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Abstract: The Stroop interference task is a widely used paradigm to examine cognitive inhibition, which is a
key component of goal-directed behavior. With increasing age, reaction times in the Stroop interference task
are usually slowed. However, to date it is still under debate if age-related increases in reaction times are
merely an artifact of general slowing. The current study was conducted to investigate the role of general slow-
ing, as measured by Trail-Making-Test-A, in age-related alterations of Stroop interference. We applied Diffu-
sion Tensor Imaging (DTI) to determine the topography of neuronal networks underlying Stroop interference
under control of general slowing. On the behavioral level, linear regression analysis demonstrated that age
accounted for significant variance on Stroop interference, whereas TMT-A performance did not. Controlling
for TMT-A, DTI based white matter analyses demonstrated a strong association of Stroop interference with
integrity measures of genu of corpus callosum, bilateral anterior corona radiata, and bilateral anterior limb of
capsula interna. These pathways are associated with frontal brain regions by either connecting the bilateral
dorsolateral prefrontal cortex or the anterior cingulate cortex with frontal and subcortical regions or by con-
taining fibers which are part of cortico-thalamic circuits that cross prefrontal regions. Importantly, results
expand our knowledge of the neural basis of Stroop interference and emphasize the importance of white mat-
ter integrity of frontal pathways in the modulation of Stroop interference. Combining behavioral and DTI find-
ings our results further suggest that cognitive inhibition, as measured by Stroop task, is a qualitatively distinct
cognitive process that declines with age. Hum Brain Mapp 35:2448–2458, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

A central subcomponent of executive functioning
describes the ability to suppress irrelevant information,
restrain activation of an inappropriate prepotent response
triggered by associated cues, and prevent access to irrele-
vant information [Bench et al., 1993; MacLeod, 2007]. This

executive component, usually referred to as cognitive inhi-

bition, is a key component of goal-directed behavior and

thus of daily functioning. A widely used paradigm to

measure cognitive inhibition is the Stroop paradigm
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[Stroop, 1992]. It consists of color name words printed in

both, congruent (e.g., green printed in green ink) and

incongruent colors (e.g., green printed in blue ink). Indi-

viduals are asked to identify the color of a stimulus within

both conditions. Response latency for incongruent trials is

generally longer than response latency for congruent trials.

This increase in latency on incongruent trials has been

termed Stroop interference effect, which is thought to

reflect cognitive inhibition.
With increasing age reaction times in the congruent con-

dition of the Stroop task are usually slowed. While some
studies demonstrated an increment of Stroop interference
as well [for a brief review, see MacLeod, 1991; more
recent studies: West and Alain, 2000; Davidson et al.,
2003; Rush et al., 2006], others argue that the apparent
age-sensitivity of Stroop interference may merely be an
artifact of a decline in information processing speed
(respectively general slowing) and no evidence for a quali-
tatively different kind of processing that declines with
age. A meta-analysis by Verhaegen and De Meersman
[1998] of 20 studies provides support for this view. This
concept, known as the unspecific hypothesis of general
slowing with increasing age, is not limited to inhibitory
processes but is thought to apply to all cognitive processes
[Salthouse, 1996]. To date, it is still under debate if age-
related decreases in cognitive inhibition, as measured by
Stroop interference, are (at least in part) independent of
general slowing.

On the behavioral level, up to now several studies have
investigated the contribution of general slowing to age-
related increases in Stroop interference. In a study by
Bugg et al. [2007] 284 subjects from the age of 20–89 years
completed an abbreviated Stroop color-naming task and
an independent assessment of information processing
speed. The authors demonstrated that age-related
increases in Stroop interference are partially attributable to
general slowing. However, they emphasized that perform-
ance alterations are also attributed to cognitive inhibition
as a task-specific process. An older study by Salthouse
and Meinz [1995] showed the same result. Further studies
based on a Stroop-task internal control of information
processing speed have also consistently demonstrated an
increment of Stroop interference with increasing age [e.g.,
Dulaney and Rogers, 1994; Houx et al., 1993; Spieler et al.,
1996; West and Baylis, 1998; Troyer et al., 2006]. Besides
this large amount of articles demonstrating an association
between Stroop interference and age even after controlling
for general slowing, some studies could not confirm this
result [Graf et al., 1995; Zysset et al., 2007]. The authors of
these works conclude that age effects in Stroop interfer-
ence are based on age-related general slowing primarily.

To determine whether the age-related increase in Stroop
interference is (at least in part) independent of general
slowing, it is in addition to behavioral analyses required
to know if Stroop interference relies on distinct neurobio-
logical mechanisms. Several studies have emphasized the
potential for white matter integrity damage to be an

important factor in age-associated cognitive decline [Mad-
den et al., 2009]. In addition, distinct relations between
white matter integrity characteristics and specific cognitive
functions have been shown [Kennedy and Raz, 2009].
Against this background, white matter integrity qualifies as
a good parameter to investigate and demarcate age-
sensitive cognitive processes, such as cognitive inhibition
and information processing speed, on a neurobiological
level. However, up to now no study was conducted to dis-
entangle the relation between Stroop interference, informa-
tion processing speed, and white matter integrity. The
relationship between Stroop interference and white matter
integrity has as yet mostly been examined in patients with
schizophrenia [Takei et al. 2009; Yan et al., 2012] and other
psychiatric disorders [e.g., Murphy et al., 2007; Li et al.,
2010]. These studies mainly found frontal white matter
brain regions to be associated with Stroop interference. Only
a few studies investigated healthy subjects. In line with the
patient studies, these works also emphasized white matter
properties to be potential modulators of cognitive inhibition
during Stroop task [Kennedy and Raz, 2009; Takeuchi et al.,
2011]. Compared to Stroop interference, information proc-
essing speed and its relationship to integrity measures in
healthy subjects has been extensively examined, whereby
most studies demonstrated a strong association between
both parameters in widespread frontal, temporal, parietal,
and occipital white matter regions [e.g., Turken et al. 2008;
Kennedy and Raz, 2009; Kochunov et al., 2010].

The current study was conducted to evaluate whether
cognitive inhibition, as measured by the Stroop task, is a
cognitive process that itself declines with age, or is just
secondarily affected by age-related general slowing. Gen-
eral slowing was assessed independently by the Trail-
Making-Test A (TMT-A), which is a popular and fre-
quently applied neuropsychological measure of informa-
tion processing speed [Salthouse et al., 2003; Jacobs et al.,
2011; Katz et al., 2011]. Analyses included investigations
on the behavioral level based on Stroop- and TMT-A per-
formances. Additionally, we analyzed the association
between white matter integrity (as measured by Diffusion
Tensor Imaging, DTI) and Stroop interference controlled
for TMT-A performances. We hypothesized that normal
aging is associated with a decrease in Stroop- as well as
TMT-A performance. However, we expected that altera-
tions in Stroop interference are at least in part independent
of alterations in TMT-A performance. Furthermore, we
hypothesized that Stroop interference is associated with
white matter integrity, even after controlling for TMT-A
performance. We expected the association between Stroop
interference and white matter integrity to be focused on
frontal white matter regions, as Diffusion-Tensor-Imaging
(DTI) studies in psychiatric patients and several fMRI
studies demonstrated significant associations between

frontal brain areas and the performance of the Stroop

incongruent condition [Murphy et al., 2007; Nee et al.,

2007; Badzakova-Trajkov et al., 2009; Li et al., 2010; Zocca-

telli et al., 2010; Yan et al., 2012].
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MATERIALS AND METHODS

Subjects

The data of 49 healthy adults were analyzed. The study
group included 13 younger adults (age range: 22–37
years), 20 younger elderly (age range: 60–70 years), and 16
advanced elderly (age range: 71–85 years). All participants
were recruited by advertisements posted in the University
Medical Center Mainz and several public institutions and
via newspaper announcement. The local Ethics Committee
approved the study protocol, and all subjects provided
written informed consent. Subjects were excluded if they
had any psychiatric (e.g., depression, schizophrenia, alco-
hol abuse) or cognitive (e.g., dementia, mild cognitive
impairment) illness, a history of brain damage, stroke or
any central nervous system disorders, or if they were tak-
ing cognitive performance altering medications. All partici-
pants underwent DTI, an assessment of cognitive
inhibition as measured by the Stroop task as well as an
assessment of general slowing as measured by TMT-A.
DTI was conducted to analyze white matter fractional ani-
sotropy (FA) and mean diffusivity (MD), which are differ-
ent parameters to quantify white matter integrity [Basser
and Pierpaoli, 1996; Beaulieu, 2002; Mori and Zhang,
2006].

Neuropsychological Materials

Cognitive inhibition

Cognitive inhibition was assessed using a computerized
version of the Stroop task. Two strings of capital letters
were presented beside each other in the center of a black
screen (the anchor on the left, the target on the right). The
anchor consisted of one of four color names (the German
equivalents for “BLUE,” “GREEN,” “RED,” and
“YELLOW”) presented in a neutral grey. The target con-
sisted of either meaningless consonant strings (“QQQQ,”
neutral condition) or the name of one of the four colors
presented in one of these four colors. Participants were
asked to indicate whether it matches or not by tapping a
right and left response key, respectively. If the semantic
meaning of the target was a color, this color could either
match (congruent condition) or mismatch the semantic
meaning of the anchor (incongruent condition). Partici-
pants started with two exercise blocks, the first comprising
24 neutral trials and the second comprising 24 trials of all
types. Thereafter, they completed eight consecutive test
blocks of 72 (plus four warm-up) trials each, with an equal
number of match and nonmatch trials. Between the stimu-
lus presentation the screen remained blank for 400 ms. In
case of an error, a gray “X” was presented beneath the
stimuli for 300 ms. Stroop interference rates were com-
puted as the difference of reaction times (in ms) in the
incongruent and neutral match conditions of correct pro-
ceeded trials. This approach was used to adjust

performances of the incongruent condition of the Stroop
task for interference irrelevant, task-specific processes like
color-perception.

Information processing speed

Information processing speed was assessed by the TMT-
A [Reitan, 1958]. The test requires an individual to draw
lines sequentially connecting 25 encircled numbers distrib-
uted on a sheet of paper. Participants were instructed to
complete the task as quickly and accurately as possible. In
case of an error, participants were instructed to return to
the circle where the error occurred and continue. The per-
formance was rated according to response time.

MRI Data Acquisition

Brain imaging examinations were conducted in a Sie-
mens 3T TrioTim MRI scanner (Siemens, Erlangen, Ger-
many). Apart from the acquisition of routine T1, PD/T2

weighted, fluid attenuated inversion recovery (FLAIR)
weighted and Time-of-Flight (TOF) sequences, a diffusion-
weighted, single-shot, spin-echo, echoplanar-based
sequence (30 directions; b 5 1,000 s/mm2; matrix 128 3

128; section thickness 3 mm; voxel size 1.5 3 1.5 3 3 mm3;
TR/TE 7,100 ms/102 ms) was applied. Diffusion-weighted
data were processed using FSL 4.1 (FMRIB Analysis
Group, Oxford, UK, http://www.fmrib.ox.ac.uk/fsl) and
the following procedures: (i) motion and eddy current cor-
rection, (ii) adjusting Gradients accordingly by application
of the rotational part of the resulting affine transforma-
tions, and (iii) removal of the skull and nonbrain tissue
using Brain Extraction Tool [Smith, 2002]. To calculate FA-
and MD maps, a single diffusion tensor was fitted to the
data [Basser and Pierpaoli, 1996] using the toolkit
CAMINO v. 2 (Microstructural Imaging Group, University
College London, UK, http://web4.cs.ucl.ac.uk/research/
medic/camino/pmwiki/pmwiki.php, 08-31-2012).

Data Analyses

Before we analyzed the data we excluded all partici-
pants who demonstrated a percentage error rate above 2.5
standard deviations of the total group in the Stroop incon-
gruent condition. Based on this criterion one participant
was excluded. The final study group consisted of 49
subjects.

First, we analyzed the behavioral data. Nonparametric
Spearman’s rank correlation coefficients between age,
Stroop interference rate as well as TMT-A scores were cal-
culated to confirm the frequently observed association
between age and Stroop interference as well as age and
information processing speed. As age was not distributed
continuously, it was treated as a categorical variable (three
categories: young adults, younger elderly, and advanced
elderly). A multiple linear regression analysis was
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performed to examine the role of information processing
speed in the association between age and Stroop interfer-
ence and to control statistics for nuisance variables.

Subsequent to the behavioral analyses, we investigated
whether Stroop interference is associated with white mat-
ter integrity even after controlling for TMT-A. We applied
a whole brain voxel-wise correlation analysis between FA/
MD data and Stroop interference using Tract-Based Spatial
Statistics [TBSS; Smith et al., 2006]. TBSS analyses
included: (i) nonlinear registration to the FMRIB58_FA
template of all subjects’ FA data using FMRIB’s nonlinear
image registration tool [Rueckert et al., 1999], (ii) the crea-
tion and thinning of a mean FA image with a threshold
0.2 to obtain a mean FA skeleton that represented the cen-
ters of white matter trajectories, and (iii) projections of
each subjects’ aligned FA data onto the skeleton. To
achieve skeletonized MD data the nonlinear warps and
skeleton projection vectors of the FA images were applied
to the MD data. Correlation analyses between FA/MD
data and Stroop interference were performed using a lin-
ear regression model within the randomize tool, which
tested the t value at each voxel against a null distribution
that was obtained from 5,000 random permutations. To
minimize the probability of false positive voxels and to
confine the results to white matter pathways that demon-
strated a strong association with Stroop interference, statis-
tical significance was set at P< 0.025 corrected for multiple
comparisons across voxels using the threshold-free cluster-
enhancement option. Analyses were controlled for TMT-A,
age, gender, and years of education. In accordance with
the behavioral analyses, age was included as a categorical
variable, since age was not distributed continuously.

Although TBSS has many advantages compared to other
analyses methods of diffusion data (e.g., accuracy of inter-
subject alignment) it is sensitive to outliers and limited in
its ability to accurately construct the white matter skeleton
in regions with a high number of crossing fibers [Smith
et al., 2006; Herting et al., 2010]. To that end, we per-
formed ROI-based analyses outside the voxel-wise frame-
work subsequent to the whole brain TBSS analyses to
support the TBSS results. ROIs were defined based on the
JHU ICBM white matter label atlas, which contains hand-
segmented white matter parcellation maps [JHU ICBM-
DTI-81; Mori et al., 2008]. We selected those labels of the
atlas that corresponded to anatomical regions that showed
significant correlations in voxel-wise TBSS regression anal-
yses. If only one side of a specific tract correlated with
Stroop interference, we extracted both sides to examine
possible lateralization specificities. Subsequently, we regis-
tered each subjects FA and MD image to the ICBM-DTI-81
template and calculated mean FA and MD values of the
selected ROIs for each subject. Finally, we performed mul-
tiple linear regression analyses to assess the relationship
between FA as well as MD values and Stroop interference
rate by controlling for TMT-A, age-group, gender, and
years of education. Furthermore, regression analyses
served to compare FA/MD—covariate relationships.

RESULTS

Behavioral Analyses

The demographic- and behavioral characteristics of the
study group are listed in Table I. Correlation analyses
demonstrated a strong association between age-group and
Stroop interference (r 5 0.683, P< 0.001, spearman correla-
tion coefficient) as well as age-goup and TMT-A scores
(r 5 0.702, P< 0.001, spearman correlation coefficient).
Likewise, Stroop interference rate and TMT-A score were
strongly intercorrelated (r 5 0.679, P< 0.001, spearman cor-
relation coefficient). A subsequent multiple linear regres-
sion analysis with Stroop interference rate as dependent
variable and age-group, TMT-A score, gender, and years
of education as covariates showed an overall significant
effect (F(1, 48) 5 3.584, P 5 0.013). The covariate age-group
was a significant predictor of Stroop interference rate
(b 5 0.453, P 5 0.010). TMT-A score (b 5 0.003, P 5 0.988),
gender (b 5 0.106, P 5 0.450) and years of education
(b 5 20.048, P 5 0.746) were not significant predictors.

DTI Analyses

Whole brain voxel-wise TBSS regression analyses dem-
onstrated significant negative correlations between FA val-
ues and Stroop interference in genu and body of Corpus
Callosum (CCgenu, CCbody) and left anterior corona radi-
ata (CR). Furthermore, analyses demonstrated significant
positive correlations between MD values and Stroop inter-
ference in CCgenu and CCbody, bilateral anterior CR, and
left anterior limb of capsula interna (CI) (Fig. 1).

Results of the ROI-based multiple linear regression anal-
yses with FA/MD values as dependent variable and
Stroop interference, TMT-A score, age-group, gender, and
years of education as covariates are listed in Table II. For
scatterplots of integrity measures and Stroop interference
scores see Figure 2. Mean ROI-based FA and MD values
of the study group are listed in Table I. For scatterplots of
age and Stroop interference as well as FA/MD values see
Figures S3 and S4 in Supporting Information. ROI-based
analyses supported the significant negative association
between FA of CCgenu as well as left anterior CR and
Stroop interference that could be observed in the whole
brain voxel-wise analyses. Furthermore, a significant nega-
tive association could be observed in the right anterior CR.
The association between FA of CCbody as well as bilateral
anterior limb of CI and Stroop interference narrowly
missed significance. ROI-based regression analyses further
supported the positive relationship between MD of
CCgenu, bilateral anterior CR, as well as left anterior limb
of CI and Stroop interference that could be demonstrated
in the voxel-wise analyses. In addition, a positive associa-
tion between MD values and Stroop interference scores
could be observed in the right anterior limb of CI. The
relationship between MD of CCbody and Stroop interfer-
ence missed significance. In summary, Stroop interference
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TABLE I. Demographic, behavioral, and ROI-based characteristics of the study group (N 5 49)

Younger adults Younger elderly Advanced elderly

N 13 20 16
Age 24.92 (3.88) 62.85 (7.29) 77.63 (4.29)
Education years 13.31 (1.11) 12.45 (3.27) 12.38 (3.10)
Gender

Male 6 (46%) 11 (55%) 4 (25%)
Female 7 (54%) 9 (45%) 12 (75%)

TMT-A (s) 20.54 (4.10) 33.30 (11.79) 39.00 (9.57)
Stroop interference rate (ms) 89.15 (57.48) 334.25 (206.36) 813.13 (900.38)
FA genu corpus callosum 0.58 (0.03) 0.54 (0.02) 0.50 (0.03)
FA body corpus callosum 0.54 (0.03) 0.50 (0.03) 0.46 (0.04)
FA anterior corona radiata right 0.44 (0.04) 0.40 (0.03) 0.37 (0.03)
FA anterior corona radiata left 0.44 (0.03) 0.39 (0.03) 0.36 (0.03)
FA anterior limb of internal capsule right 0.53 (0.02) 0.51 (0.02) 0.48 (0.03)
FA anterior limb of internal capsule left 0.53 (0.03) 0.50 (0.03) 0.48 (0.02)
MD genu Corpus Callosum 0.84 (0.04) 0.90 (0.04) 0.97 (0.05)
MD body Corpus Callosum 0.92 (0.05) 1.00 (0.05) 1.10 (0.06)
MD anterior corona radiata right 0.74 (0.03) 0.78 (0.05) 0.83 (0.04)
MD anterior corona radiata left 0.74 (0.03) 0.78 (0.05) 0.83 (0.04)
MD anterior limb of internal capsule right 0.72 (0.03) 0.74 (0.03) 0.80 (0.06)
MD anterior limb of internal capsule left 0.73 (0.02) 0.74 (0.03) 0.82 (0.06)

Continuous variables are represented as mean (SD) and categorical variables as number (%).
TMT-A: Trail-Making-Test part A; FA: fractional anisotropy; MD: mean diffusivity.

Figure 1.

Illustration of results of the Tract-based spatial statistic (TBSS)

regression analyses. Regions with significant correlations (red)

between fractional anisotropy (FA) measures and Stroop inter-

ference (left) as well as mean diffusivity (MD) measures and

Stroop interference (right) are projected on cerebral white mat-

ter skeleton (green) in two different views (3D above, 2D

below). TBSS results showed significant negative correlations

(corrected P< 0.25) between FA values and Stroop interference

in fronto-parietal regions including the genu and body of Corpus

Callosum (CC) and the left anterior corona radiata (left). Fur-

thermore, TBSS analyses demonstrated significant positive cor-

relations between MD values and Stroop interference in genu

and body of CC, bilateral anterior corona radiata, and left ante-

rior limb of capsula interna (right).
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rate was significantly associated with the structural integ-
rity of CCgenu, bilateral anterior CR, and bilateral anterior
limb of CI (FA values demonstrated at least a tendency to
significance). The importance of the body of the CC in
Stroop interference demonstrated by the TBSS analyses
could not be supported by the ROI-based analyses.

In addition to the investigation of the relationship
between integrity measures and Stroop interference con-
trolled for nuisance variables, the ROI-based multiple
regression analyses were performed to compare FA/MD—
covariate relationships. Regression analyses demonstrated
that integrity measures of the CCgenu, bilateral anterior CR,
and bilateral anterior limb of CI were not only related to
Stroop interference but also age, suggesting that age-related
white matter degeneration might be functionally relevant
for age-related increases in Stroop interference (Table II).

As a supplementary analysis, we investigated the rela-
tionship between reaction times in the neutral condition
and white matter integrity to contrast and disentangle the
neural foundation of the interference and neutral condi-
tion. According to the explorative investigation of the neu-
ral foundation of the interference condition, we performed
a voxel-wise TBSS regression analyses with integrity meas-
ures (FA, MD) as dependent variable and reaction times of
the neutral condition, TMT-A, age-group, years of educa-
tion, and gender as covariates. Analyses demonstrated no
significant association between integrity measures and
reaction times of the neutral condition of the Stroop task.

DISCUSSION

This study aimed to investigate whether an age-related
increase in cognitive inhibition, as measured by the Stroop

task, is a distinct cognitive process that declines with age
or merely reflects general slowing. To disentangle the
effects of aging on cognitive inhibition from general slow-
ing we applied analyses based on behavioral data. Fur-
thermore, we analyzed the association between white
matter integrity and Stroop interference under control of
general slowing to consider the differentiability of Stroop
interference from general slowing on a neurobiological
level.

Behavioral Analyses

The behavioral data showed in accordance to previous
findings a strong association between Stroop interference
and age [e.g., West and Alain, 2000; Davidson et al., 2003;
Rush et al., 2006]. Likewise, TMT-A scores were strongly
related to age. As Stroop interference and TMT-A scores
were also highly intercorrelated these simple correlation
analyses support the assumption that an increase in Stroop
interference merely reflects general slowing. However,
when performing a linear regression analysis to control
the influence of general slowing, the strength of associa-
tion between age and Stroop interference decreased but
remained significant. Furthermore, TMT-A score was not a
significant predictor of Stroop interference. Thus, in
accordance to our hypothesis, results of the analyses of the
behavioral data suggest that age-related increases in
Stroop interference are partially attributable to general
slowing but are also to age-related changes in task specific
processes, such as cognitive inhibition. This result is con-
sistent with a large number of studies that investigated the
relationship between normal aging, Stroop interference,
and general slowing based on behavioral data [Troyer
et al., 2006; Dulaney and Rogers, 1994; Salthouse and

TABLE II. Results of ROI-based multiple linear regression analyses

Age group
Stroop

interference TMT-A Gender
Years of

education

b P b P b P b P b P R2

FA
Genu corpus callosum 20.603 <0.001 20.235 0.035 20.036 0.774 20.129 0.209 20.068 0.522 0.620
Body corpus callosum 20.604 0.001 20.235 0.052 0.047 0.732 20.103 0.354 20.004 0.974 0.551
Anterior corona radiata right 20.421 0.002 20.350 0.002 20.165 0.189 20.164 0.103 20.085 0.410 0.637
Anterior corona radiata left 20.533 <0.001 20.315 0.007 0.018 0.890 20.155 0.141 20.097 0.374 0.600
Anterior limb of internal capsule right 20.524 0.001 20.214 0.075 20.084 0.542 20.170 0.128 20.068 0.552 0.553
Anterior limb of internal capsule left 20.439 0.007 20.253 0.055 20.022 0.882 20.225 0.067 20.043 0.730 0.467

MD
Genu corpus callosum 0.586 <0.001 0.260 0.015 0.057 0.638 0.159 0.104 0.069 0.491 0.658
Body corpus callosum 0.753 <0.001 0.157 0.107 20.080 0.437 0.074 0.407 20.125 0.182 0.706
Anterior corona radiata right 0.401 0.005 0.355 0.003 0.138 0.294 0.191 0.073 0.116 0.293 0.596
Anterior corona radiata left 0.453 0.003 0.297 0.017 0.086 0.540 0.182 0.108 0.130 0.269 0.540
Anterior limb of internal capsule right 0.448 0.006 0.339 0.012 20.019 0.901 0.062 0.610 0.006 0.963 0.465
Anterior limb of internal capsule left 0.500 0.001 0.317 0.013 20.014 0.921 0.126 0.275 0.086 0.473 0.519

Note: FA and MD values were set as dependent variable. Age group, Stroop interference rate, Trail-Making-Test-A, gender, and years
of education were set as covariates. FA: fractional anisotropy; MD: mean diffusivity; TMT-A: Trail-Making-Test part A.
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Figure 2.

Scatterplots and R2 values of the relationship between Stroop interference and FA/MD values.
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Meinz, 1995; West and Baylis, 1998; Bugg et al., 2007;
Houx et al., 1993; Spieler et al., 1996; Troyer et al., 2006].

DTI Analyses

Importantly, analyses of white matter integrity demon-
strated a strong association of integrity measures of
CCgenu, bilateral anterior CR, and bilateral anterior limb
of CI with Stroop interference. As these associations were
adjusted for general slowing by independent measure, this
result implies that these white matter regions specifically
modulate Stroop interference and hence inhibitory control
as a task-specific process. Thus, in accordance to our
hypothesis, we could delineate Stroop interference from
general slowing on a neural level, based on white matter
integrity measures. As a supplementary analysis we inves-
tigated the relationship between reaction times in the neu-
tral condition and white matter integrity to contrast and
disentangle the neural foundation of the interference and
neutral condition. Neither FA values nor MD values were
significantly associated with the Stroop neutral condition
in the whole brain voxel-wise TBSS analyses. As the neu-
tral condition of the Stroop task is also regarded as a mea-
sure of information processing speed [Rodewald et al.,
2011], the lack of a relationship between integrity meas-
ures and the Stroop neutral condition under control of
TMT-A (as another measure of information processing
speed) might be explained by the similarity of those two
tasks. Nevertheless, this result strengthens the specific
importance of CCgenu, bilateral anterior CR, and bilateral
anterior limb of CI in the modulation of Stroop interfer-
ence, as these pathways were significantly related to the
Stroop interference condition but not to the neutral
condition.

Although the primary implication for the white matter
analyses was to differentiate Stroop interference from gen-
eral slowing on a neurobiological level, the results further
add important information for a more detailed under-
standing of the neuronal basis of cognitive inhibition as
measured by the Stroop task. To date, the role of white
matter integrity in Stroop interference has almost exclu-
sively been investigated in psychiatric patients [Murphy
et al., 2007; Takei et al. 2009; Li et al., 2010; Yan et al.,
2012]. These studies mainly found frontal white matter
brain regions to be associated with Stroop interference. We
could confirm these results in a study sample consisting of
healthy adults. Our findings emphasize the importance for
the structural integrity of genu of CC, bilateral anterior
CR, and bilateral anterior limb of CI in the modulation of
Stroop interference. The genu of the CC mainly connects
ventral-frontal regions and the bilateral dorsolateral pre-
frontal cortex (DLPFC) [Barbas and Pandya, 1984; Bloom
and Hynd, 2005]. The anterior limb of the CI contains
fibers of the anterior thalamic peduncle, which is part of
cortico-thalamic circuits that cross prefrontal regions
[Nieuwenhuys et al., 2007]. The anterior corona radiata

connects the ACC with other frontal and subcortical
regions [Wakana et al., 2004; Mori et al., 2005]. As several
functional activation studies demonstrated frontal brain
regions (mainly dorsolateral prefrontal cortex, DLPFC;
inferior frontal gyrus, iFG; and anterior cingulate cortex,
ACC) to be important modulators of Stroop interference
[e.g., Nee et al., 2007; Badzakova-Trajkov et al., 2009; Zoc-
catelLi et al., 2010], these white matter pathways may facil-
itate neural transmission between these regions. Besides
this study, only two further studies investigated the rela-
tion between white matter integrity and Stroop interfer-
ence in healthy subjects [Sullivan et al., 2006; Kennedy and
Raz, 2009]. Sullivan et al. [2006] performed a fiber-tracking
study based on 10 older adults, whereby analyses were
restricted to the Corpus Callosum. In line with our results,
the authors observed a significant relationship between
Stroop word reading and regional segments of corpus cal-
losal fiber properties. However, in contrast to our study,
they did not find a significant association between Stroop
interference and callosal fiber properties. This lack of sig-
nificance may be based on the very small sample size in
the study of Sullivan et al. A larger study group may have
shown comparable results. Another study by Kennedy
and Raz [2009] found a relationship between the FA of
posterior white matter regions (parietal, splenium, and
occipital) and Stroop interference. This discrepancy to our
results may be based on variation in imaging and analysis
methods. In contrast to our automatic whole-brain analy-
ses of 3T DTI data the authors investigated specific brain
regions based on manually placed ROIs on 1.5T DTI data.
It is also important to emphasize that Sullivan et al. [2006]
and Kennedy and Raz [2009] investigated the relationship
between Stroop interference and specific white matter
regions without taking account of age-related general
slowing. Thus, the reported results may be confounded by
age-related alterations of information processing speed.

The applied ROI-based multiple regression analyses
demonstrated that integrity measures of genu of CC, bilat-
eral anterior CR, and bilateral anterior limb of CI were not
only related to Stroop interference but also to age. The
association between white matter integrity of frontal path-
ways and age is in line with a vast literature on this sub-
ject [Sullivan and Pfefferbaum; Madden et al., 2012]. As
both, Stroop interference and age, were associated with
structural integrity measures of the aforementioned ROIs,
integrity of these regions may mediate the relationship
between age and Stroop interference. To understand the
mechanism underlying this mediation, functional activa-
tion studies investigating cognitive inhibition during
Stroop task (and related tasks) within normal aging may
provide important information. Such investigations reveal
that healthy elderly adults recruit a cortical network equiv-
alent to that of young subjects but commonly, network
structures are bilateral and stronger activated [Madden
and Hoffman, 1997; Nielson et al., 2002; Mathis et al.,
2009]. Further studies demonstrated that older adults
recruit additional frontal areas compared to young adults
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[Nielson et al., 2002; Langenecker et al., 2004]. An
approach to explain this hyperactivation in aging is made
by the compensation-related utilization of neural circuits
hypothesis (CRUNCH) [Reuter-Lorenz and Cappell, 2008]
and the scaffolding theory of aging and cognition (STAC)
[Park and Reuter-Lorenz, 2009]. Both theories suggest that
with increased task demands older adults engage addi-
tional brain regions bilaterally, to restrict cognitive decline
due to age-related neural degeneration, while young
adults mostly recruit unilateral regions. However, a pro-
gressive decline of white matter integrity within the aging
brain may impair additional activation or recruitment of
frontal areas and thus counteract this compensatory mech-
anism with increasing age. Thus, disturbance in neural
transmission combined with impairments in additional
activation in old adults may explain the role of white mat-
ter integrity in age-related decreases in cognitive inhibition
during Stroop task.

Limitations

The study sample included younger adults, younger
elderly, and advanced elderly. However, no middle aged
subjects were included. Thus, age could not be treated as a
continuous variable. Furthermore, the number of young
adults (age range 22–37, n 5 13) was considerably smaller
than the number of older adults (age range 60–85, n 5 36).
Thus, the observed coherence between age and Stroop
interference and the underlying mechanisms should be
verified based on a lifespan design including a more
homogeneous sample. Another limitation relates to our
cross-sectional study design. Cross-sectional studies that
investigate normal aging are potentially confounded by
cohort differences and might overestimate age related dif-
ferences, especially in cognitive decline. A longitudinal
study lasting several years might more exactly display the
evolution of cognitive decline and white matter integrity
within healthy aging and is necessary to confirm the
assumption of the functional relevance of age-related WM
degeneration in age-related alterations of Stroop interfer-
ence. A further limitation relates to the applied voxel-wise
TBSS analyses. TBSS is limited in its ability to accurately
measure FA values in regions with a high number of
crossing fibers. Thus, skeleton contiguity is not enforced at
junctions [see Smith et al., 2006] making it difficult to
interpret voxelwise statistics in these regions. Furthermore,
TBSS is sensitive to outliers. However, to that end, follow-
up ROI based analyses were performed to support the
TBSS results.

Conclusions

Analyses of the behavioral data demonstrated that nor-
mal aging is accompanied by a decrease in Stroop interfer-
ence that is partially attributable to general slowing but
also to age-related changes in task-specific processes such

as inhibitory control. White matter integrity analyses dem-
onstrated that Stroop interference relies on specific/dis-
tinct neural networks. Thus, our results suggest that
cognitive inhibition, as measured by the Stroop task, is a
qualitatively distinct kind of cognitive processing that
declines with age and no mere artifact of general slowing.
Importantly, our findings also expand the knowledge of
the neural basis of Stroop interference and emphasize the
importance of white matter integrity of frontal pathways
in Stroop interference and age-related performance
alterations.
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