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Abstract: Recent studies have shown that aging has a large impact on connectivity within and between
functional networks. An open question is whether elderly still have the flexibility to adapt functional
network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data
in younger and older participants during resting state, a selective attention (SA) task and an n-back
working memory task with varying levels of difficulty. Spatial independent component (IC) analysis
was used to identify functional networks over all participants and all conditions. Dual regression was
used to obtain participant and task specific time-courses per IC. Subsequently, functional connectivity
was computed between all ICs in each of the tasks. Based on these functional connectivity matrices, a
scaled version of the eigenvector centrality (SEC) was used to measure the total influence of each IC in
the complete graph of ICs. The results demonstrated that elderly remain able to adapt FNC to task
demands. However, there was an age-related shift in the impetus for FNC change. Older participants
showed the maximal change in SEC patterns between resting state and the SA task. Young partici-
pants, showed the largest shift in SEC patterns between the less demanding SA task and the more
demanding 2-back task. Our results suggest that increased FNC changes from resting state to low
demanding tasks in elderly reflect recruitment of additional resources, compared with young adults.
The lack of change between the low and high demanding tasks suggests that elderly reach a resource
ceiling. Hum Brain Mapp 35:3788–3804, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Functional connectivity is an important measure that
can be used to assess information transfer between brain
areas. Numerous studies have demonstrated the existence
of different functional networks. These are defined as
groups of brain areas that tend to show high functional
connectivity and have a particular functional signature
(Biswal et al., 1995; Greicius et al., 2003; Sporns et al.,
2004). There is ample evidence for a relation between func-
tional connectivity patterns and specific task demands in

Additional Supporting Information may be found in the online
version of this article.

*Correspondence to: MRC Cognition and Brain Sciences Unit, 15
Chaucer Road, Cambridge, CB2 7EF, England.
E-mail: lindageerligs@gmail.com

Received for publication 13 June 2013; Revised 18 October 2013;
Accepted 11 November 2013.

DOI 10.1002/hbm.22437
Published online 31 December 2013 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 35:3788–3804 (2014) r

VC 2013 Wiley Periodicals, Inc.

mailto: lindageerligs@gmail.com


young participants. For example, Hampson et al. (2002)
showed that functional connectivity between language-
related brain areas increased when participants listened to
speech compared with resting state. In addition, Shirer et al.
(2011) found that connectivity increased between the dorsal
attention network (DAN) and the basal ganglia during a
subtraction task compared with resting state. These, and
similar findings (e.g., Dew et al., 2012; Hare et al., 2010; Sala-
Llonch et al., 2012; Sterpenich et al., 2006; Wolbers et al.,
2006), illustrate that connectivity within and between (func-
tional) networks is dependent on task demands.

There is strong evidence that connectivity within specific
functional networks, that are involved in higher level cog-
nitive functioning, is reduced in elderly (Andrews-Hanna
et al., 2007; Damoiseaux et al., 2008; Grady et al., 2010;
Sambataro et al., 2010). However, connectivity between
different functional networks tends to increase in older
compared with younger adults (Geerligs et al., 2012a).
These functional connectivity changes affect cognitive
functioning in elderly. For example, a decrease in connec-
tivity within the default mode network (DMN) has been
linked to deterioration in performance on processing speed
and working memory tasks in elderly (Andrews-Hanna
et al., 2007; Sambataro et al., 2010).

Most aging studies so far, have focused on age-related
changes in brain activity. These studies have provided evi-
dence that the adaptation of brain activity to task demands
proceeds differently in younger and older adults. Older
adults often show additional activation compared with
young adults, specifically in prefrontal areas, when com-
paring a task performance to a baseline condition, as well
as comparing increasing levels of task demands (Cabeza,
2002; Cabeza et al., 2004; Madden et al., 1999; Mattay
et al., 2006; Reuter-Lorenz et al., 2000). It has been sug-
gested that these increased activations reflect the response
of the brain to processing inefficiencies, leading to the
recruitment of additional or “reserve” resources (Reuter-
Lorenz and Cappell, 2008; Stern et al., 2005). The down-
side of this additional recruitment is that older adults
appear to reach a resource ceiling as the task demands
increase further. At this point, activation does not increase
anymore and might even decrease, which is associated
with a drop in task performance (Reuter-Lorenz and Cap-
pell, 2008).

Although many studies have demonstrated the differen-
ces between younger and older groups in adaptation of
brain activation to task demand, it is not known whether
elderly are able to adapt the connectivity between different
brain networks to the demands of the task at hand, in a
similar manner as young adults. This question is especially
important in the context of the age-related changes in con-
nectivity both within and between functional networks
that have been observed. Previous work by Spreng and
Schacter (2011) has provided a first indication that flexibil-
ity of interactions between networks is reduced in older
adults. They demonstrated that in younger adults the

fronto-parietal control network (FPCN) was flexibly
coupled to either the DMN or the DAN, depending on the
task demands (involving autobiographical memory or
visuo-spatial planning, respectively). In older adults, this
flexibility was reduced and the FPCN was coupled with
the DMN in both task conditions.

In this study, we focus on connectivity between func-
tional networks, that is, functional network connectivity
(FNC). A procedure to study FNC was first described by
Jafri et al. (2008). This procedure is based on the identifica-
tion of different functional networks, using spatial inde-
pendent component analysis (ICA). ICA can be applied to
decompose fMRI data into a set of maximally spatially
independent voxel-wise maps and their corresponding
time-courses (Calhoun et al., 2001). Although the resulting
spatial maps of independent components (ICs) are maxi-
mally independent, their corresponding time-courses can
show considerable temporal correlations. Therefore, the
temporal correlations between different ICs or “functional
networks” can be computed and compared between differ-
ent conditions (Arbabshirani et al., 2012). It should be noted
that there is no fixed number of functional networks in the
brain. The number of networks that is identified in a given
study depends on the scale on which these networks are
investigated. If one were to investigate on a smaller scale,
functional networks can generally be split again into dis-
tinct sub networks (Meunier et al., 2009, 2010).

This method allows testing whether functional connec-
tivity between pairs of ICs is modulated by particular task
demands. However, a disadvantage of this approach is
that it requires a large number of multiple comparisons.
Alternatively, task related modulations of functional con-
nectivity can be indexed by looking at centrality (Lohmann
et al., 2010); a class of graph theoretical measures that can
be used to assess the prominence or functional importance
of each IC, within the complete graph of ICs. A graph is a
schematic representation of a network, which consists of a
set of nodes (in this case the ICs) and edges (the connec-
tions between them). Depending on the number and posi-
tioning of the edges, one IC can be more central in the
graph than another. Task related changes in centrality can
be used as an index of adaptations to task demands. The
centrality of an IC can be measured in a number of differ-
ent ways. The simplest way to define centrality of an IC is
to look at its degree, defined as the number of connections
an IC has with other ICs. Degree defines an IC with many
connections as more central in the graph than an IC with
few connections (Freeman, 1979). However, the degree is
not able to measure the influence of an IC throughout the
graph. Therefore, we instead used the eigenvector central-
ity, to capture not only the direct connections of an IC but
also its influence throughout the graph (Bonacich, 1972,
2007). Eigenvector centrality can be seen as a sum of all
direct connections, weighted by the centrality of indirect
connections, thereby taking into account the entire connec-
tivity pattern.
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In this study, fMRI was recorded in both younger and older
participants during eyes closed resting state, during a selective
attention (SA) task and during a working memory task. Func-
tional networks are each involved in certain (cognitive) func-
tions. It is likely that depending on the demands of the task as
hand, different ICs will play a more central role in the graph of
ICs. Therefore, it is expected that the pattern of eigenvector
centrality over ICs will change depending on the task at hand.
To this end, we used correlations to investigate the similarity
of eigenvector centrality over all ICs between different experi-
mental conditions. For example, if the FNC is independent of a
specific task, we would expect the eigenvector centrality pat-
tern in the tasks to be similar, that is, we would expect a high
correlation over ICs. On the other hand, low correlations
would reflect a task or condition dependent change in eigen-
vector centrality. The main aim of our study was to assess
whether condition-related changes in eigenvector centrality
patterns were dependent on age; are elderly able to flexibly

adapt FNC to the demands of the task at hand, similar to
young adults? Based on effects of aging on brain activity as dis-
cussed above, it is could be hypothesized that older partici-
pants adapt FNC patterns to the task demands in a different
way than young. By comparing the similarity of eigenvector
centrality patterns between younger and older participants
across conditions, we can assess differences in the age-related
modulation of FNC. In addition, we examined these changes
in more detail by investigating the age- and condition-related
changes in eigenvector centrality, separately for each IC.

METHODS

Participants

Forty younger (21 males, Mage 5 20.6 years, range: 18–26
years) and 40 older adults (24 males, Mage 5 64.9 years, range:
59–74 years) participated in the experiment after giving

Figure 1.

Schematic description of the n-back and the selective attention tasks.
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informed consent. All participants were right handed and
had no history of neurological or psychiatric disorders. They
had normal or corrected-to-normal visual acuity. All partici-
pants scored 26 or higher on the Mini Mental State Examina-
tion (MMSE, Folstein et al., 1975) and below 16 on both
subscales of the Hospital Anxiety and Depression Scale
(HADS, Zigmond and Snaith, 1983). The study adhered to the
Declaration of Helsinki and was approved by the local ethics
committee of the University Medical Center Groningen, the
Netherlands. Data of one young and one older participant
were lost due to technical problems. One older participant
was excluded because a brain abnormality was detected.

Procedure and Cognitive Tasks

fMRI data was recorded in three different runs, in which
participants performed an n-back task, a SA task and 10-min
of resting state. A schematic display of the SA as well as the
n-back task is presented in Figure 1. During resting state,
participants were instructed to keep their eyes closed, but
not to fall asleep. Results on each of these conditions sepa-
rately will be reported elsewhere. The order of the tasks was
randomized over participants. For both tasks, stimulus gen-
eration and response collection were controlled using E-
prime 1.2 (Psychology Software Tools, Sharpsburgh, PA).
Participants viewed the stimuli via a mirror mounted on the
head coil. In both tasks, a fixation cross remained on screen
throughout the task presentation. Responses were given by
pressing a button with the right index or middle finger. The
specific association between the button and the response fin-
ger was randomized over participants.

N-Back Task

The n-back task had three load conditions; 0-, 1-, and 2-
back. Each block started with the presentation of task
instructions. Subsequently, in each trial participants were
presented with a single stimulus letter (500 msec). Each
letter was randomly positioned in one of eight possible
locations (horizontal X axis, vertical Y axis and the lower
and upper position of both diagonals). The inter trial inter-
val varied randomly between 1,000 and 2,000 msec. In the
0-back load condition, the target was the letter “x.” In the
1-back load condition, the target was any letter identical to
the letter immediately preceding it. In the 2-back load con-
dition, the target was any letter identical to the letter pre-
sented two trials ago. The visual input was identical for all
loads and the conditions could only be differentiated
through the instructions received. Each load condition was
presented twice, resulting in a total of six task blocks, with
100 trials each. In each block, targets occurred randomly
in 50% of the trials. Blocks were followed by a 30 sec fixa-
tion cross. The order of the task loads was semi-
randomized between participants. Letters were randomly
presented either in upper-case (50%) or lower-case (50%).
Participants were instructed to ignore the case of the letter

and to focus on its identity. The letters were chosen from
a set of 18 consonants derived from the Dutch alphabet
(all consonants except the letters Q, Y, and J).

Selective Attention Task

After general task instructions, six experimental blocks,
each containing 63 trials were presented. At the start of a
block, participants were presented with a target letter (5 sec),
followed by a cue frame, indicating on which diagonal (right-
up, left-up) relevant information would be presented. In each
trial, the stimuli, consisting of four letters positioned at the
end points of both diagonals, were presented for 300 msec fol-
lowed by an interstimulus interval varying randomly
between 2,000 and 2,500 msec. Participants were required to
press the “yes” button when the target letter was presented
on a relevant diagonal position [target]. In all other cases [i.e.,
target letter on irrelevant diagonal positions (irrelevant target)
or no target letter presented (nontarget)] they should press
‘no’. Relevant target trials made up 33% of the total number
of trials. There were never two target letters present in one
stimulus frame. Stimulus letters were randomly chosen from
the alphabet, excluding the letters g, i, o, q, u, x, and y. Each
block was followed by a 30 sec fixation cross.

Behavioral Data

Participants were excluded based on behavioral data if
there were indications that they did not understand/fol-
low the task instructions. Data of three younger partici-
pants and one older participant were excluded because
their accuracy on the SA task was around or below chance
level (below 60%) in one or more task conditions (targets,
nontargets, and/or irrelevant targets). For the n-back task,
all participants performed the 0- and 1-back task with
over 70% accuracy, indicating that the task instructions
were clear. On the 2-back task, four participants per-
formed around or below chance level (below 60% accu-
racy). However, this likely reflects the difficulty of the task
and not the lack of understanding of task instructions.
Therefore, data of these participants were included in the
analysis. Thus, the behavioral and ICA analyses were per-
formed on the data of 36 younger and 37 older partici-
pants. For each participant and each task, the median
reaction time for correct responses and the mean accuracy
scores were used in subsequent analyses. Fast guesses
(responses faster than 200 msec) and responses slower
than the minimum interstimulus interval (1,500 msec for
the n-back task and 2,000 msec for the SA task) were
regarded as incorrect responses.

Image Acquisition

FMRI scans were obtained with a 3 Tesla MR scanner
(3T Achieva, Philips Medical Systems, Best, Netherlands),
with echo planar imaging (EPI) capability and an eight
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channel SENSE head coil. Functional images were
obtained with the following pulse sequence parameter set-
tings: single shot EPI; 37 slices; slice thickness 5 3.5 mm;
no gap; field of view 5 224 mm; matrix scan size 64 by 64;
transverse slice orientation; repetition time (TR) 5 2000
msec; echo time (TE) 5 30 msec; minimal temporal slice
timing 5 1836 msec; flip angle 70�. A 3-D T1-weighted ana-
tomical scan of the entire brain was obtained for each par-
ticipant using the following pulse sequence parameters:
field of view 5 256 mm; matrix scan size 256 by 256; 170
slices; slice thickness 1 mm; transverse slice orientation;
TE 5 3.6 msec; TR 5 9 msec; flip angle 8�.

fMRI Data Analysis

Offline processing was performed using the statistical
parametric mapping software package (SPM 8; http://
www.fil.ion.ucl.ac.uk/spm/software). The functional images
were motion-corrected and coregistered to the anatomical
scan. The co-registration was checked visually and adjusted
manually when required. Bias regularization (SPM 8) was
used to reduce signal intensity variations due to field inho-
mogeneities in both structural and functional images. For
functional images, the regularization was initially applied to
the first and the last functional scan within each run. Based
on these two corrections, an average correction factor was
computed for each voxel, which was applied to all scans in
each run. A group specific anatomic template was created
(for young and elderly participants together), using Diffeo-
morphic Anatomical Registration Exponentiated Lie algebra
(DARTEL), to optimize inter-participant alignment (Ash-
burner, 2007). Data were smoothed with an 8 mm full-width
half maximum (FWHM) Gaussian kernel.

Independent Component Analysis

Data were decomposed into functional networks using a
group-level spatial ICA as implemented in the GIFT tool-
box (version 2.0e, http://mialab.mrn.org/software/gift/).
The data from the two tasks and resting state were entered
as separate runs in the analysis. Before ICA decomposi-
tion, voxel time series were z-scored to normalize variance
across space (similar to Allen et al., 2012). This procedure
is aimed at minimizing a possible bias in subsequent
variance-based data reduction steps due to variance differ-
ences between tasks and participants. The number of com-
ponents in each run of each participant was estimated by
the minimum description length (MDL) criterion (Li et al.,
2007). The mean estimated number of components was 38;
therefore, the data was decomposed into 38 functional net-
works. To monitor the reliability of the ICA decomposi-
tion, we repeated the Infomax ICA algorithm (Bell and
Sejnowski, 1995) 10 times in the ICASSO toolbox within
GIFT (http://www.cis.hut.fi/projects/ica/icasso). With
each repetition, the ICA algorithm was initialized with a
different start point. Generally, these results showed com-

pact clusters, validating the reliability of component esti-
mation. After IC components had been established on the
group-level, part of the dual regression procedure was
applied to estimate participant- and run specific time-
courses (Filippini et al., 2009). This was done by regressing
the group spatial maps into the 4D dataset of each subject
and each run. This procedure ensures that the IC time-
course for each participant and each run is based on the
same spatial map. A subset of 25 ICs was visually selected
for further analysis, based on the expectation that ICs
should exhibit peak activations in grey matter and low
spatial overlap with known vascular, ventricular, motion,
or susceptibility artifacts.

Functional Connectivity Analysis

Before the functional connectivity analysis, we applied a
number of additional processing steps to the time-courses
of each participant and each run to remove variance in the
data related to participant motion and scanner drifts (Van
Dijk et al., 2010). A flow chart of the analysis procedure is
presented in Figure 2. The default procedure in GIFT is to
detrend the linear, quadratic and cubic trends in the time-
courses. Subsequently, residual effects of motion were cor-
rected by regression with the six realignment parameters
and their temporal derivatives. In addition, variance associ-
ated with stimulus presentation was removed in the SA-
task and the n-back task, to make sure that connectivity is
not dominated by synchronized stimulus-evoked responses
(Al-Aidroos et al., 2012; Geerligs et al., 2012a). For the SA
task, target, non-target and irrelevant target trials were
modeled as separate regressors. In addition, regressors
related to task instructions and error trials were modeled in
separate regressors. For the n-back task, 0-back, 1-back, and
2-back trials were modeled as separate regressors in addi-
tion to regressors for the task instructions. In both tasks, we
convolved all regressors with the canonical hemodynamic
response function (HRF), as well as the temporal derivative
and the dispersion derivative to account for local variability
in the shape of the HRF. The residuals of this procedure
were used to compute functional connectivity. The result-
ing functional connectivity reflects background connectiv-
ity, which can be used to assess how the cognitive state of a
participant affects the functional architecture of the brain
(Al-Aidroos et al., 2012).

An additional movement correction procedure was per-
formed to make sure that the effects of age and task condi-
tion on functional connectivity were not due to spurious
effects of motion. To this end, we used part of the proce-
dure applied by Power and colleagues (2012). The first
step in this correction procedure was to calculate the total
displacement per scan. The rotational parameters were
transformed to millimeters (mm) displacement by assum-
ing affected voxels were at a distance of 65 mm from the
origin of the rotation. The total displacement per scan
was computed using the procedure in the ArtRepair
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toolbox http://cibsr.stanford.edu/tools/human-brain-pro
ject/artrepair-software.html. Scans in which the displace-
ment compared with the previous scan was larger than
.5 mm were flagged. The flagged scans as well as two
scans before and one scan after this scan were not taken
into account in the computation of the correlation matrix.

In addition to movement differences, a bias might be
introduced due to the differing numbers of scans in each
task condition; 300 resting state scans, 6200 scans per n-
back load condition and 6480 scans for the SA task.
Therefore, we randomly selected up to 200 scans (depend-
ing on the number of scans left after movement correction)
out of all scans for both the resting state and the SA condi-
tion, to make the number of scans equivalent to each n-
back load condition. These scans were then used to com-
pute the correlation matrix. Those participants (four
younger and two older) for which fewer than 150 scans
remained in one or more conditions due the movement
correction procedure were excluded from the FNC analy-
sis. Thus, the FNC analysis was performed on the data of
32 younger and 35 older participants.

Condition specific time series were generated by seg-
menting time-courses from each IC into separate condition
blocks. Each block started three scans after the first stimu-
lus onset and ended at the final stimulus onset of that
block. For the n-back task, there were two 0-back blocks,
two 1-back blocks, and two 2-back blocks. For the SA task,
there were six experimental blocks. The time course of
each block segment was mean centered and concatenated
with segments of the same condition. Subsequently the
correlation coefficient was computed between the time-
courses for each pair of ICs for each participant and each
condition. The Spearman rank correlation was used to
reduce the effect of outliers on the correlation estimate.

Eigenvector Centrality

To determine the functional importance of each IC, we
used a graph theoretical approach. The ICs are taken as
the separate nodes in a graph, whereas the functional con-
nections between ICs represent the graph’s edges. Eigen-
vector centrality was computed for each node, for each

Figure 2.

Flow chart of all steps in the analysis procedure after the initial, standard preprocessing steps.

RV 5 removal of variance, SEC 5 scaled eigenvector centrality, FC 5 functional connectivity,

ICA 5 independent component analysis, MDL 5 minimal description length.
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condition and each participant separately (Lohmann et al.,
2010). A node is considered to be central if it has many
connections as well as high connectivity strengths to other
nodes, particularly when these other nodes have a large
number of connections, preferably with a high connectivity
themselves (Bonacich, 1972). Eigenvector centrality can be
seen as a weighted sum of the direct and the indirect con-
nections of a node (Bonacich, 2007), that is, it takes the
entire pattern of connections within a graph into account.
Moreover eigenvector centrality does not depend on a pre-
specified threshold for correlation values, unlike other cen-
trality measures such as degree or betweenness centrality.

Eigenvector centrality is based on an eigenvector decom-
position of the adjacency matrix (A). If we define kmax as
the largest eigenvalue and xmax as the corresponding eigen-
vector then Axmax5kmaxxmax. The eigenvector centrality of a
node i is then defined as xmax,i. The eigenvector centrality
represents the relative influence of a node on all other
nodes. Therefore, a graph with a higher average correlation
coefficient will not always result in higher centrality values.
Because we were interested in the total influence of a node
on all other nodes, we applied an additional scaling by the
largest eigenvalue kmax. Here, we employed that the largest
eigenvalue kmax of a positive correlation matrix is closely
related to the mean of this positive correlation matrix
(Friedman and Weisberg, 1981). Scaling the relative contri-
bution per node (eigenvector centrality) with the total influ-
ence all nodes have on each other (kmax), thus results in a
measure of the total influence per node, the scaled eigen-
vector centrality (SEC): SECi5xmax:ikmax.

To calculate the eigenvector centrality, it is required that
the eigenvector decomposition has a unique solution. To
achieve this, all values in the adjacency matrix must be
positive. Lohmann et al (2010), proposed two methods to
meet this requirement: either to add a constant to the cor-
relation values, using ~r5r11 or to use the absolute values
of the correlation coefficient ~r5jrj, where r is the correla-
tion and ~r is the adapted version. Using the first alterna-
tive will result in a low eigenvector centrality for nodes
with high negative correlations, underestimating the
strength of the influence of these nodes. The second alter-
native, on the other hand, takes only the strength of the
correlation into account and not the sign. However, since
a node with a strong negative correlation can be regarded
as a node with a high influence on other nodes in the
graph, we chose this second approach.

Statistical Analysis

The main aim of this study was to investigate whether
elderly are able to flexibly change patterns of functional
connectivity between networks (FNC) depending on task
demands. General changes in FNC patterns were meas-
ured by correlating the SEC over all ICs in one condition
with the SEC over all ICs in another condition. This results
in one Spearman rank correlation coefficient per partici-

pant, per comparison between conditions. These correla-
tion values were transformed to a normal distribution
using Fisher r to z’ transformation (Fisher, 1921). For each
combination of conditions, the transformed scores were
then compared between age groups using an independent
samples t-test in SPSS. To reduce the number of compari-
sons, analyses were initially restricted to the resting state,
SA and 2-back conditions, as these are most distinct in
terms of the cognitive processes they require. The 0-back
and 1-back task conditions were used for post hoc testing
to confirm specific patterns observed in the data.

To examine the effects of age groups and task on SEC,
repeated measures analysis were used. Initially, we used a
model with the within subject factors task (rest, SA-task and
2-back task) and IC and the between subject factor age
group. Subsequently, repeated measures analyses were cre-
ated per IC, with the within subject factor task and the
between subject factor age group. As this resulted in 25 dif-
ferent models, the reported P-values of this analysis were
corrected for multiple comparisons, using the FDR correc-
tion (Benjamini and Hochberg, 1995). P-values were adjusted
for violations of the sphericity assumption using the
Greenhouse-Geisser correction (Greenhouse and Geisser,
1959). Only results with an FDR corrected P� 0.01 are
reported. This stringent threshold was chosen to limit the
number of false positives resulting from the 75 tests per-
formed. For clarity, uncorrected degrees of freedom values
are presented in the results section. Paired and independent
samples t-tests were used for post hoc testing. Before the
analyses, SEC values were transformed as described by van
Albada and Robinson (2007) to ensure that they obey a
Gaussian normal distribution, maintaining the mean and
standard deviation of the original distribution.

To explore whether the SEC is related to task perform-
ance, we created regression models for each of the ICs for
which an interaction effect between task and age group
was observed. For each of the task conditions (SA and 2-
back), the accuracy and reaction times during task per-
formance were used as the dependent variables in sepa-
rate models. Age group and the SEC of the respective IC
were used as the independent variables, along with the
interaction between the two. This resulted in a total of 16
regression models. No correction for multiple comparisons
was applied to these post hoc tests.

RESULTS

Behavioral Data

In all tasks, older participants responded slower than
younger participants [F(1,71) 5 116.6, P< 0.001], however,
the differences between age groups varied with condition
[F(3,213) 5 19.83, P< 0.001, see Table I]. Differences
between age groups were largest in the 2-back task condi-
tion (237 msec), smaller in the 1-back task condition (161
msec) and the SA task (154 msec) and smallest in the 0-
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back task condition (116 msec). In both age groups, partici-
pants were faster in the 0-back than the 1-back task condi-
tion [t(72) 5 14.04, P< 0.001] and faster in the 1-back than
the 2-back task condition [t(72) 5 14.48, P< 0.001]. In the
SA task, participants were faster than in the 0-back task
condition [t(72) 5 7.59, P< 0.001] but slower than in the 1-
back task condition [t(72) 5 5.22, P< 0.001].

In the 2-back task condition, older participants had sig-
nificantly lower accuracy scores than young participants
[t(71) 5 6.08, P< 0.001], whereas there were no significant
differences between the age groups in the other tasks and
conditions [age 3 condition; F(3,242) 5 30.77, P< 0.001]. In
both age groups, accuracy scores were higher in the 0-
back than the 1-back task condition [t(72) 5 7.63, P< 0.001]
and higher in the 1-back than in the 2-back task condition
[t(72) 5 8.07, P< 0.001]. Accuracy scores in the SA task
were slightly higher than in the 0-back task condition
[t(72) 5 2, P 5 0.049].

Independent Components

From the 38 estimated IC components, 25 components
were selected as non-artifactual, relevant networks. These
components were derived from all the rest and task data
together. Figure 3 illustrates the spatial maps of these com-
ponents. For clarity and ease of display, these ICs were
grouped based on function, using a similar approach as
Allen et al. (2012). A description of the ICs can be found
in the caption of Figure 3.

For each IC, we used the scaled eigenvector centrality
(SEC) to investigate its centrality or importance in the
graph. SEC reflects the total influence of an IC in the graph
of ICs, by capturing both the correlation strength and the
number of connections of that IC to other ICs, as well as
the centrality of the neighboring (i.e., connected) ICs. To
investigate whether SEC changes in different ICs depend
on age-group and condition, a repeated measures analysis
was performed. We observed a main effect of IC
[F(24,3120) 5 28.6, P< 0.001], a main effect of task [F(2,
3120) 5 11.49, P< 0.001] and a main effect of age group
[F(1,65) 5 12.36, P 5 0.001], as well as, significant interac-
tions between task and IC [F(48,3120) 5 9.08, P< 0.001], age
and IC [F(24,3120) 5 6.09, P< 0.001], and age, task, and IC
[F(48,3120) 5 4.16, P< 0.001]. To elucidate these effects we
created a repeated measures model for each IC, with the

within subjects factor task and the between subjects factor
age group. This allowed us to investigate differences in
SEC between the two age groups, differences between the
conditions as well as interactions between age and condi-
tion, separately for each IC. Averages and standard devia-
tions for the SEC can be found in Supporting Information
Table I, separately for each IC, condition, and age group.

Effects of Age on SEC

Older participants had higher SEC values than younger
participants in four of the 25 identified ICs, indicating that
connectivity between functional networks was increased in
older compared with younger participants. In particular in
two of the four visual ICs, the basal ganglia, and the ante-
rior cingulate IC, older participants had higher SEC values
than younger participants. Note that this description of
results only takes into account the ICs in which there was
no interaction between age and condition. Younger partici-
pants had a higher SEC than older participants in the
medial frontal IC. In Table II, all main effects of task and
age are described.

Effects of Task on SEC

In the majority of ICs, the SEC was smaller in task con-
ditions compared with resting state, indicating that
between network connectivity was stronger during resting
state than during task performance. In particular in the
ICs related to visual or auditory information processing,
as well as ICs related to sensorimotor functions and the
basal ganglia IC, the SEC was larger in resting state than
during task performance. Specifically in the inferior frontal
IC we found that centrality was increased in the 2-back
task compared with resting state. The SA task showed an
increase in SEC compared with resting state in the angular
gyrus IC and the inferior frontal IC. In other ICs, the effect
of task was specific to one of the age groups; these results
are discussed in the next section.

Interactions Between Task and Age Per IC

The averages in different tasks and age groups are visual-
ized in Figure 4 for those ICs that showed a significant
interaction between task and age group. An interaction
between task and age was observed in the somatosensory IC
(IC 9). In younger participants, SEC was not significantly
different between conditions, whereas in old participants
the SEC increased from rest to the SA task [t(34) 5 2.63,
P 5 0.013] and from the SA task to the 2-back task condition
[t(34) 5 2.93, P 5 0.006]. Therefore, in rest elderly had a
lower SEC than young adults [t(65) 5 2.11, P 5 0.039],
whereas in the 2-back task condition elderly had a higher
SEC than young participants [t(65) 5 2.62, P 5 0.011].

For older adults, the SEC in the precuneus IC (IC 14)
was larger in the 2-back task condition than in the SA

TABLE I. Averages and standard deviations for response

times (RT) and accuracy (ACC), separately for each age

group and task (condition)

0-back 1-back 2-back SA

RT young (msec) 483 (50) 534 (60) 650 (104) 506 (68)
RT old (msec) 600 (54) 695 (81) 888 (108) 660 (80)
ACC young (%) 94 (3) 90 (5) 86(4) 95(3)
ACC old (%) 94(3) 90(4) 73 (12) 95 (4)
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Figure 3.

Identified independent components (ICs), grouped by location

and function. The number between brackets indicates the IC

number. Within the identified ICs, there were four visual com-

ponents, representing the medial (IC1), lateral (IC 2), ventral

(IC3), and dorsal (IC4) parts of the visual system. In addition,

one auditory component (IC 5) was identified. Six different

components were identified that are related to sensorimotor

functions (IC 6-11). Separate ICs were identified for the cere-

bellum (IC 12) and the basal ganglia (IC 13). The classical

default mode network was represented in four separate com-

ponents (IC 14-17). Separate left and right fronto-parietal com-

ponents were identified (IC 18 and 19, respectively) as well as

left and right anterior insula/opercular networks (IC 20 and 21,

respectively). Bilateral inferior frontal (IC 22) and temporo-

parietal junction components (IC 23) were identified as well as

medial superior parietal (IC 24) and anterior cingulate compo-

nents (IC 25). R 5 right, L 5 left, Ant 5 anterior, Inf 5 inferior,

Sup 5 superior, Lat 5 lateral, Med 5 medial, SMA 5 supplemen-

tary motor area, CB 5 cerebellum, BG 5 basal ganglia,

PCC 5 Posterior Cingulate Cortex, FPCN 5 fronto-parietal

control network, AI 5 anterior insula, TPJ 5 temporo-parietal

junction.



task [t(34) 5 3.88, P< 0.001] and in rest [t(34) 5 3.17,
P 5 0.003], while in young adults SEC was higher in the
SA task than the 2-back task [t(31) 5 2.23, P 5 0.033] while
both tasks were not significantly different from rest. In
the 2-back task condition, the SEC in the precuneus was
significantly larger in older than young adults
[t(65) 5 4.31, P< 0.001].

Another interaction between task and age group was
observed in the right FPCN IC (19). The SEC was signifi-
cantly larger in young than older participants during the
2-back task condition [t(65) 5 3.84, P< 0.001], but not in
rest or during the SA task. In young adults, SEC was larg-
est in the 2-back task condition compared with the SA task
[t(31) 5 5.47, P< 0.001] and rest [t(31) 5 3.84, P 5 0.001]. In
the older adults, no significant differences were observed
between the tasks.

In the temporo-parietal junction (TPJ) IC (23), similar
SEC values were observed in both age groups in rest,
while the SEC was larger in older than young adults in
both the 2-back task condition [t(65) 5 3.31, P 5 0.002] and
the SA task [t(65) 5 5.35, P< 0.001]. In young participants,
SEC was smaller in the SA task compared with the 2-back
task condition [t(31) 5 5.5, P< 0.001] and rest [t(31) 5 2.5,
P 5 0.018]. In contrast, SEC in the older participants was
larger in the 2-back task condition compared with the SA
task [t(34) 5 2.52, P 5 0.017] and larger in the SA task com-
pared with rest [t(34) 5 4.63, P< 0.001].

We have performed additional analyses in which we
have tested the effects of removing the variance associ-
ated with stimulus presentation before the computation
of the connectivity matrix. The results of this procedure
are described in the Supporting Information. They show
that the main findings described above are robust and
are only minimally affected by the specific approach
used. In addition, to demonstrate the effect of the spe-
cific threshold selected for the analysis, results of the
analyses are also presented for a lower significance
threshold (pfdr< 0.05) in Supporting Information Table
II.

Effects of Age on Changes in SEC Patterns With

Changing Task Demand

In the second approach to shed more light on the IC 3

age 3 task interaction, we focused on the relation between
different ICs. Specifically, we examined the change in the
SEC patterns across ICs between different task conditions
and the effects of aging on this change. Correlation analy-
ses were used to investigate the similarity of SEC patterns
over all ICs between different conditions. Little change
between two conditions would be reflected in high correla-
tion values (high similarity), whereas a large change
between two conditions would results in low correlations
(low similarity). Correlations were compared between age
groups to see how changes between conditions are
affected by aging.

Differences in SEC Patterns Between Resting

State and Task Performance

The relative importance of nodes, that is, the SEC pat-
tern, was similar in resting state and the SA task in young
participants (z-transformed correlation: M 5 0.46,
SD 5 0.26), whereas this similarity was reduced in older
participants (M 5 0.17, SD 5 0.28; t(65) 5 4.35, P< 0.001).
For both younger and older adults there was little similar-
ity between the SEC patterns in the 2-back task condition
and rest [young: M 5 0.19, SD 5 0.28; old: M 5 0.12,
SD 5 0.22; t(65) 5 1.03, P 5 0.31]. The relatively high accu-
racy levels and the fast responses in the SA task suggest
that the levels of cognitive demand required by this task
are lower than the cognitive demand required in the 2-
back task condition. Therefore, the results suggest that the
change in SEC pattern is larger in older than younger par-
ticipants only from resting state to low demanding tasks.
To confirm this, we additionally considered the 0- and the
1-back task conditions. The accuracy levels and response
times indicate that task demand in the 0-back task condi-
tion is similar to that in the SA task, while demand in the
1-back task condition is higher than in the 0-back task con-
dition, but lower than in the 2-back task condition. Based
on the effect of aging in the SA-task compared with rest-
ing state, we would expect the largest age group differen-
ces in the change in SEC pattern for the 0-back task
condition versus resting state and a smaller age difference
for the 1-back task condition versus resting state. Indeed,
we found that the SEC pattern in the 0-back task condition
was more similar to the resting state condition, in young
(M 5 0.44, SD 5 0.26) compared with older adults
(M 5 0.15, SD 5 0.29; t(65) 5 4.17, P< 0.001). Similarly, the
SEC pattern in the 1-back task condition was more similar
to the resting state, in young (M 5 0.30, SD 5 0.26) com-
pared with older adults [M 5 0.17, SD 5 0.21; t(65) 5 2.16,
P 5 0.035]. In Figure 5, the age group differences in abso-
lute changes in SEC between tasks and resting state are
visualized per IC.

Differences in SEC Patterns Between the

Selective Attention Task and n-Back Task

Conditions

In addition to the decreased similarity in SEC pattern
between resting state and low demanding task conditions
in elderly compared with young individuals, we observed
an increased similarity in SEC pattern between different
tasks in the elderly. The SEC patterns in the 2-back task
condition and SA task were similar in older (M 5 0.44,
SD 5 0.29) and less similar in younger adults [M 5 0.27,
SD 5 0.21; t(65) 5 2.7, P 5 0.009]. In line with this result,
elderly showed a more similar SEC pattern between the 0-
back and the 2-back task condition [young M 5 0.25,
SD 5 0.30; old M 5 0.58, SD 5 0.33; t(65) 5 4.16, P< 0.001]
and showed a trend toward the same effect in the 0-back
and the 1-back task condition [young M 5 1.51, SD 5 0.33;
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old M 5 0.67, SD 5 0.34; t(65) 5 1.96, P 5 0.054]. However,
the age groups did not show a difference in SEC pattern
similarity between (a) the 1-back and the 2-back task
condition, (b) the 0-back task condition and the SA task,
and (c) the 1-back task condition and the SA task [a: young
M 5 0.53, SD 5 0.26; old M 5 0.60, SD 5 0.31; t(65) 5 1.0,
P 5 0.32; b: young M 5 0.57, SD 5 0.32; old M 5 0.50,
SD 5 0.33; t(65) 5 0.83, P 5 0.41; c: young M 5 0.49,
SD 5 0.32; old M 5 0.48, SD 5 0.34; t(65) 5 0.09, P 5 0.93].
The differences between age-groups in SEC changes
between task conditions are visualized in Figure 5.

Relation With Behavior

Of the four ICs that showed an interaction between con-
dition and age group, only the precuneus IC (14) showed
a significant correlation with behavior. In the SA task,
increased SEC of the precuneus IC (14) was related to
increased accuracy [B 5 0.01, t(63) 5 2.10, P 5 0.04],
whereas no significant effect of age [B 5 0.007, t(63) 5 0.70,

P 5 0.49] and no interaction between age and SEC was
observed [B 5 0.001, t(63) 5 0.07, P 5 0.95]. However, it
should be noted that no correction for multiple compari-
sons was applied and that the F-test for the complete
regression model was not significant [F(3,63) 5 1.63,
P 5 0.19]. Therefore, the observed relation could be a false
positive result.

DISCUSSION

To truly understand the effects of aging on brain func-
tion, it is important to know if elderly are able to adapt
FNC in response to changing task demands. In this study,
we investigated how aging affects the adaptation of func-
tional connectivity between functional networks (FNC) to
the demands of the task at hand. We have used a brain-
wide approach to show that elderly can indeed adapt
functional connectivity. However, the results show that
the impetus to change FNC patterns changes with age;

TABLE II. Results of repeated measures analysis; effects of condition, age group and the interaction of age group

and condition on SEC

Main effect task Post hoc Main effect age Post hoc
Interaction Task

* Age

IC F p RE-SA R-2B SA-2B F p O-Y F p

Med. Visual (1) 7.23 0.004 RE> SA 2B> SA 19.6 <0.001 O>Y
Lat. Visual (2) 5.98 0.007 RE> SA
Ventral visual (3) 12.95 <0.001 RE> SA RE> 2B
Dorsal visual (4) 10.27 0.009 O>Y
Auditory (5) 19.28 <0.001 RE> SA RE> 2B 2B> SA
Somatomotor (6) 24.66 <0.001 RE> SA RE> 2B 2B> SA
L. Somatomotor (7) 13.70 <0.001 RE> SA RE> 2B SA> 2B
R. Somatomotor (8) 19.31 <0.001 RE> SA RE> 2B
Somatosensory (9) 8.36 0.004
SMA (10)
Paracentral lobule (11) 10.81 <0.001 RE> SA 2B> SA
CB (12)
BG (13) 5.39 0.011 RE> SA 50.35 <0.001 O>Y
Precuneus (14) 10.32 0.004
PCC (15)
Med. Frontal (16) 5.49 0.010 SA> 2B 16.49 <0.001 Y>O
Angular (17) 12.39 <0.001 SA>RE SA> 2B
L. FPCN (18)
R. FPCN (19) 7.74 0.007
L. AI/Operculum (20)
R. AI/Operculum (21) 7.23 0.002 RE> SA RE> 2B
Inf. Frontal (22) 24.67 <0.001 SA>RE 2B>RE 2B> SA
TPJ (23) 12.95 <0.001
Med. Sup. Parietal (24)
Ant. Cingulate (25) 6.23 0.005 RE> SA RE> 2B 48.30 <0.001 O>Y

Y 5 young, O 5 old, RE 5 rest, SA 5 selective attention task, 2B 5 2-back task, R 5 right, L 5 left, F 5 F-value, p 5 p-value, Ant 5 anterior,
Inf 5 inferior, Sup 5 superior, Lat 5 lateral, Med 5 medial, SMA 5 supplementary motor area, CB 5 cerebellum, BG 5 basal ganglia,
PCC 5 Posterior Cingulate Cortex, FPCN 5 fronto-parietal control network, AI 5 anterior insula, TPJ 5 temporoparietal junction, degrees
of freedom for the F-test of the task and the interaction effect were 2 and 130, degrees of freedom for the F-test of the age effect were 1
and 65. Main effects of age and task are not displayed for those ICs that demonstrated a significant interaction of task*age.
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whereas young participants show the maximal change in
connectivity patterns from less demanding to more
demanding task conditions, older participants showed
maximal change from rest to low demanding tasks.

Previous studies have shown that during task perform-
ance, functional connectivity increases between specific
areas that are involved in execution of the task at hand
(e.g., Dew et al., 2012; Hampson et al., 2002; Hare et al.,
2010; Sala-Llonch et al., 2012; Shirer et al., 2011; Sterpenich
et al., 2006; Wolbers et al., 2006). Since, the SEC incorpo-
rates both direct and indirect functional connectivity from
an IC to all other ICs, we would expect that, similar to
functional connectivity, the SEC will increase in ICs that

are functionally relevant to the task at hand. Indeed, the
results of the current study demonstrate an increase in
centrality of ICs that play an important role in task per-
formance. During the 2-back task, we found that in both
age groups, centrality was increased in the inferior frontal
IC compared with resting state, an area that has been sug-
gested to play an important role in working memory
(Nagel et al., 2009; Owen et al., 2005). In addition, another
network important for working memory, the right FPCN,
showed increased centrality in young participants during
the 2-back task. Another study by Lohmann et al. (2010)
has also shown that the eigenvector centrality increases in
areas that are important in the condition at hand. More

Figure 4.

SEC for the different conditions and age groups, displayed for

those ICs showing a significant interaction between age and

task. Black bars show the mean and standard error of the SEC

in younger participants, gray bars show the SEC in older partici-

pants. RE 5 rest, SA 5 selective attention task, 2B 5 2-back task,

Y 5 young, O 5 old, FPCN 5 fronto-parietal control network,

TPJ 5 temporo-parietal junction.
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Figure 5.

Visualization of the differences between age-groups in absolute change in SEC between task/rest

conditions per IC. The bars represent differences between older and younger adults in absolute

SEC change per IC. Differences are expressed as a percentage of the total difference between

older and younger adults. The standard error of the mean is indicated by the error bars.
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specifically, they found that the eigenvector centrality of
the ventral striatum, a key region implicated in reward
such as food, increased in a sated compared with a hungry
condition. Note that the direction of correlations was not
taken into account in the current analysis. Therefore it is
unclear whether a SEC increase reflects an increase in neg-
ative correlations or an increase in positive correlations.

Especially in the visual and somatomotor ICs, functional
connectivity to other ICs was decreased during task per-
formance compared with resting state. These results are in
line with those of Arbabshirani et al (2012), who found a
general decrease in FNC during performance of an auditory
oddball task compared with resting state. These authors
suggested that performance of an active task may be facili-
tated by higher activation within specialized brain networks
rather than collaboration between different networks. This
idea is further supported by findings of Nir et al. (2006).
They compared visual stimulation to periods of eyes closed
resting state and showed that during visual stimulation;
functionally related visual areas were more strongly con-
nected, while functionally dissimilar visual regions became
de-correlated. Together with our results, this suggests that
most networks show decreased connectivity to other func-
tional networks with increasing levels of task demands.

As visual and somatomotor networks are essential for
adequate performance in the SA and working memory
tasks, it is puzzling why these networks showed a
decrease as opposed to an increase in SEC during task
performance compared with resting state. First of all, it
should be noted that in the current study, participants
closed their eyes during the resting state condition, while
performance of the two tasks was dependent on the proc-
essing of visual input. This difference in visual input
might have aggravated the observed effects of task com-
pared with resting state on the SEC of visual ICs. Alterna-
tively, it might be the case that increases in SEC with
increasing task demand are limited to those networks that
play the most central role in the task. For example, work-
ing memory of visual items is thought to rely on the main-
tenance of sensory representations in the visual cortex as
well as on the manipulation of these items. Therefore,
especially areas involved in maintaining and manipulating
this representation, such as the inferior frontal gyrus,
would need to increase FNC during working memory
tasks to enable adequate performance. A limitation of this
study is that these two alternatives cannot be disentangled
with this dataset. Future studies using an eyes open base-
line period could investigate whether the observed FNC
changes are truly related to task performance or to the dif-
ference between eyes open during task performance and
eyes closed during resting state.

Our findings indicate an age-related difference in the
modulation of FNC with condition. Whereas young partic-
ipants show the maximal change in SEC patterns from less
demanding to more demanding task conditions, older par-
ticipants showed maximal change from rest to a low
demanding task. It is important to note that this result

cannot be due to the difference between eyes closed–eyes
open in rest versus task, as there was no difference
between older and younger adults in the comparison
between resting state and the high demanding two-back
task. This result fits well with previous literature on BOLD
activation differences in elderly compared with young par-
ticipants. In working memory studies, for example, it has
been found that elderly show increased prefrontal activa-
tion compared with young participants in low working
memory loads, whereas the opposite pattern is observed
during high working memory loads (Mattay et al., 2006).
According to Reuter-Lorenz and Cappell (2008), processing
inefficiencies cause the aging brain to recruit more neural
resources to achieve computational output equivalent to
that of a younger brain. They argued that as demand
increases, elderly can reach a resource ceiling (Grady,
2012). In turn this can lead to age-related declines in per-
formance in more demanding tasks. In the context of the
current results, the larger change in SEC patterns from
resting state to the less demanding cognitive tasks in
elderly compared with young adults, could reflect the
recruitment of additional neural resources necessary to
cope with task demands. The limited adaptation of central-
ity in case of additional task demands in elderly might be
a sign of elderly reaching a resource ceiling. These results
show that the theories of age-related change, mainly based
on changes in brain activation, are in line with observed
connectivity changes in the aging brain.

In addition, we observed that the functional connectivity
to other ICs was larger in older compared with younger
participants in a number of ICs (i.e., the visual ICs, the
basal ganglia IC and the anterior cingulate IC). This age-
related increase in connectivity between functional net-
works is in line with results from a previous study, in
which we found that connectivity between functional net-
works was increased during a visual oddball task in older
compared with younger participants (Geerligs et al.,
2012a). Tomasi and Volkow (2012) also found indications
that connectivity between functional networks increases
with age; they showed that long range connectivity from
areas in the somatomotor network, thalamus, and cerebel-
lum was increased in elderly during resting state. Previous
studies have demonstrated that besides increases in
between network connectivity, connectivity within specific
functional networks is decreased with age (Andrews-
Hanna et al., 2007; Damoiseaux et al., 2008; Grady et al.,
2010; Rieckmann et al., 2011; Sambataro et al., 2010).
Together, these age-related changes result in decreased
segregation of functional networks. This is in line with the
dedifferentiation theory of aging that suggests that areas
in the older brain may become less functionally distinct
(Baltes and Lindenberger, 1997; Carp et al., 2011; Park
et al., 2004). Moreover, it shows that dedifferentiation is
not limited to brain areas but extends to functional net-
works as well (Geerligs et al., 2012a).

In four ICs, we found significantly different task
dependent changes in centrality between older and

r Flexible Connectivity in the Aging Brain r

r 3801 r



younger participants (i.e., right FPCN, TPJ, somatosensory,
and precuneus IC). In the right FPCN, younger partici-
pants showed increased centrality during the 2-back task
compared with resting state and the SA task. This is well
in line with expectations, as the main constituents of the
right FPCN, the dorsolateral prefrontal cortex (DLPFC)
and the posterior parietal cortex, are often found to be
active during working memory tasks (Cabeza et al., 2008;
Owen et al., 2005). However, in the elderly, the centrality
of the right FPCN was not increased during performance
of the 2-back task compared with resting state. In addition,
the centrality was significantly smaller in older than
younger participants in the 2-back task. Previous studies
have demonstrated that the connectivity from the right
DLPFC was decreased in elderly especially under condi-
tions of high working memory load. Nagel et al. (2011),
for example, showed that in young but not older partici-
pants, connectivity between the left and the right DLPFC
increased with increasing working memory load. Further-
more, Rieckmann et al. (2011) showed that functional con-
nectivity from the right DLPFC to parietal areas and the
occipito-temporal sulcus was reduced in older compared
with younger participants during a working memory task.
Implications of the reduced connectivity/centrality of the
right FPCN in old relative to younger adults remains elu-
sive at this moment. We, for example, did not observe
a correlation between 2-back performance and SEC of
this IC.

A second IC in which we observed task dependent
changes of centrality between older and younger partici-
pants, was the TPJ. During the SA task, the centrality of
the TPJ was increased in elderly compared with young
participants. Whereas the dorsal parietal cortex is related
to attentional top–down control, the TPJ plays an impor-
tant role in the capture of bottom–up attention by an
external stimulus (Cabeza et al., 2012; Corbetta and
Shulman, 2002; Corbetta et al., 2008). Although older
participants performed as accurate on this task as
younger participants, we have shown in a previous
study that older participants have trouble suppressing
the information that is presented on the irrelevant spa-
tial positions (Geerligs et al., 2012b). This is in line with
a large body of research that has shown that elderly
generally suffer more from distraction of irrelevant
information than younger adults (see also: de Fockert
et al., 2009; Gazzaley et al., 2005, 2008; Haring et al.,
2013; Hasher and Zacks, 1988; Hasher et al., 1999; Mager
et al., 2007). Wen et al. (2012) showed that increased
connectivity directed from the ventral attention network
(including the TPJ), to the DAN, was associated with
slower and less accurate performance in a visual spatial
attention task. The increased centrality of the TPJ during
the SA task might be related to an increased likelihood
of attentional capture by (irrelevant) external stimuli in
the elderly. However, as no direct link to performance
was observed, it is important that this interpretation is
tested in future studies.

Whereas most visual and somatomotor ICs showed a
decrease in centrality in task performance compared with
resting state, elderly showed an increase in the centrality
in the somatosensory IC with increasing task demand. In
younger participants there was no effect of task on soma-
tosensory IC centrality. Similarly, in the precuneus IC
(part of the DMN), centrality did not change between
tasks in young participants while older participants
showed a higher centrality in the 2-back task than in the
SA task or resting state. Previous research has shown that
older adults often have trouble with the suppression of
activity as well as connectivity within the DMN, which is
related to decreased task performance (Grady et al., 2006;
Persson et al., 2007; Sambataro et al., 2010). Although we
can only speculate about the more specific implications of
the current findings, they do show that with age, the func-
tional networks that are recruited for task performance
change.

In this study, we set out to study functional connectivity
between networks and how the change in connectivity
with changing task demands is affected by aging. It is
important to note that the answer to this question heavily
depends on the definition of networks. Here, we used ICA
to identify different brain networks. The recommended
approach to use the minimal description length (MDL)
procedure to find a suitable number of components
resulted in a large number (38) of components (Li et al.,
2007). Decomposing the data into these 38 components
resulted in a quite regional decomposition, in which areas
that are generally regarded as one functional network
(e.g., the DMN) were split into subcomponents. This is in
line with previous literature that has shown that functional
networks can be identified at different levels of hierarchy
(Meunier et al., 2009, 2010). It would be important for
future studies to investigate whether these results would
be similar when different methods are used to define func-
tional networks.

In conclusion, elderly are able to adapt FNC to task
demands. However, the impetus for FNC change is differ-
ent in young and elderly. Whereas young participants
showed the maximal shift in FNC patterns between the
less demanding SA task and the more demanding 2-back
task, older participants showed the maximal connectivity
shift between resting state and the SA task. The observed
increases in FNC from rest to task were found to be lim-
ited to those ICs that are involved in central functions
related to the demands of the task at hand, whereas FNC
decreases in the other ICs. We argued that the age-related
changes reflect the previously reported recruitment of
additional resources in elderly.
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