1-fast
field echo sequence (TR 5 9.7 ms, TE 5 4.6 ms, flip

TABLE I. Subjects’ characteristics (N 5 28)

Total (n528) age range: 19-33 years
mean age: 25,5 years (sd53,65)

Males (n516) mean age: 26,23 (sd54,27)
Females (n512) mean age: 24,57 (sd52,44)
ICV (n528) mean 1521779,93 mm3 (sd5195429, 37)
GMV (n528) mean 497731,84 mm3 (sd549734,73)
WMV (n528) mean 497382, 97 mm3 (sd564577,56)

ICV: intracranial volume; GMV: gray matter volume; WMV: white
matter volume. sd: standard deviation.
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angle 5 8�, matrix size 5 256 3 256, FOV 5 256 3 256), cov-
ering the entire brain with an isotropic voxel size of 1
mm3. All images underwent automated correction for
intensity non-uniformity and intensity standardization,
automatic registration in a stereotactic space [MNI-Collins
et al., 1994] and were automatically skull stripped. The
MRI scans were read out by two experienced neuroradiol-
ogists and reported upon a consensus as normal and free
of artifacts that could partly or totally impair the
segmentation.

Post-Processing

Segmentation of the cortex was performed using Free-
Surfer (FS) software version 5.0 (http://freesur-
fer.nmr.mgh.harvard.edu). Both hemispheres were
separated and processed individually. We applied a mask
on the diencephalon. An algorithmic procedure based on
the geometric structure of gray white matter (GWM) inter-
face that separate the outer or pial cortical surface from
the inner cortical or WM surface was applied [Dale et al.,
1999; Fischl et al., 1999]. Inner and outer surfaces were
remodeled by a triangle-based mesh and undergo a spher-
ical inflation and a topological correction. An automated
algorithm then parceled the surface in 33 gyrally-based
ROI [Desikan et al., 2006]. The total intracranial volume
(ICV), the GM volume (GMV), and the WM volume
(WMV) were extracted from the FS statistical output file.

CT measurements

They were obtained by reconstructing representations of
the GM-WM boundary and the pial surface and then cal-
culating the distance between those surfaces using the t-
link method, defined as the Euclidean distance between
linked vertices on the WM surface and pial surface [Fischl,
2012; Kabani et al., 2001; Lerch and Evans, 2005]. Proce-
dures for the measurements of CT have been previously
validated against histological analysis [Rosas et al., 2002]
and manual measurements [Fischl et al., 2004]. GM-WM
boundary and cortical pial surface parcellations were veri-
fied by overlaying the boundaries on the 3DT1 images on
the three planes order to avoid or correct segmentation
errors. Blurring of the features was applied using a 20 mm
full width half max Gaussian surface kernel to minimize
noise and increase statistical performance.

CC measurements

CC was estimated through the surface ratio SRx,r [Toro
et al., 2008]. For every point (x) on the cortical surface, the
area (Cx,r) contained in a small sphere of a given radius
(r) centered at x, Sx,r was measured. Considering a lissen-
cephalic area (no gyrus), the area inside the sphere of
radius SRx,r would be approximately that of the disc
Dr 5 pr2. The CC was estimated by the surface ratio
SRx,r 5 Cx,r/Dr. We used r 5 20 mm.

CG measurements

The blurred WM/GM interface was modeled with Sobel
operator [Besson et al., 2008]. The operator calculates the
gradient of the image intensity at each point, giving the
direction of the largest possible increase from light to dark
and the rate of change in that direction. The result, there-
fore, shows how “abruptly” or “smoothly” the intensity
changes at that point. The gradient magnitude was inter-
polated at each vertex of the inner cortical surface to
obtain the gradient surface map.

ROIs analyses

The ROIs were anatomically designed following the
Desikan-Killiany atlas [Desikan et al., 2006]. ROIs were
chosen from previous studies findings as well as from our
findings after the visual assessment of surface maps from
whole brain analyses. Eight ROIs were automatically par-
celed as labeled: c1 5 precentral, c2 5 postcentral,
t1 5 superior temporal, t2 5 temporopolar, inferior and
middle temporal 1 entorrhinal, o1 5 lateral occipital,
o2 5 lingual 1 pericalcarin 1 cuneus, p1 5 inferior parietal,
p2 5 superior parietal, both for the right (rh) and left (lh)
hemispheres.

Statistical Analyses

Statistical analyses were performed using Keith Wors-
ley’s SurfStat toolbox for MATLAB (http://www.math.mc-
gill.ca/keith/surfstat/), a MATLAB (7.10. 0 (R2010a))
toolbox. First, we conducted the cortical surface analyses.
Global average CT, CC, and CG, as well as corresponding
standard deviation (std) and auto z-scores (differences
between each surface unit and the average on the tem-
plate) of the whole brain of all participants were mapped
on the brain surface as template. The same analyses were
performed assessing age- and gender-related differences.
T- and P-values were mapped on the brain surface using a
false discovery rate [FDR; Benjamini and Hochberg, 1995]
correction (with significance at 0.05). A general linear
model (GLM) was then applied to test age and gender
effects on CC, CT, and CG. Because men as a group had a
larger ICV than women, we used ICV as a covariate in
that model. Consequently, for age effect the GLM model
(M) was M 5 1 1 age 1 ICV and for gender effect, M 5

1 1 sex 1 ICV. To assess the gender effect on age-related
differences, the interaction term between age and sex was
also included in the model: M 5 1 1 age 1 sex 1 age 3

sex 1 ICV.
Linear regressions were used to assess age and gender

effects on CT, CC, and CG in each ROI. The effects of ICV,
CV, and WMV for each ROI were also assessed. In addi-
tion, one-way Manova (simple gender effect) and Mancova
(gender effect with age as cofactor) were applied to assess
intrasubject as well as between subjects effects using SPSS
20 (Statistical Package for the Social Sciences). The
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multivariate probability distributions were then assessed
using the Hotelling’s T-squared test (Hotelling’s Trace).
We applied the FDR method to test for multiple compari-
sons. The results were rendered as graphs and P-values in
a table. Looking for the laterality effect, interhemispheric
differences for CT, CC, and CG were analyzed using
ANOVAs and represented as box plots for each label. CT/
CC, CT/CG, and CC/CG correlations over the whole
brain and in each ROI were assessed using linear regres-
sion analyses.

RESULTS

Whole Brain Analyses

Averaged CT, CC, and CG

In evaluating the common surface variations (within the
template, average of the whole group) using auto z-scores,
we found the thickest cortex (zs> 2) in temporal poles,
entorrhinal, and inferior frontal regions bilaterally, and the
lowest in the precentral gyrus (zs<22). CC was the high-
est (zs> 2) in calcarin, parieto-occipital, and superior tem-
poral sulci, and the lowest (zs<22) in anterior cingulate
and medial orbital frontal, bilaterally (Fig. 1A). The lowest
CG (zs<23) was found in temporal poles, temporal supe-
rior, entorrhinal and parahippocampal, inferior frontal,
and precentral, bilaterally.

In assessing interindividual variations using standard
deviations mapped on the common surface, we found the
highest variability for CT (std> 0.3) in entorrhinal and
parahippocampal cortices bilaterally, and the left cingulate

gyrus, for CC (std> 0.3) in the precuneus, cuneus and
superior parietal gyri, bilaterally, and for CG (std> 4) in
the left superior and middle frontal, right paramedian pre-
central, left anterior cingulated, and occipital lobes (Fig.
1B).

Age effect

Age-related variations corresponded to decreased CT
(T<22) in posterior cingulated, inferior and superior
frontal, on the right and, postcentral, paracentral, and cin-
gulate, on the left, while increased (T> 3) in right superior
frontal and left postcentral (Fig. 2, upper row). CC was
decreased (T<22) in right superior parietal, left paracen-
tral, and bilateral superior frontal sulci, while increased
(T> 4) in right middle temporal, right posterior cingulate,
and left lingual (Fig. 2, middle row). CG was decreased
(T<23) in lateral occipital, fusiform gyrus, and superior
parietal, on the right and, lingual, anterior cingulated, on
the left and, frontal superior bilaterally, whereas increased
(T> 2) in the left inferior temporal gyrus (Fig. 2, lower
row). Using the FDR method to extract significant T-values
(P-values mapped on the cortical surface), we found sig-
nificant age-related changes as increased CC in the right
posterior cingulate and middle temporal (Pcluster< 0.01)
(Fig. 3).

Gender effect

Common surface variations of men and women group
were similar. Gender-related variations corresponded to
increased CT in men in right postcentral and superior

Figure 1.

A. Auto-z-score maps on average CT, CC, and CG showing intraindividual variability. B. Stand-

ard deviation maps showing interindividual variability (The medial wall including the corpus cal-

losum is excluded). (Left to right panel: CT, CC, and CG. Midsagittal, lateral and superior views

are represented). L 5 left; R 5 right.
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Figure 2.

Age effect on CT, CC, and CG—covarying for ICV. Red clusters correspond to increased CT,

CC, or CG, blue clusters correspond to decreased CT, CC, or CG with age. L 5 left; R 5 right.
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parietal gyri and in women in left superior temporal sulci
and right anterior cingulate (T> 4) (Fig. 4, upper row). CC
was higher in men in left superior frontal and right medial
orbitofrontal (T> 4) whereas higher in women in right
superior parietal gyrus (T> 3) (Fig. 4, middle row). Men
had higher CG in right precentral gyrus whereas women
had higher CG in left inferior parietal (T> 2) (Fig. 4, lower
row). Using the FDR method with significant P-values
mapped on the cortical surface, we found significant
gender-related changes as increased CC in the right medial
fronto-orbital cortex (Pcluster< 0.01) (Fig. 5).

Age-gender interaction

Age effect was most pronounced for CT in the left
supramarginal gyrus (T> 4) in men (Fig. 6, upper row),
for CC in precentral, postcentral, frontal pole, superior
and inferior parietal, and superior frontal regions in the
right hemisphere (T> 3) in men and in left temporal pole,
lingual, precentral, middle temporal regions, and right
entorrhinal region (T> 2) in women (Fig. 6, middle row).
Age-effect on CG was most pronounced in right lateral
occipital and left occipital lobe, left inferior temporal, mid-
dle frontal bilaterally (T> 1) in men and left supramargi-
nal and precentral regions (T> 2) in women (Fig. 6, lower
row).

ICV, GMV, and WMV effects

There was no significant effect of ICV, GMV, and WMV
on CT, CC, and CG. Nevertheless, a trend to a positive
correlation was found between GMV versus CT and CC

and between WMV and CG and, a trend to negative corre-
lation between WMV versus CT (Fig. 7).

ROIs Analyses

Table II summarizes T- and P-values from linear regres-
sion analyses of separate age and gender effects, whereas
Table III reports Manova (simple gender effect) and Man-
cova (gender with age as covariate) analyses.

Significant results included: (i) simple age effect on
thickness in lateral occipital lobes (o1) bilaterally and on
complexity in medial occipital lobe (o2), while CG was
affected in occipital lobes (o1 and o2 bilaterally) and infe-
rior parietal lobe (p2), (ii) Gender-related variations on CT
involved right postcentral (c2-rh) and superior parietal
(p2-rh) gyri, and on CC, inferior parietal (p2-rh) and tem-
poral gyri (t2) bilaterally. After applying the FDR correc-
tion, we found no significant result.

No significant effect of ICV on CT, CC, and CG was
found. CT was positively correlated with GMV in postcen-
tral (c2), superior parietal (p1-rh), and lateral occipital (o1-
rh) regions, as well as CC in medial occipital (o2-lh) and
temporal (t2-rh) regions. CT was negatively correlated
with WMV in superior parietal area (p2-lh).

CT, CC, and CG Correlations

CT and CC showed a trend to negative correlation over
the entire brain (Fig. 8), becoming significant in the pre-
central (c1-rh) and superior parietal (p1-rh) regions, bilat-
eral superior temporal (t1), and lateral occipital (o1and o2)
areas (Fig. 9, Table III). CT and CG were significantly

Figure 3.

Surface mapping of P-values after the FDR correction showing significant blue clusters of

increased complexity with age in the right posterior cingulate and middle temporal cortices.

L 5 left; R 5 right.
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Figure 4.

Gender effect on CT, CC, and CG—covarying for ICV. Red clusters correspond to increased

CT, CC, or CG in men, blue clusters correspond to decreased CT, CC, or CG in women.

L 5 left; R 5 right.
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negatively correlated over the entire brain (P 5 0.022 -lh; P
5 0.117 -rh) (Fig. 8) and in many ROIs (c1; c2-rh; t2-lh; o1
and o2) (Fig. 9). CG and CC showed a very weak positive
correlation over the entire brain, but significant in precen-
tral (c1-lh; P 5 0.04) and lateral occipital (o1-rh; P 5 0.012)
regions (Figs. 8 and 9, Table III).

CT, CC, and CG Hemispheric Differences

No significant left-right difference was found for aver-
aged CT, CC, and CG. Nevertheless, CT and CC showed a
trend to be higher in the right hemisphere (Fig. 10). ROIs
analyses showed significantly increased CT in t1-rh
(P 5 0.005) and CG in t1-lh (P 5 0.008) (Table 4; Fig. 11).

DISCUSSION

Overall Results

Our study was carried out on a population of young
adults in the third decade to extract age- and gender-
related differences within the cortical GM. None of the
previous studies have focused on this age group and the
findings in those studies which could be attributable to
individuals in the third decade were part of the results
from global analyses involving a wider range of subjects
age [Fjell et al., 2009; Lemaitre et al., 2005, 2012; Lv et al.,
2010; McGinnis et al., 2011; Tamnes et al., 2010; Westlye
et al., 2010]. Moreover, studies reporting age groups com-
parisons [McGinnis et al., 2011; Salat et al., 2009] did not
mention differences occurring in the age group that we
investigated. According to the time course of the normal

brain development described as having an inverted U pat-
tern [Wesltye et al., 2010], we expected to find some varia-
tions, even subtle, which could relate to late brain
maturation or early physiological decline. Another interest
of our study was to approach the cortical variations using
its three major parameters that are physiologically corre-
lated with human brain development and maturation
processes, namely: thickness (CT), complexity/gyrifica-
tion 1 sulcation (CC), and inner surface intensity (CG) var-
iations. ROI analyses added some information, which
showed that analyzing the whole brain may occult some
details assessable only by ROI analyses and reciprocally.
Our major findings, from both whole brain and ROIs anal-
yses, are the followings: (1) the common template (auto z-
score) showed the same surface distribution of CT, CC,
and CG as reported by previous studies [Armstrong et al.,
1993; Blackmon et al., 2011; Blanton et al., 2001; Fischl and
Dale, 2000; Fischl et al., 2004; Fjell et al., 2009; Hutton
et al., 2008; Luders et al., 2004, 2006,b; Salat et al., 2009;
Sowell et al., 2004; Thompson et al., 1996; Zilles et al.,
1988, 1997], (2) interindividual variations (among the
whole group) of CT and CG were similar to that in the lit-
erature [Blackmon et al., 2011; Fischl and Dale, 2000], but
age- and gender-related variations significantly affected
brain complexity (P< 0.01) in the right hemisphere, on
posterior cingulate and middle temporal cortices (age),
and the fronto-orbital cortex (gender), finding never
reported before, (3) age-related significant variations
included increased CT and decreased CC and CG, in the
lateral occipital cortices, but also increased CC in the right
middle temporal, cingulate, and left medial occipital areas,
(4) gender-related differences mostly were marked on
bilateral temporopolar, inferior and middle temporal-

Figure 5.

Surface mapping of P-values after the FDR correction showing significant blue clusters of

increased complexity in men in the right fronto-orbital cortex. L 5 left; R 5 right.

r Creze et al. r

r 2824 r



Figure 6.

Age 3 gender interaction—covarying for ICV. Red clusters correspond to more pronounced

age effect on CT, CC, or CG in men, blue clusters correspond to more pronounced age effect

on CT, CC, or CG in women. L 5 left; R 5 right.
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entorrhinal cortices, and left inferior parietal cortex, (5) dif-
ferent sensitivity of men and women on age-effect with
CC most affected in women and CG in men, (6) CT/CC
and CT/CG negative correlations and, finally (7) right-left
hemispheric asymmetries in favor of increased CT and
decreased CG in the right superior temporal gyrus.

Age Effect

We found age-related significant variations with
increased CT and decreased CC and CG in the occipital
cortices, and increased CC in middle temporal and cingu-
late gyri (Table II). As described in the literature, most
authors found decreased CT in occipital lobes since child-
hood throughout life [Hogstrom et al., in press; Salat
et al., 2009; Shaw et al., 2008; Tamnes et al., 2010] while
others described preserved CT in lateral occipital cortices,
in young and middle adults (18–59 years) [McGinnis

et al., 2011] and in larger samples (19–94 years) [Fjell
et al., 2009]. Some studies also showed increased CT in
entorrhinal and frontal pole cortices from 8 to 30 years
[Tamnes et al., 2010], medial frontal and anterior cingu-
late gyri from 19 to 94 years [Fjell et al., 2009; Salat et al.,
2009] and temporal superior from 4 to 21 years [Gogtay
et al., 2004], or stable in temporal regions from 7 to 97
years [Sowell et al., 2003]. The GWM ratio was described
as preserved in the occipital lobes with aging [Salat et al.,
2009]. According to Westlyes et al. [2010], the cortical GM
signal intensity and peaks first in occipital lobes at 8
years while the earliest signal deterioration is seen in the
cingulate and medial occipital cortices after 50 years.
Thus, none of the previous studies is reporting our find-
ings related to CT and CG variations in the third decade.

CT is determined by its composition in terms of neuro-
nal cells, arranged in columns perpendicular to the onto-
genetic pial surface of the brain, which migrated from a

Figure 7.

Scatter plots for ICV, GMV, and WMV effect on CT, (upper row) CC (middle row), and CG

(lower row), over the entire brain. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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common origin to their final position in the cortex [Haug
et al., 1984; Mountcastle, 1997; Rakic, 2007]. The thickness
of the six cortical layers varies in different parts of the cor-
tex, between hemispheres of the same brain and between
brains of different individuals [Haug et al., 1984; Mount-
castle, 1997]. Priors studies have shown that CT develop-
ment is influenced by genetic [Chee et al., 2011; Im et al.,
2008; Panizzon et al., 2009; Rimol et al., 2010; Van Soelen
et al., 2012] and environmental factors [Chee et al., 2011;
Karama et al., 2009, 2011; Wenger et al., 2012]. Neuronal
density so as synaptic density are high in the neonatal
brain, decrease rapidly during the first year of life and
then decelerate [Welker, 1990; Huttenlocker, 1979; Pakken-
berg and Gundersen, 1997; Rakic, 1995]. Increase in water
content, neuronal loss and GM myelinisation are responsi-
ble for signal changes within the GM [Magnaldi et al.,
1993; Salat et al., 2009]. Moreover, neuronal plasticity
involves changes in cytoarchitecture of the cortical ribbon
[Trachtenberg et al., 2002] even in elderly, as demonstrated
by MRI. Some authors have shown that learning can
induce significant regional changes in CT [Lazar et al.,
2005; Wenger et al., 2012]. As CT, age-effect on CG is con-
ditioned by neuronal loss, increase water content and mye-
lination, and genetic factors [Panizzon et al., 2012]. Iron
load also influences absolute T1 intensity values leading to
modifications of CG vectors within the cortex and CG is
subject to learning induced plasticity as well [Blackmon
et al., 2011].

Regional increased CT (and decreased CC and CG) in
some brain areas, as we found, could be explained by neu-
ronal plasticity induced by learning at an age where func-
tional connectivity maturation is still in progress with the
refinement of neuronal connections [Dosenbach et al.,
2010]. Occipital regions are likely more sensitive to these
changes as we observed, and may reflect neuronal plastic-
ity due to adaptive changes in visual function [Blackmon
et al., 2011; Driemeyer et al., 2008]. In some other regions,

such as right superior and middle frontal, cingulate, and
left postcentral, we found decreased CT with age, findings
also reported by Salat et al. [2009], Tamnes et al. [2010],
and Shaw et al. [2008] in wider age groups, and assumed
to correspond to early signs of physiological cortical
decline.

We found significantly increased CC in the right middle
temporal gyrus, cingulate, and left medial occipital cortex,
with aging. Many discrepancies about age-related changes
in cortical gyrification are found in the results of various
studies [Armstrong et al., 1995; Su et al., 2013; Toro et al.,
2008; Zilles et al., 1988]. The cortical folding starts in the
16th gestational week and progresses in an exponential
fashion until the 5th or 6th month postnatal, as the GI
reaches its maximum value, then decreases gradually until
23 years of age, where it stabilizes [Armstrong et al., 1995].
Raznahan et al. [2011], Hogstrom et al. [in press], and
Shaw et al. [2012] described a slowly GI decrease over the
entire brain with a deceleration from approximately 14
years. White et al. [2010] and Su et al. [2013] described sig-
nificant increase of GI in right parietal and cingulate corti-
ces between 8 and 19 years. These differences may be due
to different measurement methods and studied popula-
tions of various age-groups [Luders et al., 2004, 2006,b; Su
et al., 2013; Van Essen and Drury, 1997]. White et al.
[2010] and Su et al. [2013] proposed a 3D GI new intrinsic
and geometric technique to compute global and local gyri-
fication indices in 3D. To estimate CC, we used the
method described by Toro et al. [2008], which defines the
regional 3D GI directly on the pial surface. Using that
method, the results depend on the specified radius of the
sphere. Middle temporal gyrus, cingulate, and medial occi-
pital cortex are functionally implicated respectively in per-
ceptual and mnemonic integration, learning, and memory
tasks (limbic system), as well as visual functions [Wandell
et al., 2007]. CC (increased) is likely the best parameter to
reflect in those regions brain plasticity in young adults
[Paus et al., 2001]. Correlations with the other cortical
parameters (CT and CG) are discussed further.

We then observed that age-related variations of the
brain cortex in the third decade encompass both increased
and decreased thickening and gyrification processes, as

TABLE III. Age- and gender-related effects on CT, CC

and CG in ROIs. Gender predominantly affects CC

regionally (P50.014) and its effect is mildly influenced

by Age (P50.027). NS=not significant.

CT (Pval) CC (Pval) CG (Pval)

MANOVA
(Gender effect)

c2-rh (0.042)
p2-rh (0.003)

t2-lh (0.045)
t2-rh (0.044)
p1-lh (0.042)

NS

MANOVA
Hotelling’s
Trace (Gender)

(0.170) (0.014) (0.152)

MANCOVA
(Gender
removing Age)

p2-rh (0.008) NS NS

MANCOVA
Hotelling’s
Trace (Gender/Age)

(0.209/0.215) (0.027/0.542) (0.240/0.359)

TABLE IV. Interhemispheric differences using ANOVAs.

p values are displayed. t1 appears as the most asymetri-

cal area for CT and CG (values in bold).

ROIs CT CC CG

c1 0.4441 0.9834 0.2603
c2 0.7191 0.816 0.4833
t1 0.0005 0.9951 0.0087

t2 0.0821 0.8949 0.4864
o1 0.5882 0.8297 0.4697
o2 0.8113 0.6977 0.4209
p1 0.3435 0.0817 0.3187
p2 0.918 0.2427 0.7143
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well as intracortical signal intensity variations, in different
areas of the brain.

Gender Effect

We found marked gender differences in precentral, pari-
etal, and occipital cortices, mostly in the rh. Men showed
thicker cortex in the right superior parietal and postcentral
areas, while women had thicker cortex in the anterior cin-
gulate and superior frontal areas (Table II). Gender-related
cortical differences have been assessed in several studies
with very heterogeneous results [Rademacher et al., 2001;
Chee et al., 2011; Im et al., 2006a; Luders et al., 2006,b; Lv
et al., 2010; Sowell et al., 2007]. Similar to Raznahan et al.

[2011] who investigated subjects aged 6–22 years, we
found average CT lower in women than men and signifi-
cantly increased in right precentral and superior parietal
gyri in men. Other authors investigating a wider age-
range including elderly found the contrary [Im et al.,
2006a; Luders et al., 2006,b; Lv et al., 2010; Sowell et al.,
2007]. Im et al. [2006a] and Luders et al. [2006,b] who
studied populations of young adults found thicker cortices
(parieto-occipital, precentral and postcentral, medial supe-
rior frontal and anterior cingulated) predominating in the
left hemisphere in women. These studies were performed
at 1.5T MRI while ours at 3T. On average, brain CT is
slightly higher at 3T than at 1.5T due to the fact that the
underlying tissues nuclear magnetic resonance tissue prop-
erties change with field strength, and that leads to changes
in the intensity and contrast [Han et al., 2006]. In addition
to the type of magnet used for MRI acquisition and the
age of subjects, the smoothing level at image post-
processing, scaling technique, varied across studies and
may account for various, and even contradictory results as
seen in the literature [Fjell et al., 2009].

CC was more pronounced in men in left superior frontal
and right medial orbitofrontal whereas marked in right
parieto-occipital areas in women. Raznahan et al. [2011]
also reported average CC to be increased in men. Our
results contrast with some previous examinations that
found increased GI in females in frontal and parietal lobes
bilaterally [Awate et al., 2009; Luders et al., 2004] and in
occipital lobes [Luders et al., 2006,b]. Zilles [1997] and
Nopoulos et al. [2000] failed to detect significant gender
differences in GI or fissuration indices but found weakly
higher gyrification in left hemisphere in men. Methodolog-
ical considerations mentioned above may also account in
these results differences.

CG was higher in men in the right precentral and left
postcentral and middle temporal cortices, but more
marked in the right inferior parietal and left medial orbito-
frontal and temporopolar regions. Salat et al. [2009] found
weak gender differences in GWM ratio in young adults,
whereas they were stronger in middle adults. In Blackmon
et al. [2011] study, no significant difference in GWM con-
trast between men and women was found.

Sex-related dimorphic differences in CT, CC, and CG
might develop as differences in the underlying cytoarchi-
tecture of the cortex, neural connectivity and function of
specific brain regions [Kimura, 2000; Lustig, 1998]. Most
studies did not find significant difference in neuronal den-
sity [Alonso-Nanclares et al., 2008; Pakkenberg and Gun-
dersen, 1997] or in spatial distribution of densities of
different cell populations [Stark et al., 2007b] over the
brain. Regional differences have been found in temporal
and occipital lobes with higher neuronal density in women
[Witelson et al., 1995] and in frontal and temporal regions
with different cytological constitution of neurons [Stark
et al., 2007a]. However, this cytoarchitectural differences
were not accompanied by CT changes and could not
explain sex-related CT variations [Rabinowicz et al., 1998,

Figure 8.

Scatter plots for correlations between CT and CC (upper row),

CT and CG (middle row), CG and CC (lower row) over the

entire brain. Dots and lines: red (left hemisphere) and blue

(right hemisphere).
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2002; Stark et al., 2007a,b]. Sex differences may also be due
to differences in cortical cell metabolism and chemistry
[Cosgrove et al., 2007]. Also, the fact that men and women
develop different cognitive skills unrelated to any level of
intelligence explains the differences between them. More-
over, differences between both groups could be attributed
to differences in emotional, environmental, and genetic fac-
tors [Chee et al., 2011]. Several authors have suggested that
the difference in brain size between men and women could
explain gender differences in CC and CT [Im et al., 2008;
Leonard et al. 2008] Armstrong et al. [1995], Van Essen et al.
[1997], and Toro et al. [2008] showed that the gyrification
process was correlated to brain size and intracranial cavity
volume, mainly during the first trimester of pregnancy. ICV
does not account in our results since all analyses were car-
ried out after normalization to this factor. Neuroendocrine

theories have been addressed in discussing gender-related
cortical differences and plasticity, mentioning the roles of
estrogens and testosterone [Bailey et al., 2011; Goldstein,
2001; Lustig, 1998; McEwen et al., 2001].

In evaluating age 3 sex interaction, we found different
sensitivity of men and women on age-effect. CC was most
affected in women (temporoparietal and occipital areas)
and CT (left supramarginal gyrus) and CG (frontopolar
and occipital areas) in men (Table II). In addition, we
found marked age-gender interaction in temporopolar,
inferior and middle temporal-entorrhinal, and left inferior
parietal cortices (Table III). Sowell et al. [2007] found that
men and women differed in aging pattern of changes with
posterior frontal and temporal cortices thickness more
affected in men. Early in life, average age-related CT and
CC changes already differ between males and females

Figure 9.

Scatter plots for correlations between CT and CC (upper row), CT and CG (middle row), CG

and CC (lower row) in ROIs.
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[Blanton et al., 2001; Raznahan et al., 2011]. According to
our findings, the human brain in the third decade might
exhibit different regional gender sensitivity to age changes.

Other Findings

We found a significant negative correlation between CT
and CC. These results are similar to others [Hogstrom
et al., in press; Im et al., 2006a,b; Jiang et al., 2008; Sigalov-
sky et al., 2006; Toro and Burnod, 2005] and reflect the
well known intrication of cortical development and gyrifi-
cation processes. This tight relation is well demonstrated
by the frequent association of anomalies of gyration with
cortical maldevelopment [Rakic, 2007]. The gyrification is
the result of complex active and passive processes. Its
value depends initially on the cortical surface, which is
determined by the number of radial units along the ven-
tricular zone while CT depends on the number of neurons
[Rakic, 1988, 1995]. CT was significantly negatively corre-
lated with CG over the entire brain and in precentral gyri
and occipital lobes. Panizzon et al. [2012] reported similar
findings. Since CG evolves linearly with the inner cortical
blurring toward the WM surface, the more the thickness
increases, the shorter the gradient vectors will be.

We found a significant rightward asymmetry in CT in
superior temporal gyri only. CG showed significant left-
ward asymmetry and no difference for CC in the same
area. Studies from Luders et al. [2006,b] in young adult,
Kim et al. [2012] in old subjects and, Shaw et al. [2009] in
children, found a leftward hemispheric asymmetry CT in
right-handed. Sigalovsky et al. [2006] did not found any
hemispheric difference in CT in temporal lobes but found
greater longitudinal relaxation rate in the left superior
temporal lobe attributed to heavily myelinated area. The
left planum temporale including the superior temporal
gyrus is well known to be predominant in auditory and
language functions since very early in life and latter shows
a higher GM myelination as compared to the right side
[Sigalovsky et al., 2006]. Therefore, we expected to find
greater thickness on the left side, which is not the case.
We have no hypothesis to explain our opposite finding.

LIMITATIONS AND PERSPECTIVES

Our study included a limited number of participants
mainly due to the high difficulty or recruiting healthy vol-
unteers at our institution. A major limitation of this study
is the lack of neuropsychological evaluation and records of
education level, social habits, and hobbies. The results of
cognitive evaluations could have partly explained the dif-
ferences in cortical features. Regarding surface-based
methods, the images post-processing including automatic
segmentation procedures still show some limitations,
whatever technique is used, because of biological CT non-
uniformity across the cortex and areas with low GWM
contrast and higher variability in certain areas such as

Figure 10.

Box plots showing hemispheric differences for average CT (upper

row), CC (middle row), and CG (lower row). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 11.

Box plots showing hemispheric differences for CT (upper row), CC (middle row), and CG

(lower row) in selected ROIs. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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precentral, occipital, and temporal cortices. Moreover, the
position of dura tangential to the cortex and close to the prox-
imity of the hemispheres may cause errors, as does the nar-
row separation between putamen and hippocampus and the
adjacent cortical [Han et al., 2006; Lerch and Evans, 2005].
Formation of holes and bridges as « cortical defects » also
could be at the origin of mistakes in segmentation [Fischl,
2012; Glasser and Van Essen, 2011]. Thus, some substantial
improvements are still to be made in algorithms used for
brain automatic segmentation and will help in better defining
brain cortical variations across ages and between genders.

Despite these limitations, in this specific age-group of
young adults, in the third decade, we found valuable results,
reaching significance for several analyses, either on the
whole brain or within ROIs, which may express concomitant
late maturation and early decline in different brain areas.
Our results add some new information in the field of investi-
gations on the human brain cortex complex morphology and
evolution. Other studies involving wider samples of
restricted age-range are required to support our hypotheses.
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