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Abstract: Cortical activity has been shown to correlate with different parameters of movement. However,
the dynamic properties of cortico-motor mappings still remain unexplored in humans. Here, we show that
during the repetition of simple stereotyped wrist movements both stable and unstable correlates simultane-
ously emerge in human sensorimotor cortex. Using visual feedback of wrist movement target inferred
online from MEG, we assessed the dynamics of the tuning properties of two neuronal signals: the MEG sig-
nal below 1.6 Hz and within the 4 to 6 Hz range. We found that both components are modulated by wrist
movement allowing for closed-loop inference of movement targets. Interestingly, while tuning of 4 to 6 Hz
signals remained stable over time leading to stable inference of movement target using a static classifier, the
tuning of cortical signals below 1.6 Hz significantly changed resulting in steadily decreasing inference accu-
racy. Our findings demonstrate that non-invasive neuronal population signals in human sensorimotor cor-
tex can reflect a stable correlate of voluntary movements. Hence, we provide first evidence for a stable
control signal in non-invasive human brain-machine interface research. However, as not all neuronal sig-
nals initially tuned to movement were stable across days, a careful selection of features for real-life applica-
tions seems to be mandatory. Hum Brain Mapp 35:3867–3879, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Previous studies on voluntary movements showed that
cortical activity correlates with muscle activations and
movement parameters across different spatial scales from
single cells to neuronal populations [Carmena et al., 2003;
Cheney and Fetz, 1980; Georgopoulos et al., 1982, 1986;
Mehring et al., 2003; Schalk et al., 2008; Waldert et al.,
2008]. More recent studies also inferred hand movement
parameters such as speed, position, direction, velocity and
grasp type in humans [Bradberry et al., 2009; Georgopou-
los et al., 2005; Jerbi et al., 2007; Pistohl et al., 2008, 2011;
Schalk et al., 2007; Waldert et al., 2008]. Most of these find-
ings were obtained by analyzing recordings from single
experimental sessions. The stability of neuronal correlates
of movement across sessions or even days has only been
investigated in non-human primate studies, either corrobo-
rating [Chao et al., 2010; Chestek et al., 2007; Ganguly and
Carmena 2009; Ince et al., 2010; Serruya et al., 2002; Ste-
venson et al., 2011] or questioning stability [Carmena
et al., 2005; Padoa-Schioppa et al., 2004; Rokni et al., 2007].
Whether the correlation between brain activity and motor
behavior in humans shows similar inconsistencies over
time has remained unexplored.

To our knowledge, this question has not yet been
addressed although its answer is relevant to both basic
neuroscience and brain-machine interface research: first,
the stability of a movement-related neuronal signal may
help to clarify whether natural motor control relies on a
consistent relation between neuronal activity and behavior.
Second, stable components could provide a robust control
signal in brain-machine interfaces where a reliable map-
ping of neuronal activity to external devices is needed
[Nicolelis and Lebedev, 2009; Rossini, 2009]. Therefore, we
assessed the temporal properties of neural correlates of
wrist movement target in humans. To this end, healthy
subjects performed stereotyped movements and received
closed-loop visual feedback of movement target inferred
from magnetoencephalographic (MEG) signals. Movement
inference over 18 sessions, spanning three days, was based
on a static classification algorithm. Hence, the unchanged
cortico-motor coupling in our experiments allowed us to
investigate changes in the stability of movement-related
activity across days, as indicated by the classifier’s accu-
racy and the evolution of tuning of population activity to
different targets. We demonstrate a stable correlate of
motor behavior in human sensorimotor cortex that allows
for closed-loop inference.

MATERIALS AND METHODS

Recordings

Brain activity was measured using a 275-sensor whole-
head MEG system (VSM MedTech Ltd., Vancouver, Can-
ada) that is based on first-order axial gradiometers (1.8 cm
coil diameter; 5 cm baseline; 2.2 cm intersensor spacing)

and has a noise level of 10 fT/�Hz. All experiments were
carried out in an electromagnetically shielded room (con-
structed by Vakuum-Schmelze Hanau, Germany). For
obtaining a head position template as well as continuous
monitoring of head movements three localization coils
were placed on the subject’s head: one at the nasion (acti-
vated at 1,423 Hz) and two at the preauricular fiducial
points (left coil activated at 1,475 Hz; right coil activated at
1,526 Hz).

Electro-oculograms (EOG) of both eyes were recorded
via bipolar electrodes (impedances <5 kX) connected to an
EEG head box (VSM MedTech) with reference on the clav-
icle. Horizontal EOG was recorded by placing an electrode
to the outer canthi of each eye, vertical EOG by an elec-
trode pair above/below subjects’ left eye. All signals were
sampled simultaneously at a rate of 1,172 Hz and low-
pass filtered at 391 Hz during acquisition.

Subject’s wrist movements were detected using a custom
built MEG compatible, nonmagnetic joystick. The position
signals of the joystick were transmitted via optical cables
and recorded as an external channel by the MEG system.

Experimental Protocol

Fourteen healthy right-handed subjects (six males, 24 6 2
years, handedness according to modified Oldfield score
91 6 11, see www.brainmapping.org) participated in this
study after giving informed consent. All experimental pro-
cedures were approved by the ethics committee of the
medical faculty of the University of T€ubingen and were in
compliance with the Declaration of Helsinki. We randomly
assigned subjects to one of two groups: in one group
band-pass (4–6 Hz) filtered signals were used for brain-
control, in the other group (six subjects) the low-pass
(<1.6 Hz) signals were used for brain-control (for details
see subsection MEG processing below). Subjects were
instructed to move a non-magnetic joystick left- or right-
wards from a centre position by performing fast, stereo-
typed radial-ulnar deviations of the wrist. The joystick
could only be moved right- and leftwards and its maxi-
mum deflection was 3.25 cm (6.6 cm arc of a circle, 29�).
To minimize movement variability due to postural
changes, the forearm was gently pushed into orthopedic
memory foam (AT Kunststoffe, Ahaus, Germany) and fur-
ther fixed in prone position using a flexible hook-and-loop
tape (Fig. 1A). The head’s position inside the MEG device
was stabilized with an inflatable air-pillow to prevent any
major head movements during task execution (mean head
movement across subjects and runs was 2.9 6 1.4 mm).

On day 1 we first recorded six calibration sessions (CS)
of 50 trials each where the two movement targets were
presented in a randomized and balanced way. The data of
the CS were used to build a classifier which can infer wrist
movement target from MEG sensor activity (see data anal-
ysis for details). After subjects took a break outside the
MEG chamber for approximately 30 min they performed
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six brain-control sessions (BS) of 40 trials each with visual
feedback showing the classifier’s output. In the BS the clas-
sifier built from the CS was held constant. This block of
closed-loop brain-control sessions was then repeated twice
(additional 12 BS) 2 days later with a break of �25 min
between sessions 7 to 12 and 13 to 18 (Fig. 1B). Foam
imprints and head positioning templates obtained during
the first CS were used in all subsequent CS and BS to min-
imize postural sources of variability. Each trial started
with the presentation of a small white fixation cross pro-
jected against a black background on a screen (42 3 32
cm, 800 3 600 pixels) approximately 60 cm in front of the
subject. After 1 s the cross changed color in a randomized
and balanced way indicating the upcoming movement tar-
get: red equivalent for movements to the right and purple
for movements to the left. Following a delay period of
700 ms where the cross color was changed back to white,
only the outline of the cross was shown to indicate a
“GO” signal. Subjects had to complete the movement
within 1 s after which a vertical bar appeared on the
screen for providing feedback for another 1.5 s: during the
CS the bar was filled with green color in case of correct
timing of the movement while white color indicated
wrong timing or movement to wrong target. During the
BS the visual feedback was coupled to the classifiers’ out-
put: while gradual filling of the upper half of the bar
showed the classifier’s posterior probability of the exe-
cuted movement when it was above 50% for the correct
movement target, the lower half indicated less than 50%
for the target. During the BS we additionally presented a

monetary reward for the subject that was increased or
decreased depending on the classifier’s performance.
Thereby, we informed subjects about the cumulative per-
formance within a run and introduced a motivational fac-
tor. In the following 3 s intertrial interval subjects moved
the joystick back to the initial center position marked by
the appearance of a white square on the screen. The center
position covered a range of 67% of maximum joystick
deflection.

To implement the closed-loop visual feedback paradigm
we utilized the general-purpose platform BCI2000 [Schalk
et al., 2004]. All signals sampled by VSM hardware were
buffered in blocks of 82 samples (�70 ms) and forwarded
via Ethernet to a separate machine running the BCI2000
software [for details see Mellinger et al., 2007]. Here, the
data blocks were stored and processed in the pipeline
shown in Figure 1C.

Data Analysis

Preprocessing

During acquisition all electrophysiological signals were
high-pass filtered (0.4 Hz, first-order IIR, zero phase shifts)
to remove slow drifts. Then synthetic third-order gradiom-
eter formation, i.e. subtraction of a linear combination of
reference MEG sensors, was applied to MEG sensor sig-
nals to reduce environmental noise and enhance low-
frequency resolution [Vrba et al., 1999]. To minimize the
jitter introduced by reaction time and execution variability,

Figure 1.

Experimental setup. (A) Subject sitting in the MEG chair with

right arm resting on the non-magnetic joystick. (B) Sequence of

visual feedback within trials. Upcoming center-out movements

were cued by a colored fixation cross. During calibration ses-

sions (CS) a vertical bar at the end of each trial indicated a cor-

rect movement execution within time constraints (green bar) or

a failure trial (white bar). When switching to closed-loop mode

(brain control sessions BS) the same bar provided subjects with

feedback about the static classifiers’ output. (C) Schematic

showing data processing steps. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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single-trial epochs were extracted from 1,120 ms before to
1,400 ms after the alignment point which was set at 50%
of maximum joystick’s deflection. Finally, trials with no
movement, movement to the wrong target or a movement
with a reaction time above five times the median absolute
deviation were excluded. No further artifact rejection was
performed for the closed-loop experiments where this is
commonly skipped due to constraints on time, computa-
tion and reliability in real-time applications.

To assess potential influences of artifacts from eye and
muscle activity on the stability of brain components, the
classification procedure described below was repeated
post hoc after excluding noisy trials. To this end, epochs
of interest (see MEG processing) for all MEG sensors were
band-pass filtered 1 to 15 Hz (fourth-order butterworth) to
detect eye movements and band-pass filtered 110 to 140
Hz (eighth-order butterworth) to reveal muscle artifacts.
Then the amplitude of each sensor (calculated using the
Hilbert transform) was z-normalized and subsequently
averaged over all MEG sensors. Whenever the resulting
single time series reached a threshold of z � 4 and the
EOG or respectively EMG signals supported the occur-
rence of an artifact, the affected trial was rejected. More-
over, all trials were visually inspected for signal jumps
and slow drifts.

As the above procedures for artifact removal had only a
very small effect on the classification accuracies (see Results
section) we performed most of the offline analyses also
without the artifact removal to allow for a better comparison
with the results from the online, closed-loop experiments.

MEG processing

Based on Waldert et al. [2008] showing maximum direc-
tional tuning in low-frequency MEG signals, we decided
to assess the stability of two different slow cortical compo-
nents: below 1.6 Hz and 4 to 6 Hz band. The former was
obtained using a Savitzky-Golay smoothing filter (second
order, 630 ms window), the latter using a 4 to 6 Hz Butter-
worth band-pass filter (third order, zero phase shift). Once
filtered, the signals of the first and last 490 ms of each
epoch were discarded as filter transients and thus, the
final epochs spanned from 630 ms before to 910 ms after
the alignment point.

EOG processing

Following the procedure for MEG signals, epochs of
electrical activity from EOG were obtained and low-pass
filtered with a cutoff at 30 Hz (third-order Butterworth,
zero phase shifts).

Inference of Wrist Movement Target From

Electrophysiological Signals

To infer wrist movement target from both aforemen-
tioned slow MEG components we used regularized linear

discriminant analysis (RLDA, see classifier description
below) as classifier. The features used for classification
comprised the filtered signals from the 50 MEG sensors
covering bilateral sensorimotor areas (Fig. 2E) at one single
time sample. For each subject, two parameters were opti-
mized with respect to classification accuracy (CA): the
time sample within the trial and the regularization param-
eter k (see classifier description below). We estimated the
CA across the parameter space by two means: by leave-
one-out cross-validation (LCV) on the first four runs of the
CS, and by using the first four runs of the CS as training
set and the last two as validation set (intersession valida-
tion). We finally selected the parameters that yielded maxi-
mum CA for LCV and for which the absolute difference of
the CAs between both procedures was below 5%. With
these criteria we accounted for both: changes between sin-
gle runs and biased estimations when using LCV on non-
stationary data.

To assess whether wrist movement target could be
inferred from eye movements we applied the same classifi-
cation procedure to the signals from vertical and horizon-
tal EOG.

Linear Classifier

Regularized linear discriminant analysis (RLDA [Fried-
man, 1989]) was used to infer movement target m �
j5 left; rightf g from a signal vector of N 5 50 MEG sensors.
For RLDA the likelihood functions are modeled as multi-
variate Gaussian distributions according to

pðsjtarget mÞ5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞNjCj
q e21

2ðs2ltarget m Þ
TC21ðs2ltarget m Þ (1)

where s depicts the 50 dimensional signal vector compris-
ing the filtered signals of 50 MEG sensors at a certain
point in time. The common, i.e. target independent, covari-
ance matrix C and the movement target specific mean sig-
nal vectors mtarget m were estimated from the data recorded
during CS. To avoid singular covariance matrix estimates
and poor generalization due to over-fitting, we employed
a regularization technique and used the following covari-
ance matrix during decoding:

Creg5ð12kÞC1kD (2)

where k is the regularization parameter, C the full covari-
ance matrix estimated from the training data and D repre-
sents a diagonal matrix with diagonal elements d 5 tr(C)/
N. k can take any value between 0 and 1, where 0 repre-
sents no regularization and 1 maximal regularization. Dur-
ing decoding the posterior probabilities were computed
using Bayes’ rule

pðtarget mjsÞ5
pðtarget mÞpðsjtarget mÞX

j
pðtarget jÞpðsjtarget jÞ

(3)
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where a uniform prior with p(targetj) 5 0.5 was used. The
movement target with the highest posterior probability
was selected. During brain control sessions the exact value
of the posterior probability was also used to generate the
visual feedback (see above).

Cortical Sources of Activity

We estimated the neuronal sources of single-trial MEG
surface activity by computing Minimum Norm Estimates
(MNE) on a single-sphere head model using the Brain-

storm toolbox [Tadel et al., 2011]. We used constraint
dipoles (normal to cortical surface) and standard Tikhonov
regularization (k 5 0.1). Localizing electromagnetic brain
sources with MNE does not imply any assumptions about
the underlying source currents [H€am€al€ainen and Ilmo-
niemi, 1994].

Time-Frequency Analysis

Spectral estimation for frequencies between 0 and 100
Hz was done by time-resolved Fourier transform using a

Figure 2.

Task-related modulation of brain activity. (A) Exemplary raw

MEG signals of the 50 sensors used to build the classifier from

the CS 1–6 of subject 12. Vertical line indicates point of data

alignment at 50% of maximum joystick deflection. (B) Same sig-

nals after 1.6 Hz low-pass (LP) and (C) 4–6 Hz band-pass (BP)

filtering. (D) Absolute joystick position within the same time

period. (E) Corresponding topographic display of relative power

spectra for the same set of MEG sensors (grey inset). Data rep-

resent the average over all CS trials of all 14 subjects; one sen-

sor is magnified for better visualization.
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sliding Hamming window of 400 ms. The window was
shifted in steps of 17 ms. Relative power modulations
were obtained by dividing the power in each frequency
bin by the corresponding mean power during a baseline
period (2870 to 2630 ms with respect to the time point of
50% maximal joystick deflection).

Temporal Evolution of Tuning Across Sessions

To assess the tuning properties of filtered signals we cal-
culated the signal-to-noise ratio (SNR) in the canonical
RLDA space at the time point of inference. That is, we first
projected the signal vectors s to the eigenvector F of C21

regB
corresponding to the largest eigenvalue, where

B5
1

2

X
j

l2ltarget j

� �T
l2ltarget j

� �
(4)

is the between-class covariance matrix and

l5
1

2

X
j

ltarget j
(5)

is the mean of the class means, yielding projected data y

y5s�FT (6)

Note that in the two-class case the rank of B is equal to
1, therefore there is only one eigenvector F with nonzero
eigenvalue [Fukunaga, 1990] and the canonical RLDA is
one dimensional.

We then defined SNR as the distance between class
means m’ in the new space in relation to the fluctuations r’
around this class means, i.e.

SNR5
l0target left

2 l0target right

ðr0target left
1 r0target right

Þ=2
(7)

To analyze tuning strength and tuning profile dynamics
we computed SNR across blocks of sessions following two
different procedures: first, to assess tuning strength, the
projection to canonical space was done independently for
each block of sessions (CS 1-4, BS 1-6, BS 7-12, and BS 13-
18), i.e. the eigenvector F was recomputed for each block.
Second, to assess changes of tuning with respect to the CS
tuning profile, the eigenvector F computed from the CS
was applied to the BS. In both procedures the regulariza-
tion parameter k from the original classifier of each indi-
vidual subject was used.

Statistical Analysis

For all the group analyses we report results in the form
of mean 6 standard error of the mean (SEM). To evaluate
significance of classification accuracy we used the cumula-
tive binomial distribution to calculate the confidence level
of 99% [see Mehring et al., 2003].

Differences in CA between the two independent subject
groups were examined using the Wilcoxon rank-sum test.
Within group differences in CA were assessed with the
Wilcoxon signed-rank test. To test for any trends in per-
formance over trials or over sessions we used a linear fit
and assessed the significance of the slope by standard
techniques [Belsley, 1980]. A two-sided Wilcoxon rank-
sum test between pooled absolute values of the raw joy-
stick signals of all movements to the left and to the right
was applied to test for differences in movement execution.
All data analyses were performed using MATLAB (The
MathWorks Inc., Natick, MA).

RESULTS

Fourteen healthy subjects performed delayed radial-
ulnar wrist deviations to move a joystick left- or right-
wards inside the MEG chamber (Fig. 1A). After a brief
practicing period during which subjects could get
acquainted with the setup, we recorded six runs, referred
to as calibration sessions (CS, see Fig. 1B). The resulting
trials of 142 6 2 (mean 6 SEM) for movements to the left
and 142 6 3 for movements to the right across the CS were
used to build a linear classifier of movement target based
on slow sensorimotor cortical activity: for one group of six
subjects MEG signals were low-pass filtered 1.6 Hz (LP
group), while for the other group of eight subjects a 4 to 6
Hz band-pass component was used (BP group). During
subsequent brain control sessions (BS) on 2 different days
the classifier provided visual feedback based on the
inferred movement target. The classifier was kept constant
across all BS and across both days. This closed-loop para-
digm allowed us to assess the stability of movement-
related cortical activity.

Spatiotemporal Characteristics of Cortical

Activity

MEG signals exhibited clear movement-related modula-
tion: in the raw signals of the 50 central sensors used for
building the classifiers (Fig. 2A) one can observe an early
positive peak at the beginning of the movement that was
followed by a negative signal deflection during continued
movement execution. After applying a 1.6 Hz low-pass fil-
ter (LP) this general time course was preserved and it
became evident that single sensors did vary in peak ampli-
tude and latency (Fig. 2B). Band-pass filtering (BP) the
same raw signals in the range 4 to 6 Hz revealed oscilla-
tory signals with maximum signal modulation during the
period of movement execution (Fig. 2C). The time-resolved
spectra are consistent with these findings (Fig. 2E). While
the power increased during movement execution in fre-
quencies below 7.5 Hz, in the ranges 37.5 to 45 Hz (low
gamma) and 55 to 90 Hz (high gamma), a strong decrease
in power was observed for 10 to 15 (mu) and 15 to 30 Hz
(beta) within the same period. While power decrease in
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the mu-band continued, the beta component in frequencies
25 to 32.5 Hz increased again after movement (beta
rebound).

With regard to the topography of magnetic field
strength the most salient pattern at the time point of
decoding is shown in Figure 3A: a strong, dipolar mag-
netic activity over central to contralateral sensorimotor
areas, which was, however, subject to some amount of
interindividual differences. Furthermore, depending on the
subject, additional weaker activity was measured at pre-
frontal or posterior parietal sites. Localizing single-trial
source currents revealed activity peaks in precentral (Brod-
mann area 4, Talairach coordinates x/y/z 230/230/60
mm), postcentral (Brodmann area 3, 227/218/262 mm),
and premotor (Brodmann area 6, 230/210/260 mm)
areas (Fig. 3B).

Inference of Wrist Movement Target

Figure 4 illustrates how well movement target could be
inferred during CS using 50 MEG sensors over bilateral
sensorimotor areas. For the LP group we correctly classi-
fied 76 6 4% of single trials (mean 6 SEM). In comparison
to this, the classification accuracy (CA) for the BP group
was higher at 85 6 3% on average (P 5 0.059, Wilcoxon
rank-sum test).

We also evaluated the CA in a time-resolved manner
(Fig. 4B): for the LP group this revealed a first significant
CA �250 ms before the trigger point of 50% maximum
joystick deflection. From this point on the subject averaged
CA increased monotonically, peaked around movement
end and declined after movement end. This general pat-
tern was also evident for the BP group with CA values
reaching higher maximum values around 80%. Impor-
tantly, the average angular difference between the absolute
joystick trajectories of both target movements was 0.8�

during the movement period (i.e. from 2100 ms to 1100

ms relative to the alignment point) as compared to the
within standard deviation of 1.1� for both rightwards and
leftwards movements (range across sessions and subjects:
0.7–1.7�). Movement displacement was highly stereotyped
across sessions with angular differences within each target
of 0.7� on average. The time-resolved CA of electrooculo-
gram (EOG) signals fluctuated around chance level, sug-
gesting that eye movements did not carry information
about movement target at any moment within the window
of interest (Fig. 4B, upper panel).

Temporal Evolution of Slow Cortical

Components

We then assessed the temporal stability of slow cortical
signals as indicated by the output of the fixed classifier
during all closed-loop sessions. Hence, Figure 5A shows
the CA of wrist movement target for the BP group over 18
BS runs across three days. For all subjects movement tar-
get could be inferred with a high mean CA of 81 6 1%
across the BS. The CA during BS was not different from
the CA during CS (P 5 0.20, Wilcoxon signed-rank test).
Moreover, there was no change in CA between day 1 and
2 and the average CA over all sessions did not reveal a
trend (linear regression: slope 5 20.08%, P 5 0.41). Infer-
ence from EOG signals did not yield accuracies above
chance level. Altogether this indicates temporally stable
correlates of movement target in 4 to 6 Hz brain activity
that allowed stable inference across days.

The observed stability of average CA across sessions
does not necessarily exclude changes within single BS. To
test for such changes, we computed the CA within single
BS using a moving average over five trials. We observed
high accuracies from the very start of each session, with
CA values fluctuating between 78% and 83%, and almost
no changes of CA across trials (Fig. 5B, linear regression:

Figure 3.

Sources of movement-related fields. (A) Average magnetic surface activity of BP signals for the

same data as in Figure 2 at the time point of movement inference (1139 ms). (B) Correspond-

ing brain sources revealed by Minimum Norm Estimation superimposed on a template structural

MRI (MNI/colin27 T1 template). Source currents were localized on a single-trial basis and subse-

quently averaged over n 5 284 trials.
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slope 5 0.04% per trial, P< 0.001). This shows that the sig-
nals in the 4 to 6 Hz range could be used for brain control
right away from the beginning of each BS.

Applying the same analysis described above to the LP
group we again obtained CAs significantly above chance
level throughout the BS on both days (Fig. 5C). In contrast

to the BP group the average CA across 18 BS (66 6 1%)
was significantly lower than during the CS (P< 0.05, Wil-
coxon signed-rank test). Also the CA decreased across the
BS (linear regression: slope 5 20.5% per session,
P< 0.001). However, intra-session CA was constant from
the start to the end of each session, fluctuating between
60% and 68% with no distinct changes over trials (Fig. 5D,
linear regression: slope 5 20.04% per trial, P< 0.05). In
summary, wrist movement to two targets was successfully
inferred during the closed-loop feedback of the LP group
as well. However, in contrast to the BP group the modula-
tion of 1.6 Hz signals between right- and leftward move-
ments was not stable across time.

All results presented thus far indicate higher stability of
decoding for the BP group when compared to the LP
group. Is this difference attributable to the closed-loop
feedback or due to intrinsic properties of the signals? To
address this question we post-hoc built and tested classi-
fiers using swapped pre-processing filters, i.e. subjects
from the LP group were reanalyzed off-line using 4 to 6
Hz BP filtered signals and subjects from the BP group
were reanalyzed offline with 1.6 Hz LP filtered signals.
Our results show that the closed-loop feedback had no
influence on the magnitude of the CA and its evolution
across sessions (Fig. 6A): the BP component yielded a high
and stable CA, not only for the BP but also for the LP
group. Likewise, the LP component yielded a lower and
unstable CA for both groups. The CAs of each component
were not different between the groups (BP component:
P 5 0.66, Wilcoxon rank-sum test; LP component: P 5 0.85,
Wilcoxon rank-sum test). Overall, these results suggest
that the stability and instability of decoding across BS was
not due to differences in the closed-loop coupling but due
to different intrinsic signal properties.

What causes the instability of the LP component? One
confounding variable may be that eye movements or mus-
cular activity could have influenced this component. To
address this issue, we repeated the classification procedure
offline after manually removing trials that contained
potential artifacts. The resulting weak changes in CA com-
pared to the original data were not significant for either
LP or BP component (all P> 0.05, Wilcoxon signed-rank
test; see Table I). We then asked whether the instability of
the LP component is caused by an attenuation of tuning
across BS or by a tuning profile, which changes during BS
but keeps its strength? To differentiate between these two
possible explanations, we separately computed the tuning
strength and a measure that quantifies the similarity of the
tuning during BS to the tuning during CS (tuning profile,
see Methods for details). While the tuning strength of the
LP component remained constant across the BS, its tuning
profile gradually changed with respect to the initial pat-
tern found during the CS (Fig. 6B,C). This decrease of tun-
ing similarity reached significance on the second
experimental day (P< 0.05, Wilcoxon signed-rank test). In
contrast, tuning strength and profile of the BP signals
remained unchanged over the BS.

Figure 4.

Inference of movement target in the CS. (A) Mean classification

accuracy (CA) for single subjects (numbers) and average across

subjects (symbols) using 50 sensors over bilateral sensorimotor

areas (MEG) or eye signals (EOG). Values are obtained by train-

ing the classifier on the first four CS and applying it on the last

two CS (see Methods). (B) Average of time-resolved CA and

joystick trajectory across subjects. The vertical line indicates the

point of data alignment at 50% of maximum joystick deflection.

In both graphs horizontal dotted and dashed lines represent

chance level of 50% and the value above which CA deviates sig-

nificantly (P< 0.01) from the chance level. Error bars in (A) as

well as shaded areas in (B) show standard error of the mean.
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DISCUSSION

In summary, this study demonstrates stable cortical cor-
relates of stereotyped wrist movement across several days,
which can be utilized for stable closed-loop inference of
movement targets in humans.

Concurrent Stable and Unstable Correlates of

Wrist Movements

Previous studies have reported slow cortical activations
that correlated with different parameters of upper limb
movements [Bradberry et al., 2009, 2010; Georgopoulos
et al., 2005; Jerbi et al., 2007; Rickert et al., 2005; Schalk
et al., 2007; Waldert et al., 2008]. Yet, the stability of the

relation between motor behavior and cortical activity
remains under debate [Carmena et al., 2005; Chestek et al.,
2007; Ganguly and Carmena, 2009; Padoa-Schioppa et al.,
2004; Rokni et al., 2007; Stevenson et al., 2011]. Here, we
extend recent reports on stability of neuronal activity dur-
ing upper limb movements in non-human primates [Chao
et al., 2010; Ince et al., 2010] to humans: by using a con-
stant classifier that provided visual feedback of wrist
movement targets inferred online from MEG, we show
concurrent stable and unstable cortical signals involved in
voluntary movements of humans.

Our results demonstrate that consistent with previous
work [Waldert et al., 2008; Wang et al., 2010] slow MEG
signals, namely below 1.6 Hz and in the 4 to 6 Hz ranges,
are significantly modulated by wrist movement so that

Figure 5.

Inference of movement target in the BS. (A) Course of average CA using 4 to 6 Hz BP filtered

data over 18 BS on two different days for BP group. (B) Average intra-session performance

smoothed over n 5 5 trials. (C) Same as in (A) for 1.6 Hz LP filtered data of LP group and (D)

corresponding intra-session performance. Error bars in all graphs represent standard error of

the mean.
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movement target could be inferred in a closed-loop para-
digm. However, modulations to the two targets evolved
differently over time: while both tuning strength and tun-
ing profile of the 4 to 6 Hz component remained stable,
the tuning profile of cortical signals below 1.6 Hz signifi-
cantly changed, resulting in smoothly decreasing CA. Such
change in tuning profile was only noticeable across days
and did not degrade the inference of movement target
within single BS. Using either signal component we could
infer movement targets from the very first trial of each BS
suggesting that these activations did not have to be
learned. Moreover, the BP component remained stable
over BS even if the LP component was used to control the
visual feedback. Likewise, the LP component was instable
even if the BP component was used for feedback. While
the feedback may have helped to assure a high level of
attention and involvement in the task and thus a consist-
ent movement execution, we conclude that our experimen-
tal design did not entail a direct feedback learning effect
on cortical signals. Instead, the observed changes are
attributable to the intrinsic properties of the signal
components.

Differential Stability of Slow Cortical Activity

What are possible reasons for the instability of the tun-
ing profiles of brain signals below 1.6 Hz? Undesirable
influences of artifacts, mostly from eye or muscles, are an
omnipresent issue. However, most brain-machine interface
studies do not describe or perform any artifact rejection
[Fatourechi et al., 2007], in particular not in a real-time
fashion. As classification based on EOG signals was not
informative and the pattern of stability in brain signals did
not change after post hoc artifact rejection (see Table I), an
influence of artifacts is therefore very unlikely for our
results. The instability could have also been caused by
other experimentally uncontrolled factors correlating with
cortical activity. For example kinematic variables like arm
positioning [Caminiti et al., 1990; Scott and Kalaska 1997],

Figure 6.

Signal component determines inference of movement. (A) Com-

parison of CA obtained when coupling cortical activity and

motor behavior in closed-loop mode and when evaluating CA

post hoc, i.e. offline and based on the second signal component.

Symbols show the resulting averages for blocks of six sessions.

Error bars represent standard error of the mean; asterisks indi-

cate statistically significant differences (P< 0.05, Wilcoxon

signed-rank test). (B) Average signal-to-noise ratio (SNR) when

projecting all 50 MEG sensors used for classification to the indi-

vidual canonical space. Calculation was based on pooled data

within blocks of sessions. (C) Same as in (B) but projecting to

the canonical space of the CS. Error bars represent standard

error of the mean; asterisks indicate statistically significant differ-

ences (P< 0.05, Wilcoxon signed-rank test).
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movement speed [Churchland et al., 2006] or altered forces
caused by external loads [Kalaska et al., 1989] are known
to impact neuronal activity and directional tuning. How-
ever, the simplicity of the movements and our experimen-
tal setup controlling for head and arm positions as well as
for movement timing make this possibility unlikely. In
fact, our subjects performed highly stereotypic joystick tra-
jectories with very low movement variability (Fig. 4).
Alternatively, the level of fatigue [Tecchio et al., 2006] and
fading attention could also affect the stability of cortical
signals. We consider it unlikely, however, that this caused
the observed instability: (i) while we would expect move-
ment variability to increase with higher levels of fatigue or
with reduced attention, the variability remained constant
throughout our experiments, speaking in favor of rela-
tively constant levels of fatigue and attention. (ii) Even if
the levels of fatigue and attention did change, we would
expect fatigue to increase and attention to decrease within
sessions and across the first day. The initial level of both
factors then should have been restored on the beginning
of the second day, after subjects had an extensive break.
Consequently, if fatigue or attention affected tuning, the
CA should attenuate within sessions but get back to high
values on the beginning of the second day, which is not
what we observed (Figs. 5 and 6). Furthermore, it has
been argued that measurement noise constitutes a poten-
tial confounding factor in the assessment of stability of
neuronal firing per se [Stevenson et al., 2011]. Notably, the
CA measure and its assessment of statistical significance
we utilized here, do take measurement noise and other
sources of variability into account and are therefore not
prone to this problem.

Motor cortical plasticity, most often assessed during sen-
sorimotor learning of complex movement tasks [Ganguly
and Carmena, 2009; Karni et al., 1995; Sanes, 2003; Unger-
leider et al., 2002], may be more likely to have caused the
observed instability. In fact, previous studies demonstrated
rapid cortical re-organization during simple, repeated
movements that encoded the kinematic details of the prac-
ticed movement [Classen et al., 1998; Halder et al., 2005].
In addition to changes within cortical networks, a shift of
main activation from cortical to subcortical areas has been

reported when movements become automated during skill
learning [Floyer-Lea and Matthews 2004; Van Der Graaf
et al., 2004]. The tuning instability that we observed for
the slow 1.6 Hz component may reflect use-dependent
plasticity across sessions.

On the other hand, our results also show that both tun-
ing strength and tuning profile of the 4 to 6 Hz activity
remained stable over time. As a consequence, movement
target was inferred with high accuracies from this signal
throughout all sessions. This component could represent
efferent commands, afferent feedback, or computations
involving both. Correlates of each of those signals and
processes have indeed been described in slow neuromag-
netic fields [Cheyne and Weinberg, 1989; Cheyne et al.,
1997, 2006; Kristeva et al., 1991] and results from record-
ings in rat hippocampus [Bland and Oddie, 2001; Bland
et al., 2006] and human cortex [Caplan et al., 2003; Cruik-
shank et al., 2012] generally support the view that theta
(4–8 Hz) oscillations might reflect a task-specific mecha-
nism for sensorimotor integration.

Our choice of frequency bands was based on past stud-
ies showing maximum tuning to movement direction for
slow movement-related brain signals [Jerbi et al., 2007;
Mehring et al., 2003; Rickert et al., 2005; Schalk et al., 2007;
Waldert et al., 2008]. We do not exclude that other high-
frequency bands can also provide valuable movement-
related information (see our Fig. 2E, for example) and this
may be investigated in the future.

In addition, it still remains an open question whether
source localization can improve inference of movement
parameters. A priori knowledge on the cortical regions
involved and a better signal-to-noise ratio might indeed
result in better decoding. First insights have revealed a
clear coupling between oscillations localized in motor
areas and movement parameters like direction [Wang
et al., 2010] or hand speed [Jerbi et al., 2007]. Yet, further
experiments will have to verify the feasibility of single-
trial inverse solutions in real-time applications like brain-
machine interfaces. In particular, issues like the computa-
tional costs, biased localizations and mapping of distrib-
uted network activity still remain.

CONCLUSIONS

The results of the current study demonstrate two con-
current slow correlates of voluntary movement to targets
within overlapping areas of human sensorimotor cortex.
Both allowed for closed-loop inference of movement target
but showed different stability over time. We therefore con-
clude that slow components, although in nearby frequency
bands, can reveal a highly specific relation to motor
behavior.

In our view, these findings are relevant to the field of
brain-machine interface research. We demonstrate that
population signals of non-invasive recordings in humans
allow for closed-loop inference of motor behavior over

TABLE I. Differences in classification accuracy between

original data and data after post hoc artifact rejection

BP component LP component

BP group (%) LP group (%) BP group (%) LP group (%)

CS 21.0 6 1.2 20.8 6 1.0 21.5 6 2.5 21.7 6 1.5
BS 0.7 6 3.8 0.7 6 2.1 20.4 6 2.7 20.2 6 2.1

Means 6 standard deviations across subjects. Note that negative
values reflect an increase in classification accuracy after artifact
rejection.
BS 5 brain-control session. CS 5 calibration session. BP 5 band-
pass 4–6 Hz. LP 5 1.6 Hz low-pass.
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days without the need for re-calibration. As a past offline
study of ours showed similar tuning in electroencephalo-
graphic signals [Waldert et al., 2008] the transfer of our
approach to EEG may be possible in the future. Potential
effects of higher variability, both in terms of biological
noise like more variable movement behavior in natural set-
tings and in terms of non-biological noise, need to be eval-
uated. Taken together our findings might help finding
stable control signals for brain-machine interfaces in
humans.
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