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Abstract: Two new directions of functional connectivity investigation are emerging to advance studies of the
brain’s functional organization. First, the identification of task-related dynamics of functional connectivity
has elicited a growing interest in characterizing the brain’s functional reorganization due to task demands.
Second, the nonstationarity of functional connectivity [i.e., functional connectivity variability (FCV)] within a
single brain state has been increasingly recognized and studied. However, a combined investigation of these
two avenues of research to explore the potential task-modulation of FCV is lacking, which, nevertheless,
could both improve our understanding of the potential sources of FCV and also reveal new strategies to
study the neural correlates of task performance. In this study, 19 human subjects underwent four functional
magnetic resonance imaging (fMRI) scans including both resting and task states to study task-related modu-
lation of FCV. Consistent with the hypothesis that FCV is partly underpinned by unconstrained mind wan-
dering, FCV demonstrated significant task-related decreases measured at the regional, network and system
levels, which was greater for between-network interactions than within-network connections. Conversely,
there remained a significant degree of residual variability during the task scans, suggesting that FCV is not
specific to the resting state and likely includes an intrinsic, physiologically driven component. Finally, the
degree of task-induced decreases in FCV was significantly correlated with task performance accuracy, sup-
porting its behavior significance. Overall, task modulation of FCV may represent an important direction for
future studies, not only to provide insight into normal brain functioning but also to reveal potential bio-
markers of various brain disorders. Hum Brain Mapp 36:3260–3272, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Recently, two new directions of investigation have
emerged from the classic functional connectivity study of
the resting brain [Biswal et al., 1995]. First, an increasing
number of studies have begun to investigate the task-
related dynamics of functional connectivity and have elu-
cidated intriguing patterns of functional reorganization
related to task performance [Bluhm et al., 2011; Elton and
Gao, 2014; Fornito et al., 2012; Gao et al., 2013]. Con-
versely, the presence of functional connectivity variability
(FCV), even within a single brain state, has also been
increasingly recognized [Allen et al., 2014; Chang and
Glover, 2010; Hutchison et al., 2013a] and established as
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clinically relevant [Damaraju et al., 2014; Rashid et al.,
2014]. Therefore, both directions represent promising exten-
sions of traditional functional connectivity studies deserv-
ing further research. However, a combined investigation of
these two elements—the potential task modulation of
FCV—is currently lacking, which, nevertheless, could
improve our understanding of the mechanisms of FCV and
reveal new brain functional strategies for task performance.

Electrophysiological studies have long recognized the
tonic and spontaneous firing patterns of neurons [Llin�as
and Sugimori, 1980; Perkel et al., 1967; Raman et al., 2000],
providing support for intrinsic physiological sources of
FCV. Indeed, FCV has been shown to persist in the absence
of conscious thought [Barttfeld et al., 2015; Hutchison et al.,
2013b]. Conversely, a recent direct comparison of FCV
between awake resting and anesthetized states revealed a
dramatic reduction of FCV during unconsciousness, sug-
gesting FCV is at least partly related to conscious operations
[Barttfeld et al., 2015]. In particular, one potential source of
FCV during consciousness is the “wandering” of the mind,
in which the brain consciously engages in different mental
operations, to produce fluctuations in functional connectiv-
ity. Indeed, a recent study showed that FCV in the default-
mode network tracks the degree of daydreaming [Kucyi and
Davis, 2014]. Following these theories, a systematic exami-
nation of task-related changes of FCV may further elucidate
its underlying sources from the other end of the conscious-
ness spectrum. Specifically, we would expect FCV to persist
during task performance given the hypothesized contribu-
tion of intrinsic fluctuations. However, we would also
expect a significant decrease in FCV during task perform-
ance due to the increased functional constraint that likely
limits mind wandering. Aside from an improved under-
standing of the underlying sources of FCV, such an investi-
gation may also provide a novel perspective to inform how
the brain responds to different functional demands.

In this study, we investigated the potential task-related
modulation of FCV by systematically examining four brain
states: an initial resting state, a continuous relaxed-paced
task, a continuous rapid-paced task, and a final resting
state. FCV among 35 regions composing six major func-
tional networks was measured at the regional, network
and system levels. Effects of within- and between-network
connectivity on the task-related modulation were further
examined. Finally, the relationship between task-related
changes in FCV and task performance was explored. Our
results confirm our hypothesis of task-induced modulation
of FCV, providing novel insight into its underlying sources
and behavioral relevance.

METHODS

Subjects and Study Procedures

Nineteen healthy adults (5 females) between the ages of
27–40 were enrolled in this study. The absence of any

psychiatric or neurological disorder was confirmed by self-
report. Subjects underwent four consecutive functional
MRI scans, which started with a resting-state scan (R1),
was followed by two global-local selective attention task
scans (T1, T2), and finished with a second resting-state
scan (R2). The resting-state scans were conducted with
subjects relaxed with their eyes closed. The two task scans
were self-paced and involved instructions to perform at
either a relaxed pace (T1) or a rapid pace (T2) and were
presented in a counterbalanced order. Subjects were
instructed to remain awake throughout all four scans and
confirmed their compliance by self-report at the comple-
tion of the session. The task paradigm has been described
in detail elsewhere [Elton and Gao, 2014; Gao, et al., 2013].
Briefly, stimuli consisted of large letters (H or S) composed
of smaller letters (H or S) providing either congruent
(large S and small S; large H and small H) or incongruent
(large S and small H; large H and small S) stimuli. Sub-
jects were required to respond with a button press to indi-
cate the identity of either the large letter or small letter
according to a concurrently presented cue. It is important
to note for the current analysis that the task was continu-
ous in nature, without resting periods or fixation, such
that consecutive trials were immediately presented follow-
ing a response to the preceding trial. The use of a task
with continuous performance was chosen to minimize the
variability produced by a mixture of task-related and rest-
ing baseline signals.

MRI Acquisition

Subjects were scanned with a Siemens Trio 3T MR scan-
ner (Siemens Medical Inc., Erlangen, Germany). T1 images
were collected using a 3D MP-RAGE sequence with the
following parameters: repetition time (TR) 5 1,820 ms;
echo time (TE) 5 4.38 ms; inversion time 5 1,100 ms; 144
slices; and voxel size 5 1 3 1 3 1 mm3. Echo-planar
images were collected for the fMRI scans (TR 5 2,000 ms,
TE 5 32 ms; 33 slices; and voxel size 5 4 3 4 3 4 mm3).
Each of the four fMRI scans lasted 5 min, producing 150
images per scan.

Preprocessing

The first 10 time points were dropped from each fMRI
scan to allow magnetization to reach equilibrium. Images
were subsequently preprocessed in SPM8 software using
identical methods for each scan, which included slice tim-
ing correction, realignment to the second image, registra-
tion to the Montreal Neurological Institute (MNI)
template, reslicing to 3 3 3 3 3 mm3 voxels, spatial
smoothing with an 8 mm full width at half maximum
Gaussian kernel and band pass filtering between 0.008 and
0.08 Hz. Regression techniques removed nuisance signals
from white matter, cerebral spinal fluid (CSF), global sig-
nal and six directions of head motion. Next, data were
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“scrubbed” to minimize the effects of motion on functional
connectivity calculations using a method described by
Power and colleagues [Power et al., 2012]. This method
removes volumes exceeding a global signal change thresh-
old of 0.5% BOLD signal and a displacement threshold of
0.5 mm, in addition to the prior volume and the two sub-
sequent volumes. No volumes required removal for R1,
T1, and T2 for any subject. However, three of the subjects’
R2 scans required substantial scrubbing (601 volumes
removed), limiting the usefulness of that data. Therefore,
R2 scans from these three subjects were omitted from anal-
yses. No volumes were removed from the R2 scan for the
remaining 16 subjects.

ROI Selection

Four higher-order networks, the dorsal attention net-
work (DA), default-mode network (DM), salience network
(SAL), and executive control network (CON), were defined
from seed-based functional connectivity. Seeds were
defined as 8-mm spheres within the bilateral intraparietal
sulcus for DA (x=227, y=252, z=57; 24, 256, 55), the pos-
terior cingulate cortex for DM (x=0, y=253, z=26), the right
dorsolateral prefrontal cortex for CON (x=44, y=36, z=20),
right anterior insula for SAL (x=38, y=26, z=210) based on

previous publications [Elton and Gao, 2014; Seeley et al.,
2007; Vincent et al., 2008]. For each subject and each scan
the voxel-wise Pearson correlation of the mean signal
within the seed region was computed. Correlation maps
were Fisher Z transformed. For these networks, regions-of-
interest (ROIs) were identified as those clusters of voxels
which exhibited stable functional connectivity with the
seed region across all four fMRI scans based on one-way
analysis of variance (ANOVA). In other words, ROIs for
each network were defined from those regions which
exhibited (1) significant positive connectivity for all four
fMRI scans and (2) did not exhibit significant changes
across scans. Although ROIs were functionally defined,
this strategy enabled the definition of ROIs that were con-
sistent across the four scans and not biased by a particular
brain state. These regions are identical to those reported in
our prior study [Elton and Gao, 2014]. Two primary net-
works, the primary visual (V) and sensorimotor network
(SM) were also investigated. Because V and SM networks
do not form discrete clusters, ROIs for these networks
were defined as sets of 8-mm spheres defined a priori [Gao
and Lin, 2012]. ROIs are displayed in Figure 1 and Table I
lists the coordinates of ROI centers for each network. All
coordinates are reported using Montreal Neurological
Institute (MNI) template space.

Figure 1.

Regions-of-interest (ROIs) from each network. ROIs are overlaid

on an anatomical image in MNI standard space for (A) DA, (B) DM,

(C) SAL, (D) CON, (E) V, and (F) SM. Images are in neurological

orientation (right is right). Abbreviations: ACC, anterior cingulate

cortex; AG, angular gyrus; AI, anterior insula; CS, calcarine sulcus;

CU, cuneus; FEF, frontal eye field; IPS, intraparietal sulcus; LN,

lentiform nucleus; MeFG, medial frontal gyrus; MFG, middle frontal

gyrus; MOG, middle occipital gyrus; MT, middle temporal cortex;

MT1, middle temporal visual area; PCC, posterior cingulate cortex;

PoC, postcentral gyrus; PrC, precentral gyrus; SMA, supplementary

motor area. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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Sliding Window Connectivity

For each ROI, the time series was calculated as the
mean signal among voxels within that region, which gen-
erated 35 time series from the 6 networks. The sliding-
windowed correlation [Allen et al., 2014; Hutchison et al.,
2013a] was calculated between each pair of time series
using a rectangular window with a size of 30 time points
(60 s). Calculation of the sliding-windowed correlation
between two time series proceeded by first calculating the
Pearson correlation in these signals considering only time

points 1–30 (i.e. the size of the “window”). Next, the win-
dow was moved forward by one time point, such that the
next correlation was calculated from time points 2–31 of
each signal. The window was iteratively moved forward
with a new correlation calculated for each iteration up to
the last set of 30 time points. This procedure resulted in a
sliding window time series of correlations between each
pair of ROIs.

Calculation of Correlation Variability

To analyze the stability of the between-ROI correlations
over time, we calculated two independent measures of sig-
nal variability. First, for each pair of ROIs, the standard
deviation of the sliding-windowed correlation time series
was calculated. A second measure of correlation variability
was measured by taking the power of the mean-centered
sliding-windowed correlation time series, which was cal-
culated as the absolute value of the area under the curve.
Supplemental analyses were performed on a third measure
of variability, the coefficient of variation, which was
defined as the absolute value of the mean sliding window
functional connectivity divided by its standard deviation.
Because the resulting values are highly skewed, a natural
log transformation was applied to the data.

Statistical analyses were performed using the PROC
ANOVA statement in SAS software. An omnibus test
across all ROIs tested the main effects of task, within-
versus-between network connectivity (ROIs belonging to
the same network or not), as well as the interaction of task
and within-versus-between network connectivity on each
of the two measures of correlation variability using
repeated-measures ANOVA. For each network individu-
ally, within-network effects of task on correlation variabili-
ty measures were tested with two-way ANOVAs with
repeated measures over task and within-network ROIs.
For between-network effects, the effect of task was simi-
larly tested, but repeated measures ANOVAs tested effects
over ROIs that did not belong to the same network.

Calculation of Graph Measures

Using the Brain Connectivity MATLAB toolbox [Rubi-
nov and Sporns, 2010], we calculated system-level meas-
ures of brain organization on both static and sliding
window time series of functional connectivity. For each
scan and each subject, the functional connectivity correla-
tion matrices at each sliding window time point were cal-
culated. Next each of these correlation matrices were used
to calculate the global efficiency, mean local efficiency, and
mean modularity for the graph. Graphs were not adjusted
for their mean connectivity values, and thus the reported
graph measures reflect both the organization and magni-
tude of the connections. Global efficiency is defined as the
average inverse shorted path length of the entire graph.
Local efficiency is a similar measure but calculated on the

TABLE I. Regions-of-interest defining each network

x y z # voxels

DA
R intraparietal sulcus 25 256 47 2353
L intraparietal sulcus 225 255 47 2280
R middle temporal visual area 38 267 212 525
L middle temporal visual area 240 274 26 244
R frontal eye field 27 26 58 466
L frontal eye field 225 27 58 447

DM
Posterior cingulate cortex 0 253 20 1953
Medial frontal gyrus 1 50 16 1786
R angular gyrus 246 264 23 379
L angular gyrus 52 258 22 241
R middle temporal gyrus 58 21 224 130
L middle temporal gyrus 255 25 225 176

SAL
R inferior frontal gyrus/insula 42 22 26 1140
Anterior cingulate cortex 2 30 28 647
L inferior frontal gyrus/insula 239 17 27 646
R lentiform nucleus 16 7 1 35
R middle temporal gyrus 53 222 211 32
L lentiform nucleus 213 6 0 22

CON
R middle/inferior frontal gyrus 42 25 25 1385
R inferior parietal lobule 46 249 43 519
L middle/inferior frontal gyrus 242 32 16 402
Medial frontal gyrus 2 26 39 116
L middle/superior frontal gyrus 227 10 48 53
R anterior insula 32 23 25 46

V
R calcarine sulcus 16 267 5 96
L calcarine sulcus 28 272 4 100
R cuneus 18 296 12 100
L cuneus 25 296 12 106
R middle occipital gyrus 37 285 13 106
L middle occipital gyrus 223 289 12 96

SM
R precentral gyrus 42 213 53 106
L precentral gyrus 241 24 54 96
R postcentral gyrus 49 227 53 106
L postcentral gyrus 245 226 54 106
Supplementary motor area 6 25 54 106

DA, dorsal attention network; DM, default-mode network; SAL,
salience network; CON, executive control network; V, primary
visual network; SM, sensorimotor network.
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local neighborhood for each ROI; we then calculated the
mean across all ROIs to obtain a single value of the
graph’s local efficiency. For efficiency measures, we used
weighted, undirected graphs obtained by taking the abso-
lute value of the 35 3 35 ROI correlation matrix. Modular-
ity is a measure of how well ROIs cluster into discrete
networks. For this measure, weighted, signed graphs were
defined from the raw 35 3 35 ROI correlation matrix. We
calculated the modularity based on the Louvain algorithm
to provide a single value for each graph. Next, the mean,
standard deviation, and power of the graph measures
along the sliding window time series was calculated. The
effect of task on these measures was calculated using
repeated-measures ANOVAs in SAS software.

Relationship between mean and sliding-window
connectivity

Finally, we examined the relationship between variabili-
ty in sliding-windowed correlation and the static correla-
tion calculated over the entire time series. This analysis
included data points for every connection for each subject
to identify whether there is a systematic relationship
between the mean and the variability of the functional
connectivity. Within- and between-network connections
were plotted on the same graph. Based on visual inspec-
tion, the data exhibited a second order polynomial rela-
tionship but both a linear and a second order polynomial
function were tested using least-squares fit and Akaike
information criterion (AIC) values were calculated to select
the best model.

A similar test was conducted on graph measures, which
analyzed the relationship between the mean and the vari-
ability (standard deviation and power) of the sliding win-
dowed calculations of global efficiency, local efficiency,
and modularity. Similarly, although visual inspection sug-
gested a linear relationship, both a linear and a second
order polynomial function were tested and again AIC was
used to select the best model.

Effects of variability on behavior

The relationship between task-dependent changes in
variability and task performance was assessed across both
task scans by partial correlation analysis, controlling for
task level (T1 or T2). Task-related variability was calcu-
lated as the mean change in variability (standard deviation
or power) across all ROIs, where the change was calcu-
lated as the difference between each task scan and the
average of the rest scans (i.e. T1 2 (R1, R2) and T2 2 (R1,
R2)). For the three subjects without usable R2 data, only
R1 was used to represent variability during rest. Behav-
ioral measures included response accuracy, reaction time,
and reaction time variability. Spearman’s correlation coeffi-
cients were calculated due to non-normal distributions of
the behavioral variables.

RESULTS

The ROI-wise matrix of group mean FCV across R1, T1,
T2, and R2 is presented in Figure 2A,B. This figure demon-
strates a general shift from high variability in the resting
states to lower variability in the task states for the sliding-
windowed correlation across each pair of ROIs. For refer-
ence, the corresponding mean of the sliding window con-
nectivity values are presented in Figure 2C. Bar graphs
depicting effects of task on within-network and between-
network FCV are presented in Figure 2. There was a sig-
nificant main effect of task (based on all ROIs) on the vari-
ability of functional connectivity dynamics as measured by
standard deviation (F(3, 80660)=1238.9, P<0.001) and by
power (F(3, 80660)=1162.8, P<0.001). Consistent with our
hypothesis, post hoc testing indicated significant differen-
ces between resting state and tasks and between the two
task states (i.e., R1�=R2>T1>T2). There was a significant
effect of task on the standard deviation (Fig. 3A) and
power (Fig. 3B) of sliding window connectivity time series
for both within-network and between-network ROIs. Sig-
nificant Bonferroni post hoc contrasts for within- and
between-network connections between each pair of succes-
sive brain modes are denoted with asterisks in Figure 3.
However, we also detected a significant amount of resid-
ual FCV during the two task states for both within- and
between-network connectivity (Fig. 3). Specifically, com-
pared with the rest scans (mean of R1 and R2), the fast-
paced task resulted in a 13.9% and 25.8% decrease in FCV,
based on the standard deviation and power, respectively,
indicating that less than half of FCV during rest was
related to the lack of a task-related constraint.

Results based on the coefficient of variation are pre-
sented in Supporting Information Figure S1. This measure
largely confirmed the findings of task-related decreases in
variability as reported for standard deviation and power.
However, SM and V did not conform to this pattern, and
actually exhibited task-related increases in their within-
network variability relative to mean functional connectiv-
ity. Thus, for these two primary networks, it appears that
task-related decreases in the strength of their functional
connectivity outweigh the task-related decreases in vari-
ability (Figure 2A–C), whereas this is not the case for the
four higher-order networks (i.e., DA, DM, SAL, and
CON).

Additionally, there was a significant effect of within-
versus-between network connectivity, such that within-
network ROIs demonstrated lesser variability in connectiv-
ity across all task states compared with between-network
ROIs for both standard deviation (F(1, 80660)=869.1,
P<0.001) and power (F(1, 80660)=500.2, P<0.001) measure-
ments. Finally, there was also a significant within-versus-
between by task interaction for standard deviation (F(3,
80657)=15.6, P<0.001) and power (F(3, 80657)=16.4,
P<0.001), indicating that degree of task related reductions
in FCV was greater for between-network than for within-
network ROIs. We repeated these analyses using multiple
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window sizes, and the results were robust against the use
of shorter (30 s) or longer (90 s, 120 s) windows (Support-
ing Information Figures S2 and S3).

The variability of system-level measures of brain organi-
zation demonstrated a similar pattern as reported above
for the variability of functional connectivity (Fig. 4).

Figure 2.

Matrices of the effect of task on regional FCV. The (A) standard deviation, (B) power, and (C)

mean of sliding window connectivity time series between each set of ROIs is displayed. Within-

network connectivity is denoted with a black box. Warm colors indicate greater variability.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Specifically, there was a task-related decease in the vari-
ability of sliding-windowed graph measures. Significance
testing indicated an effect of task on the standard devia-
tion of sliding window functional connectivity calculations
of global efficiency (F(3,69)=3.00, P=0.037), local efficiency
(F(3,69)=3.57, P=0.018), and modularity (F(3,69)=4.82,
P=0.004) (Fig. 4A). These results were also replicated for
the power of the sliding windowed calculations of local
efficiency (F(3,69)=2.80, P=0.047) and modularity
(F(3,69)=6.52, P<0.001), but did not meet statistical signifi-
cance for global efficiency (P>0.05) (Fig. 4B). Calculations
based on the mean of the sliding window calculations
indicated that there was a significant task-related decrease
in the global efficiency (F(3,69)=6.63, P<0.001) and local
efficiency (F(3,69)=6.04, P=0.001) and modularity
(F(3,69)=7.70, P<0.001) of functional connectivity (Fig. 4C).
Bonferroni post hoc tests identified significant pairwise
contrasts, as indicated on Figure 4.

Plots of the relationship of static connectivity and con-
nectivity variability are presented in Figure 5 and that of
mean efficiency and efficiency variability are shown in Fig-
ure 6. There was a significant quadratic relationship
(P<0.001, the better fit based on AIC) as assessed by
model F statistic between static connectivity and connec-
tivity variability using both standard deviation and power
for each of the four scans. There was a positive linear

relationship (the better fit based on AIC) between the
mean and both standard deviation and power of each of
the graph measures for each of the four scans, however
not all of these relationships were significant (P>0.05) as
shown in Figure 6. A secondary analysis, described in
detail in the Supplementary Materials, considered how
intersubject differences in mean connectivity are related to
connectivity variability for within- and between-network
connections separately. Negative correlations were identi-
fied for the relationship between individual differences in
mean connectivity and connectivity variability for within-
network connectivity, whereas between-network connec-
tions demonstrated positive correlations for this relation-
ship (Supporting Information Fig. S4). A closer inspection
of these data indicates that this set of results closely mir-
rors the “quadratic” pattern observed in Figure 5: individ-
uals with functional connectivity values closer to zero
demonstrate greater variability whereas individuals exhib-
iting stronger connections (either positive or negative)
exhibit lower variability.

Finally, there was a significant correlation between the
amount of task-induced decrease in variability and task
accuracy for both standard deviation (rho=20.40, P=0.014)
and power (rho=20.38, P=0.020), indicating that more
decrease in FCV predicts higher accuracy in task perform-
ance. Relationships between task-related changes in

Figure 3.

Bar plots of the effect of task on network FCV. The effect of task on the (A) standard deviation

(SD) and (B) power of sliding window connectivity time series are presented for within-network

and between-network ROIs. Error bars represent standard error of the mean. Asterisks denote

significant differences between consecutive scans.
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variability and reaction time or reaction time variability
were not significant.

DISCUSSION

In this study, we examined the effects of performing an
explicit task on FCV within and between six large-scale
neural networks and across the whole system. Our results
revealed significantly decreased variability of regional, net-
work, and system-level functional connectivity measures
during task performance, in addition to residual variability
that persisted during the task. Furthermore, we observed
significant effects of network affiliation on task-related
FCV decreases, significant relationships between static and
dynamic functional connectivity measures, as well as

significant effects of FCV changes on behavior. These
results not only shed light on the mechanisms of FCV but
also add to our understanding of the brain’s task perform-
ance strategies.

Our results demonstrate that the variability of functional
connectivity undergoes task-induced decreases which are
measureable at both the network and system levels. Such
findings provide new insights beyond previous findings of
FCV changes during anesthetized states [Barttfeld et al.,
2015; Hutchison et al., 2013b]. Although both anesthesia
and task performance are associated with decreased FCV
compared with rest, the underlying mechanisms likely dif-
fer. Specifically, functional connectivity fluctuations during
anesthesia are centered on an anatomical backbone, indi-
cating a lapse into an anatomically defined default state
[Barttfeld, et al., 2015; Liegeois, et al., 2014] due to a loss

Figure 4.

Bar plots of the effect of task on the variability of graph measures. The (A) standard deviation,

(B) power, and (C) mean of graph measures measured with sliding window functional connectiv-

ity are depicted. Error bars represent standard errors of the mean. Asterisks denote significant

differences between scans.
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of consciousness. Conversely, because both rest and task
performance are conscious states, a task-related reduction
in FCV is likely related to a stabilization of the functional
connectivity pattern to a certain task-specific functional
organization (Fig. 2) [Krienen et al., 2014]. Therefore,
whereas a reduction in FCV during anesthesia is driven
by loss of consciousness, the reduced FCV during task per-
formance is likely associated with increased functional
constraints and demands. Theoretically, a reduction in
FCV during task may serve to maintain an optimal and
more stable brain organization to facilitate continuous per-
formance of a particular task by focusing resources on
task-related neural connections [Corbetta et al., 1990]. This
hypothesis is supported by the finding that task-related
reductions in FCV were associated with improved per-
formance of task goals, as indicated by response accuracy
(Fig. 7). Therefore, findings from this study complete the
other end of the spectrum of FCV changes in which FCV
decreases are due to task demands and support behavioral
performance.

However, despite the task-related decreases in FCV in
this study, there remained a high degree of FCV that per-
sisted during task scans. Consistent with studies of the
anesthetized state demonstrating that FCV are not simply
a consequence of shifting conscious processes [Barttfeld
et al., 2015; Hutchison et al., 2013b], these findings suggest
that FCV is at least partly accounted for by ongoing, spon-
taneous neural activity that is not volitional [Hesselmann

et al., 2008; Hutchison et al., 2013b]. Note, however, the
remaining FCV observed during task performance in this
study most likely also reflects some degree of residual
mind wandering and loss of focus [Allen et al., 2014;
Christoff et al., 2009; Mason et al., 2007]. Consistent with
this hypothesis, the parametric decrease in FCV from rest,
to the relaxed-paced task, to the fast-paced task, likely
reflects a decrease in task-unrelated thoughts associated
with increasing task difficulty [Antrobus, 1966].

Therefore, our findings provide further support for the
hypothesis that FCV during rest is partly driven by the
predominance of mind wandering during this
“uncontrolled” state. At rest, the brain is free to explore a
number of configurations, including thought processes
related to planning, self-related thoughts, somatic aware-
ness, and sensory processing [Binder et al., 1999; Diaz
et al., 2013]. Thus the enhanced FCV may reflect the
increased number of brain states explored [Tagliazucchi
et al., 2014] as compared to either the performance of a
task or loss of consciousness [Barttfeld et al., 2015]. Fur-
thermore, the resting state may be particularly susceptible
to a loss of vigilance relative to a focused task state, which
may contribute to the observed variance in functional con-
nections [Tagliazucchi et al., 2012]. Overall, given the sig-
nificant variability decrease in addition to the residual
variability during the task scans, the current data suggest
that neither intrinsic biological constraints nor mind wan-
dering fully account for the observed FCV at rest

Figure 5.

Scatter plots of the relationship of static functional connectivity and connectivity variability for all

networks. Variability was measured using the (A) standard deviation (SD) and (B) power of slid-

ing window functional connectivity. FC, functional connectivity. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6.

Scatter plots of the relationship between the mean and variability of graph measures. Variability

was measured using the (A) standard deviation (SD) and (B) power of sliding window graph

measures. Least-squares fit lines are plotted for both significant (solid lines) and nonsignificant

(dashed lines) relationships. Only the 16 subjects with usable data are plotted for R2.



[Keilholz, 2014]. Rather, a parsimonious interpretation is
that FCV reflects shifting conscious states that occur above
and beyond spontaneous neural activity.

Our findings further encompassed graph theory meas-
ures, which provided a system-level quantification of the
efficiency of brain organization and demonstrated that
reduced variability transcends local connections. The
results revealed that the efficiency and network structure
of brain organization become less variable while perform-
ing a task compared with rest. Interestingly, our results
also show that the mean value of the local/global effi-
ciency and modularity also decrease during task perform-
ance. Therefore, the whole brain efficiency and network
modularity is higher during rest compared with task,
despite the relatively increased variability of functional
connections during this state. Consistent with this finding,
the positive relationship between the mean and variability
of measures of efficiency and modularity indicates that
higher efficiency states undergo larger fluctuations (Fig. 6).
This relationship implies that frequent brain state changes
may enable greater overall efficiency [Zalesky et al., 2014].
Mechanistically, the ability to cycle through various states
may enhance overall system-level efficiency by preventing
repetition-related decreases in neural activity (i.e. due to
the depletion of local resources, receptor desensitization,
etc.) [Gainetdinov et al., 2004; Grill-Spector et al., 2006].
Thus, we speculate that the brain may be the most efficient
at rest when functional constraints are absent and neural
connections are allowed to naturally fluctuate, whereas
some efficiency is sacrificed to sustain task-relevant
organizations.

The variability of functional connectivity also decreased
as a function of increasing absolute magnitude of static

connectivity (Fig. 5). This finding is consistent with the
report that stronger connections are associated with
greater test-retest reliability [Shehzad et al., 2009], suggest-
ing that certain neural configurations are more stable than
others. The strongest and, per the current data, the most
stable connections typically occur between ROIs that are
designated as belonging to a common network, consistent
with the fact that stability has been a key criterion in
defining neural networks [Smith et al., 2009]. This interpre-
tation is also consistent with the finding of the current
study that within-network variability was lower across all
scans and demonstrated a lesser task-related reduction
than between-network variability. Conversely, this rela-
tionship also suggests that strong negative connections
also demonstrate relatively stable connectivity. Therefore,
these findings support the interpretation that neural net-
works primarily function as a cohesive unit across brain
states and are associated with a stable set of anticorrelated
regions [Fox et al., 2005]. The findings further indicate that
functional connectivity fluctuations may be largely tied to
connections that enable communication between networks
[Zalesky et al., 2014], corroborating the finding that
between-network interactions are the most dynamic. In
fact, there is some evidence that state-dependent connec-
tivity changes largely occur between large-scale functional
networks [Gao et al., 2013; Spreng et al., 2010; Vincent
et al., 2008]. Another extended interpretation of the current
results is that the lack of a static functional connectivity
relationship between certain regions may be driven by the
large variability in their interactions rather than the lack of
meaningful interactions, per se.

The current study supports the existence of a neural sig-
nature of task engagement characterized by decreased

Figure 7.

Scatter plots of the relationship between task-related changes in variability and accuracy for (A)

standard deviation and (B) power measures. Spearman partial correlation coefficients controlling

for task (T1, T2) and their P-values are provided. Separate fit lines for each task are shown for

visualization purposes. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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FCV. Given the observed task effects on FCV, our results
support extending FCV analyses to task fMRI data, partic-
ularly by examining task-specific changes. Task-related
changes in FCV may exhibit unique, region-specific pro-
files depending on the task being performed. Therefore,
task-based FCV analyses may provide extra information
regarding brain function to complement conventional
activity and connectivity measures [Price et al., 2014].
Another potential extension of task-related FCV would be
to explore FCV changes during a task to examine mecha-
nisms of learning, adaptation, or attentional lapses. Such
analyses may improve our understanding of neural func-
tions underlying FCV during task performance and their
relationship to various brain disorders and normal behav-
iors [Hansen et al., 2015].

Due to the unconstrained nature of the resting-state
scan, it is difficult to label the different states occurring
during rest and their hypothesized relationship to mind
wandering. Reverse inferences based on neural connectiv-
ity patterns [Shirer et al., 2012], EEG data [Tagliazucchi
et al., 2012], or subject feedback [Christoff et al., 2009]
throughout the scan may further help to characterize the
sources of variability in functional connectivity. Further-
more, a direct assessment of the degree of mind wander-
ing in each of the scans would provide a clearer link
between this variable and FCV. Even though subjects
claimed to remain awake during the scans, it is still possi-
ble that some variability observed during the resting state
is related to subjects failing to remain alert or falling
asleep [Tagliazucchi and Laufs, 2014]. Additionally, the
current study considered only one continuous task per-
formed at two different speeds. Future studies focusing on
other task domains or manipulating other experimental
parameters will aid in further understanding of task-
related changes in FCV. Moreover, similar analyses com-
paring datasets employing constrained cognitive processes
in the absence of external stimuli [Krienen et al., 2014;
Shirer et al., 2012] to an unconstrained resting state may
provide further support for the current findings.

CONCLUSIONS

Variability in functional connectivity and system-level
organization was reduced but not eliminated by the per-
formance of a task relative to rest. The study findings sup-
port the hypothesis that FCV is partly underpinned by the
wandering of the mind, which likely occurs on top of
intrinsic, physiologically driven fluctuations. The task rele-
vance of FCV thus opens a new opportunity to probe
neural functioning and explore the neural correlates of
psychopathology.
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