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Abstract: Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjec-
tive clinical discipline, with no objective biomarkers to guide clinical practice and research. Develop-
ment of psychiatric biomarkers is consequently important. A promising approach involves the use of
machine learning with neuroimaging, to make predictions of diagnosis and treatment response for
individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD)
diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34
controls and a support vector machine. We report 93% accuracy of individual subject diagnostic pre-
diction. Importantly, automated selection of brain regions supporting prediction was used. High accu-
racy prediction was supported by a region of reduced white matter in the brainstem, associated with a
pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic
ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrener-
gic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection
or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp
35:5179–5189, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) affects
around 5% of the population under the age of 16 and is
the most commonly diagnosed psychiatric disorder in chil-
dren [Banaschewski et al., 2010]. Medications used to treat
ADHD include methylphenidate, dextroamphetamine, and
atomoxetine, which act to increase release of dopamine
(DA) and noradrenaline (NA). Abnormalities of the DA
and NA systems have been widely implicated in studies
of ADHD [Del Campo et al., 2011]. In three recent meta-
analyses of imaging studies of ADHD which considered
the whole brain, the DA rich basal ganglia was the only
brain region found to be consistently reduced in gray mat-
ter [Ellison-Wright et al., 2008; Frodl and Skokauskas,
2012; Nakao et al., 2011]. Reduced DA release and reduced
D2 receptors have been reported in adult ADHD caudate
[Volkow et al., 2007b] and ventral striatum [Volkow et al.,
2007a]. It has been suggested that stimulant medications
correct an underlying hypo-dopaminergic disorder,
improving cognitive and behavioral deficits [Del Campo
et al., 2011].

Although studies of the DA system have attracted the
most attention, possible abnormalities of the NA system
have also been recognized [Arnsten, 1998; Arnsten et al.,
1996; Del Campo et al., 2011; Levy and Swanson, 2001].
NA cell bodies are primarily located in the brainstem
locus coeruleus with axonal projections to the prefrontal
cortices, which are a substrate for cognitive functions such
as response inhibition and working memory, often
reported as impaired in ADHD [Arnsten and Li, 2005; Del
Campo et al., 2011; Seidman et al., 2005]. The importance
of NA is underlined by atomoxetine, a relatively selective
NA reuptake inhibitor [Chamberlain et al., 2006]. To our
knowledge, there are no imaging studies of the NA system
in ADHD. Conceivably, enhancement of NA function
could help correct an additional underlying hypo-
noradrenergic abnormality.

The majority of structural brain-imaging studies use
conventional voxel-based morphometry (VBM) or volu-
metric analyses, which test for hypothesized group level
(e.g., ADHD vs. control) abnormalities but cannot address
how specific any abnormalities are for individual patients.
However, a promising new method involves combining
machine learning techniques such as a support vector
machine (SVM), with automated selection of informative
brain regions (feature selection), to train diagnostic classi-
fiers. These methods have been reported to make highly
accurate predictions in adults with major depression
[Mwangi et al., 2012], Alzheimer’s Disease [Kl€oppel et al.,
2008], and Autism Spectrum Disorder [Ecker et al., 2010].

Attempting to predict diagnostic status between children
and adolescents with ADHD and healthy controls using
machine learning-based techniques has become increas-
ingly popular in the literature. Studies using only struc-
tural MR images achieved classification accuracies of 67%
[Chang et al., 2012] and 79% [Lim et al., 2013], although

two other studies combined resting state fMRI and struc-
tural MRI to the same classification problem, achieving
accuracies of 58% [Eloyan et al., 2012] and 76% [Cheng
et al., 2012]. However, it is important to note that none of
the above studies investigated the white matter component
of the structural images. Using resting state fMRI connec-
tivity data, accuracies of 65% and 85% have been previ-
ously reported for the prediction of ADHD vs. controls
[Solmaz et al., 2012; Zhu et al., 2008] and resting state
fMRI functional connectivity data provided accuracies of
56%, 66%, and 80% [Colby et al., 2012; Dai et al., 2012;
Liang et al., 2012]. Bohland et al [2012] combined resting
state fMRI functional connectivity, T1 weighted brain
images and non-imaging features into one classifier which
achieved 80% accuracy. The highest accuracy achieved
using structural MRI, 79%, was associated with brain
regions which included the caudate, ventral striatum/
putamen, insula, brainstem, thalamus, hypothalamus, pre-
cuneus/cuneus, hippocampus, amygdala, cerebellar ver-
mis and inferior, and superior parietal regions [Lim et al.,
2013].

Studies using non-prediction group level analysis meth-
ods have provided evidence for subtle reductions in total
brain volume in ADHD [Castellanos et al., 2002] and con-
sistent evidence for basal ganglia gray matter reductions
[Ellison-Wright et al., 2008; Frodl and Skokauskas, 2012;
Nakao et al., 2011]. Caudate reductions may normalize as
a child matures toward adulthood [Castellanos et al.,
2002], which may be clinically relevant as the caudate is
associated with motor activity, and there is often a relative
reduction in hyperactivity later in development. Cerebellar
gray matter volume is frequently reported to be decreased
in ADHD [Berquin et al., 1998; Bussing et al., 2002; Castel-
lanos et al., 1996; Hill et al., 2003; Lim et al., 2013; Mostof-
sky et al., 1998] and decreased gray matter volume in the
temporal lobes has been reported by Castellanos et al.
[1996]. The amygdala has previously been reported to
show either no significant changes in gray matter volume
[Castellanos et al., 1996; Filipek et al., 1997] or a decrease
in volume [Lim et al., 2013; Plessen et al., 2006].

There are fewer known group level abnormalities in
white matter as it is less frequently investigated using
structural MRI [Hermann et al., 2007]. Although no differ-
ences in white matter volume were reported in one small
study [Carmona et al., 2005], a larger study described sig-
nificantly reduced total white matter volume and signifi-
cant reductions in the frontal, parietal, temporal, and
occipital lobes in ADHD [Castellanos et al., 2002]. Her-
mann et al. [2007] reported a significantly decreased brain-
stem volume in patients with both ADHD and epilepsy
compared with a healthy control group and a patient
group with epilepsy alone compared with the control
group.

Feature selection is an important part of this study as
there are many brain regions which do not provide useful
information for diagnostic prediction. Inclusion of these
regions impairs the accuracy of prediction. Automated

r Johnston et al. r

r 5180 r



feature selection identifies brain regions supporting high
accuracy individual classification, and therefore localizes
structurally abnormal brain regions. SVM analysis consists
of two stages: training a classifier, then testing its accuracy
using data not used for training (cross-validation). One
cross-validation method involves removing a single subject
from the dataset, then using the remaining subjects to opti-
mize the classifier, such that entering the left-out subject con-
stitutes a prediction on novel data (leave one out cross
validation). This approach is ideal for clinical use, as it maxi-
mizes the available data for “training,” whilst not assuming
prior knowledge of diagnostic status for the “left out” sub-
ject. In cross-sectional studies, leave one out cross validation
is repeated with a different subject left out until all scans
have been predictively classified; in longitudinal studies the
process is repeated as new subject data is acquired and the
outcomes of previous predictions become known.

This study used DARTEL, feature selection with SVM and
leave one out cross-validation, to develop a method for pre-
dicting, with best accuracy, individual diagnostic status
(ADHD vs. controls) using T1 weighted structural MRI
scans. T1 weighted imaging has similar advantages to resting
state fMRI in not requiring comprehension and cooperation
with a paradigm but also has the additional advantage of
being more readily available at scanning centers and to pro-
vide better anatomical localization than fMRI. Our main
hypothesis was that high accuracy classification would be
supported by brainstem and basal ganglia abnormalities
highlighted during feature selection, given the common
pharmaceutical actions of medications used to treat ADHD,
and the anatomical locations of DA and NA nuclei.

METHOD

Subjects

Structural T1 weighted scans were obtained from sub-
jects participating in neuroimaging studies at the Research
Centre in Juelich, Germany. Informed consent was
obtained from all volunteers and their parents according
to the Declaration of Helsinki. The study protocols were
approved by the Ethics Committee of the Rheinisch-
Westf€alische Technische Hochschule, Aachen University
Hospital, Germany. Volunteers were compensated for par-
ticipation in the study.

Thirty-four males with a diagnosis of ADHD were
recruited from the Department of Child and Adolescent
Psychiatry and Psychotherapy in Aachen. Initial diagnosis
was made by experienced clinicians according to DSM-IV
[American Psychiatric Association, 2000] criteria and con-
firmed by an independent rater using a semistructured
diagnostic interview: either the K-SADS-PL [Kaufman
et al., 1997] or K-DIPS [Schneider et al., 2009]. All parents
were asked to complete a German Questionnaire on
ADHD symptoms, the FBB-HKS [D€opfner and Lehmkuhl,
1998], which includes DSM-IV and ICD-10 items for
ADHD diagnosis. Three subjects in the ADHD group

fulfilled additional criteria for Externalizing Disorders
(Oppositional Defiant Disorder and Conduct Disorder)
and one subject had comorbid Dyslexia. Exclusion criteria
included potentially confounding diagnoses such as Psy-
chosis, Mania, Major Depression or Substance Misuse. Ten
ADHD participants were being treated with either short-
or long-acting MPH (Ritalin, Concerta or Equasym) which
was stopped at least 48 h before scanning. None were tak-
ing any other psychotropic drugs.

Thirty-four male typically developing controls were
recruited from local schools and underwent an extensive
psychiatric examination using the same standardized,
semistructured interviews as the ADHD volunteers. None
of the controls had a history of current or past psychiatric
or neurological disorder and none were taking medication.
ADHD and control volunteers had an Intelligence Quo-
tient above 80 as assessed by either the Culture Fair Intelli-
gence Test 20 [Weiß, 1998] or the WISC (Version III or IV)
[Wechsler, 1991, 2004]. Handedness was assessed using
the Edinburgh Handedness Inventory [Oldfield, 1971].
Apart from two left-handed subjects in the ADHD group
and one ambidextrous subject in the control group, all
subjects were right-handed.

Age and IQ did not differ significantly (t-test, P> 0.1)
between groups. The ADHD group mean age was 12.5
years (standard deviation 2.3) mean IQ was 99.8 (standard
deviation 11.5). The control group mean age was 13.2
years (standard deviation 1.0) and the mean IQ 103.7
(standard deviation 10.0).

A particular strength of the study is that the dataset is
relatively heterogeneous—particularly with regard to
comorbidity, medication history, and fairly wide age range
during a time of dynamic brain development. If high clas-
sification accuracy can be achieved using this dataset then
it gives more confidence that the technique could achieve
similar results in a more homogeneous population.

Image Acquisition

For each participant structural whole-brain images were
acquired using a 1.5 T Siemens Sonata scanner (Siemens,
Erlangen, Germany) using an isotropic T1-weighted MP-
RAGE (magnetisation-prepared rapid acquisition gradient
echo) sequence with the following parameters: TR 5 2,200
ms, TE 5 3.93 ms, flip angle 5 15�, FOV 5 256 mm,
matrix 5 180 3 256, 160 slices, voxel size 1 3 1 3 1 mm,
slice thickness 1 mm.

Image Quality Control

The study was designed to reduce the possibility of
movement during scanning, particularly in the ADHD
group, from affecting results. A number of different meth-
ods were used to ensure there were no significant differen-
ces in data quality between groups.

Yerys et al. [2009] argued that the age of a child may be
a more significant factor than diagnosis (including ADHD)

r Brainstem Abnormality in ADHD r

r 5181 r



when investigating fMRI scan success rates. In this study
by Yerys et al., reasons for scan failures included move-
ment during scan and inattention during fMRI task with
younger children having far more unsuccessful scans than
older children. Therefore, this study therefore only used
data from volunteers older than 8.5 years and the ADHD
and control groups were carefully matched for age, such
that there were no significant differences.

All scans were visually inspected for motion artefacts
which appear as blurring or ghosting [McRobbie et al.,
2010]. No scans exhibited blurring, ghosting or other arte-
facts so no scans were excluded from analysis.

To ensure there was no bias in the assessment of image
quality between groups, an experienced senior radiogra-
pher who was not involved in this study was asked to
rank the structural images in three categories: “Good,”
“Fair,” or “Poor,” in a blinded fashion. No scans were
ranked in the “Poor” category and there were no signifi-
cant differences in the number of “Good” and “Fair” rat-
ings between groups (v2 5 0.36, P 5 0.55).

Due to the results presented later in the article, in addition
to ranking the whole brain image quality, the image quality
in the brainstem (particularly the pons) was separately rated
by the same radiographer. Again, no “Poor” images were
identified and no significant differences in image quality
were identified between groups (v2 5 1.94, P 5 0.16).

In addition to ranking the quality of each scan, the
radiographer was asked to attempt to predict the diagnosis
of each subject. The radiographer achieved an accuracy of
51.5% (35/68, P 5 0.8), demonstrating no significant ability
of predicting diagnosis.

Finally, a quantitative analysis which compared the image
blurring in ADHD and control scans was done. Movement
during scanning results in blurring, resulting in an increased
spatial autocorrelation, which is the amount of correlation
between voxels in a given brain image. Spatial autocorrela-
tion [Slotnick and Schacter, 2006] in each of the three spatial
dimensions was calculated using an established method
(https://www2.bc.edu/�slotnics/scripts.htm) for each
structural MRI scan. Again, no significant differences were
identified between ADHD and control groups.

Image Pre-processing

The raw DICOM images were converted to analyze
format using MRIConvert (http://lcni.uoregon.edu/
�jolinda/MRIConvert/). Image pre-processing was done
using the DARTEL toolbox [Ashburner, 2007] as imple-
mented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The
DARTEL procedure involves segmentation of T1 weighted
images into separate gray matter, white matter, and cere-
brospinal fluid compartment images. In a white matter
segmented image, for example, the white matter intensity
at a given voxel corresponds to the estimated probability
of white matter being present at that voxel. The DARTEL
procedure involved creation of a study-specific anatomical

template for spatial normalization. Creation of a study-
specific template was important as participants were at an
earlier stage of development than the adults who contrib-
uted to the default SPM8 anatomical template. The DAR-
TEL procedure included modulation to compensate for
potential spatial normalization rescaling [Ashburner,
2007]. The resultant images were smoothed with an 8 mm
full-width at half-maximum Gaussian kernel.

Individual Scan Classification

Machine learning allowing individual predictions was
implemented in Matlab (The Mathworks) using an SVM tool-
box [Schwaighofer, 2001] and custom Matlab scripts (see
Supporting Information for a mathematical overview of the
SVM algorithm). As described above, SVM analysis consisted
of two stages: training the classifier, then testing the accuracy
using data not used for training. Standard leave-one-out
cross-validation (LOOCV) [Cristianini and Shawe-Taylor,
2000] was used for training and feature selection was used to
identify brain regions supporting predictive classification.

Training a linear SVM involves varying one parameter
(soft-margin parameter, which affects how much a wrongly
classified scan is weighted) during cross-validation. Train-
ing a non-linear SVM involves optimizing two or more
parameters depending on the choice of non-linear kernel.
For the most common non-linear kernel functions two
parameters require optimization (the soft-margin parameter
and an additional “kernel width” parameter, the latter hav-
ing an effect of scaling the non-linear kernel function). The
more parameters that require to be optimized, the longer
the training stage typically takes.

In cross-validation, for each prediction of a left-out sub-
ject, all parameters must be tuned using the training set
before predictive classification. In this study, parameter
selection was performed using an inner LOOCV procedure
within the training set when all possible parameters were
tested using a “grid search” procedure: i.e., all combina-
tions of variables were tested on the inner LOOCV and
the selection of optimal parameters based on the highest
“training accuracy.” It is important to distinguish the accu-
racy during training (obtained from the inner LOOCV),
which is used to guide parameter selection, from the true
predictive accuracy achieved during the testing stage with
novel data. We only report the true predictive accuracy
achieved during the testing stage.

As expected, a linear SVM classifier which used voxels
from the whole brain achieved poor predictive accuracy,
therefore a feature selection method, which selected local-
ized regions of the brain for SVM analysis in an auto-
mated manner [Bray et al., 2009; Kl€oppel et al., 2008] was
used. Poor predictive accuracy when using whole brain
data is unsurprising because, when a large number of vox-
els are used with a SVM, most of these voxels are redun-
dant [Dash and Liu, 1997]. Feature selection can be
successful as it excludes many voxels that confer no useful
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information for prediction, but introduce noise and corre-
lated information, so degrading classifier performance.
Feature selection was applied to a non-linear (Gaussian)
SVM to investigate whether this improved predictive accu-
racy. The results from the Gaussian SVM are reported in
the main text, whereas the linear SVM results are included
in the Supporting Information.

A simple feature selection approach was used: “mean-
threshold.” To ensure no prior information about the left
out subject was “leaked to testing” during feature selec-
tion, we performed feature selection during the parameter
selection stage (inner LOOCV procedure) only. This
ensured the features (brain regions) selected for classifica-
tion were entirely independent from the “held-out” image
which was predictively classified.

This mean-thresholding method involved calculating the
average image for each group (ADHD and controls), during
the training stage (i.e., not including the single “left-out”
scan to be predictively classified). The absolute difference
between the average ADHD image in the training set and
the average control image in the training set was then calcu-
lated. Each voxel was ordered from the lowest to the highest
absolute difference between the average images. Absolute
difference values typically ranged between 0 and �0.1 in this
dataset. The thresholding process of the mean-thresholding
technique involved identifying the optimal absolute differ-
ence cut-off value for the difference between the average
images—all voxels above this cut-off value were included in
the SVM calculation. Further information of the optimization
process is contained in the Supporting Information.

Group Level Comparisons

For a conventional group level VBM analysis, the null
hypothesis of no difference in brain structure between
ADHD participants compared with controls was tested
using an unpaired t-test as implemented in SPM8. Signifi-
cance was defined using a family-wise error correction
using a customized version of a popular Monte-Carlo neu-
roimaging algorithm [Slotnick et al., 2003]. This consisted
of a simultaneous requirement for voxels to exceed
P< 0.005 in significance and clusters to exceed 139 contig-
uous voxels using a 6-voxel connectivity criterion. Using
this approach, only clusters of voxels and not individual
voxels which meet the criteria are deemed significantly
different between groups. Cluster size thresholding is dis-
cussed in more detail in the Supporting Information.

RESULTS

Individual Subject SVM Predictions

A Gaussian SVM was used to analyze 34 structural MRI
images of children satisfying DSM IV criteria for ADHD
and 34 structural MRI images of control subjects aged 8.5
to 18.4 years. Feature selection was implemented using the

“mean threshold” procedure which selected voxels (train-
ing-data only) which differed between the ADHD and
control groups by more than a given threshold. The analy-
sis was done using; the gray matter compartment of T1

weighted images (automatically extracted using DARTEL)
only, white matter compartment images only, and com-
bined gray and white matter images.

The analysis using white matter images alone resulted in
an individual subject predictive accuracy of 93% (mean opti-
mal threshold 5 0.0607, sensitivity 1.0, specificity 0.85,
v2 5 50.6, P << 0.0001). The analysis using gray matter
images alone resulted in an accuracy of 63% (mean optimal
threshold 0.0608, sensitivity 0.68, specificity 0.59, v2 5 4.8,
P< 0.028), and that with gray and white matter images com-
bined an accuracy of 81% (mean optimal threshold 5 0.0653,
sensitivity 0.74, specificity 0.88, v2 5 26.5, P << 0.0001). Con-
sequently, the most accurate predictions were supported by
white matter images alone. Adding gray matter images did
not improve the accuracy of prediction.

Brain Regions identified Using Feature Selection

When only white matter images were used for analysis,
the largest brain region supporting 93% accuracy of predic-
tion was located in the brainstem. As shown in Figure 1a,
this comprised a large region in the central pons with a
small extension to the midbrain, and a smaller bilateral
region within the midbrain. For illustration, Figure 2 shows
the locations of the locus coeruleus [Keren et al., 2009] and
ventral tegmental area nuclei [Guitart-Masip et al., 2012;
Mai et al., 1997], in relation to the brainstem region used
for classification. This abnormality may involve the axonal

Figure 1.

(a) Feature selection (Gaussian SVM) identified brain regions in

white matter. BS—brainstem regions comprising a lower region in

the pons and smaller bilateral region in the mid-brain; FP—frontal

pole white matter; PT—pyramidal tracts (b) feature selection

(Gaussian SVM) brain regions identified using gray matter. BG—

basal ganglia; FP—frontal pole; STS—superior temporal sulcus;

IPL—inferior parietal lobule; ITG—inferior temporal gyrus; TL—

temporal lobe; OG—occipital gyrus. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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projections to and from the locus coeruleus and ventral teg-
mental area. Smaller regions in the bilateral frontal pole
white matter deep to Broadmann’s Area (BA) 10 and
pyramidal tract were also identified, which might be
related to prefrontal and motor abnormalities.

When only gray matter images were used for analysis,
regions supporting individual prediction at accuracy of
63% were identified in the DA rich putamen, bilateral fron-
tal pole gray matter (BA 10), and bilateral inferior parietal
lobule. Gray matter regions are shown in Figure 1b.

VBM Analysis

Brain regions identified using feature selection were
compared with the results of a VBM group level analysis
(P< 0.005, whole brain level significance). In the VBM
analysis, only white and gray matter reductions were iden-
tified in ADHD subjects. As shown in Figure 3, white mat-
ter regions were identified in the brainstem and gray
matter regions in the putamen, both of which overlapped
with feature selection identified regions, indicating that
prediction was based on significant white and gray matter
reductions in the ADHD subjects.

Volumetric Analysis of the Pons

As SPM identifies the brainstem as composing of only
white matter during segmentation, the identification of a

brainstem reduction in children and adolescents with
ADHD merited further investigation, to determine
whether the result comes from a genuine decrease in white
matter volume or from segmentation errors. If the result
was due to segmentation errors then the reduction in
white matter volume in patients would be negated by an
increase in gray matter in the patient group due to part of
the brainstem being incorrectly identified as gray matter
during the segmentation procedure. If there was a genuine
reduction in brainstem volume, then it would be expected
that the white matter volume would be found to be signifi-
cantly reduced but gray matter volume would not be sig-
nificantly increased. If the pons volume was reduced in
ADHD then when images from these subjects were nor-
malized, the pons volume would need to be increased to
normalize the images toward the study-specific template.
As modulation was used during normalization, the proba-
bility of white matter within this region would therefore
be decreased to compensate for the increase in volume,
with an opposite effect for the control group scans.

The volumetric analysis involved performing a rigid-
body coregistration of all segmented images to ensure the
rear of the brainstem was as close to vertical as possible,
such that cuboids containing this region-of-interest could
be created through manual identification of landmark
coordinates for each subject. The volume of gray and
white matter in these bounding cuboids were calculated
for each subject and compared between groups. As pre-
dicted from the VBM analysis, the ADHD group were
found to have a significantly lower (7.5%) mean white
matter volume compared with controls (P 5 0.005). There
was no significant difference between the level of gray
matter surrounding the brainstem between groups
(P 5 0.25) with the ADHD group found to have less gray
matter on average. The superior–inferior height and ante-
rior–posterior depth were significantly reduced (P 5 0.035
and P 5 0.028, respectively), but there was no significant
difference in the lateral width.

These results provide evidence that the reduction identi-
fied through both the VBM analysis and feature selection
(implemented during machine learning) in the brainstem

Figure 2.

Locations of the noradrenergic locus coeruleus [Anderson et al.,

2002] and dopaminergic ventral tegmental area nuclei (VTA), in

relation to the brainstem (BS) white matter region used for clas-

sification. LC and VTA locations from previous studies [Guitart-

Masip et al., 2012; Keren et al., 2009; Mai et al., 1997]. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 3.

Brain regions identified using feature selection (red), voxel based

morphometry (dark blue), and regions common to both analyses

(light blue). BS—brain stem; SC—superior cerebellum; BG—basal

ganglia; TL—temporal lobe; STG—superior temporal gyrus.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

r Johnston et al. r

r 5184 r



in ADHD subjects is due to a decrease in volume. Impor-
tantly, a reduction in brainstem volume in children and
adolescents with both ADHD and epilepsy has been
reported in the past, which was reduced in comparison
with children and adolescents with epilepsy alone and
also a healthy control group [Hermann et al., 2007].

Further Analysis to Investigate a Potential

Medication Effect

To investigate a potential medication confound, a sub-
group analysis was performed to investigate whether there
are any significant between-group or sub-group differen-
ces. Significant differences in brainstem volume (as calcu-
lated using the volumetric analysis, P 5 0.005,
unmedicated< controls) were found when comparing the
unmedicated ADHD subjects with controls. Comparing
the medicated ADHD group with the control group, there
was no significant difference in brainstem volume; the
medicated ADHD group had an average brainstem vol-
ume intermediate between the average volumes for the
unmedicated ADHD and control groups. No significant
difference may be due to the low power of this calculation
(10 subjects in the medication group). Notably though, the
medicated ADHD group had significantly lower ages than
the control group (P 5 0.014) which is another limitation of
this subgroup analysis. When comparing the medicated
and unmedicated ADHD groups there were possible
trends for differences in age, inattention (as rated by the
FBB-HKS subscore [D€opfner and Lehmkuhl, 1998]) and
brainstem width (P 5 0.059 (med<unmed), P 5 0.068
(med>unmed), and P 5 0.061 (med>unmed), respec-
tively), although there were no differences at the chosen
threshold of significance.

A group level analysis comparing medicated vs. unme-
dicated ADHD subjects (matched for age and IQ) identi-
fied white matter differences. However, none of the
medication-related regions overlapped with the white mat-
ter regions used for predictive classification and none
were found in the brainstem (see Supporting Information
for more detail on both gray and white matter analyses).
Despite the power being limited in the comparison
between medicated and unmedicated subjects with
ADHD, if the medicated subjects were driving the diag-
nostic classification then the brain regions used in the clas-
sification would be expected to be significantly different in
the medicated vs. unmedicated group comparison. The
fact that the brainstem was not identified as significantly
different in the medicated vs. unmedicated VBM analysis
suggests medication did not drive the accuracy of the pre-
diction of ADHD vs. control.

Furthermore, a white matter predictive classification
analysis using only the 24 unmedicated subjects and a con-
trol group of 24 subjects matched for age and IQ, achieved
a significant diagnostic prediction accuracy of 85%
(sensitivity 5 0.96, specificity 5 0.75, v2 5 22.3, P< 0.0001).

We repeated the calculation only using the 10 medicated
subjects and a similarly matched control group and
obtained a significant classification accuracy of 75%
(sensitivity 5 1, specificity 5 0.5, v2 5 4.3, P< 0.04). We
interpret these further analyses as evidence that medica-
tion did not affect the overall (unmedicated plus medi-
cated) white matter classification accuracy.

DISCUSSION

It was possible to predictively classify individual scans
from patients with ADHD and controls to an accuracy of
93% using only the white matter compartment of T1

weighted scans. To our knowledge, this is the highest
accuracy reported for a predictive classification study in
ADHD using “structural” (T1 weighted) brain scans alone;
most have used resting state fMRI though a few have com-
bined resting state fMRI with T1 data for prediction, and
none have used white matter images.

In this study, the largest region supporting 93% accu-
racy white matter compartment prediction was in the
brainstem. Evidence for a brainstem abnormality was sup-
ported by a volumetric analysis which found that children
and adolescents with ADHD have a significantly
decreased white matter volume in this region. In addition,
reduced brainstem volume has been reported previously
in patients with both ADHD and epilepsy and a patient
group with epilepsy alone, suggesting this abnormality is
linked with ADHD [Hermann et al., 2007].

The brainstem region identified is adjacent to the more
posterior NA locus coeruleus and more anterior DA ven-
tral tegmental area nuclei, which are ellipsoid structures
elongated along the axis of the axis of the midbrain and
pons [Afshar et al., 1978; Mai et al., 1997]. The bilateral
locus coeruleus nuclei lie in the posterior brainstem lateral
to the periaqueductal gray matter, the ventral tegmental
area lies in the ventral-medial aspect of the brainstem.
The white matter region could therefore contain axonal
connections between the locus coeruleus/ventral teg-
mental area nuclei and rest of the brain, raising the possi-
bility of “catecholamine dysconnection” (i.e., an
abnormality in connection) [Stephan et al., 2009], in con-
trast to “disconnection”) contributing to the ADHD syn-
drome. If such a dysconnection exists in ADHD, this could
provide a plausible explanation why medications which
enhance DA and NA function are able to reduce associ-
ated behavioral abnormalities.

Several reviews of the neural substrates of attention rele-
vant to ADHD have implicated a distributed network of
regions including the brainstem Reticular Activating Sys-
tem (RAS, which includes the locus coeruleus and ventral
tegmental area nuclei), ascending white matter pathways
from the RAS (mediating arousal), and descending path-
ways from the prefrontal cortex via the thalamus to the
RAS (mediating inhibition), and basal ganglia/frontal lobe
abnormalities (e.g., Riccio et al. [2002] and Voeller [1991]).
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It has been argued that disruption at any level of this sys-
tem could lead to a behavioral phenotype that resembles
ADHD (inattention, difficulty concentrating, distractibility,
impulsivity, hyperactivity) [Riccio et al., 2002; Voeller,
1991]. A number of the ADHD and control subjects who
contributed T1 weighted images to this study also took
part in an fMRI study of attention [Konrad et al., 2006].
During the alerting component of an attention task,
ADHD subjects showed abnormally increased activation at
the midbrain-pons junction at a posterior brainstem region,
which the authors suggested was the locus coeruleus
[Konrad et al., 2006]. Abnormal functional activity of the
locus coeruleus could be linked to decreased white matter
connections with the rest of the brain.

Lim et al. [2013] reported that the brainstem was a rele-
vant feature during classification of gray matter images
which yielded 79% accuracy—although this region was
closer to the midbrain than the DA and NA nuclei in the
brainstem. The brain regions that were most relevant to
this gray matter-based prediction included the caudate,
ventral striatum/putamen, insula, brainstem, thalamus,
hypothalamus, precuneus/cuneus, hippocampus, amyg-
dala, cerebellar vermis, and inferior and superior parietal
regions [Lim et al., 2013]. A number of these regions were
also identified in this study.

The frequently reported decrease in cerebellar gray mat-
ter [Berquin et al., 1998; Bussing et al., 2002; Castellanos
et al., 1996; Hill et al., 2003; Lim et al., 2013; Mostofsky
et al., 1998] was replicated in our study and we addition-
ally identified a decrease in cerebellar white matter. In
addition, we identified decreased gray matter volume in
the temporal lobes which has been reported by Castellanos
et al. [1996]. Although the amygdala previously been
reported to show no significant changes in gray matter
volume [Castellanos et al., 1996; Filipek et al., 1997], it has
also been reported to show a decrease in volume [Lim
et al., 2013; Plessen et al., 2006] as found here.

In addition, reductions in gray matter BA 10 and in
white matter deep to BA 10 were identified in prediction
analyses. BA 10 functions are diverse, including episodic
memory retrieval and “multitask” information processing,
with evidence for lateral-medial and rostral-caudal func-
tional gradients, implying BA 10 is not a functionally
homogeneous region [Gilbert et al., 2006]. The frontal pole
cortex has been found to develop late into childhood/ado-
lescence which may increase susceptibility to developmen-
tal disorders [Tsujimoto et al., 2011]. Partial disruption of
BA 10 and its connections could therefore have wide-
spread effects on cognition. A region of gray matter
decrease was identified in the basal ganglia (putamen) rep-
licating previous reports and further suggesting a DA dys-
function in ADHD.

An important aspect of the analysis used in this study is
the use of DARTEL. This method involves creation of a
brain template from the study images themselves, which
is then used to realign and warp the images to a standar-
dized anatomical space. A study specific template was

considered particularly important as the brains of children
and adolescents are different from those of the adults that
were used to create the default SPM templates. Further-
more, DARTEL has also an improved method for warping
the MRI images toward the aforementioned study specific
template, resulting in more accurately aligned images
across subjects [Ashburner, 2007], decreasing inter-subject
variance and therefore increasing the power of subsequent
statistical analyses. As a DARTEL-created template has
been shown to perform as well as a specialist atlas of the
cerebellum and brainstem (SUIT—http://www.icn.ucl.ac.
uk/motorcontrol/imaging/suit.htm) [D’Agata et al., 2011]
it is considered to perform accurate normalisation for these
regions. The SUIT atlas has since been updated to use the
DARTEL approach “for more accurate results.” Although
several of the abnormal regions we identified have been
reported previously, some have not, and it is possible this
is in part a consequence of using DARTEL.

It is important to note that the abnormal region in the
brainstem, identified using VBM analysis, the classification
algorithm and a volumetric analysis, requires further
investigation using Diffusion Tensor Imaging (DTI). As the
SPM8 segmentation method classifies almost all of the
brainstem and in particular the pons as white matter, it is
unclear whether the brainstem abnormalities are due to
reduced nuclei volume, or reduced volume of white mat-
ter tracts, or abnormal tract integrity in children and ado-
lescents with ADHD.

A potential limitation of this study is stopping medica-
tion two days or more before scanning in a minority (29%)
of the ADHD subjects. Medication might be associated with
structural brain change. Through a sub-group analysis of
the medicated and unmedicated subjects in this study, we
found no evidence that previous exposure to medication
affected the overall (unmedicated plus medicated) white
matter prediction. Another possible limitation is movement
during the image acquisition. It’s unclear if movement
would make classification more accurate or less accurate,
but as discussed above, a range of methods were used to
exclude significant movement effects. It is important to
emphasize that the high classification accuracy achieved
here is likely to be linked to scans obtained from the same
MR scanners. For example, if images from another scanner
were classified with the algorithm trained on scans from a
different scanner, it is unlikely that the scans would be clas-
sified to the level of accuracy reported here. This is due to
subtle differences in images obtained from different scan-
ners [Moorhead et al., 2009). In our experience with differ-
ent psychiatric syndromes, multicentre classification studies
can achieve similar results to single-centre studies provided
there is a sufficient number subjects from each centre in all
training sets [Mwangi et al., 2012]. Work on possible scan-
ner related confounds to prediction is required. Whilst the
reported method achieved high predictive accuracy, it is
important to note that this was in the context of only scans
from volunteers with ADHD and controls. Further work
would be required to establish the accuracy of the
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technique if scans from other diagnostic categories were
included, and scans from subjects with comorbidities.

A common issue in machine learning studies is overfit-
ting, which occurs when the classifier is able to classify
the training data well but is unable to generalize to novel
testing data [Johnston et al., 2013]. The classification accu-
racies described in this article refer to predictions on novel
testing data (described fully in the Supporting Informa-
tion). As the cross-validation procedure ensures predic-
tions are made on novel data, the accuracies we report are
not due to overfitting.

The mean-thresholding method was chosen as it is one of
the simplest and computationally efficient methods. How-
ever, a multivariate feature selection technique was also
investigated, as described in the Supporting Information.
There are many other feature selection techniques which
could have been investigated such as t-tests, ANOVA,
Searchlight, and Elastic Net [Guyon and Elisseeff, 2003;
Mwangi et al., 2014]. A particularly interesting approach by
Zhang and Davatzikos [2013], Optimally discriminative
voxel-based morphometry (ODVBM), addresses the limita-
tions of the traditional Gaussian smoothing of MR images
after spatial normalisation and has been reported to be
more sensitive than traditional VBM when detecting
between-group differences in schizophrenia, mild cognitive
impairment and Alzheimer’s disease [Zhang and Davatzi-
kos, 2013]. Further work could include comparing the
performances of various feature selection techniques,
including mean-thresholding and ODVBM.

In summary, it was possible to predictively classify
scans from individual children and adolescents with
ADHD to an accuracy of 93% using the white matter com-
partment of T1 weighted images alone. This is of compara-
ble diagnostic accuracy to that reported for general adult
psychiatric syndromes [Kl€oppel et al., 2008; Koutsouleris
et al., 2012; Mwangi et al., 2012]. The gray matter-based
prediction achieved a lower, yet comparable, accuracy to
similar studies in the literature [Chang et al., 2012; Lim
et al., 2013], using many brain regions which have been
reported previously such as the decreased putamen vol-
ume. A relatively large region of the brainstem supported
these predictions, adjacent to the brainstem NA and DA
nuclei, raising the possibility of “catecholamine dys-
connection” contributing to the ADHD syndrome. The
pons was found to be significantly reduced in volume
compared with controls, consistent with a previous report
on subjects with both ADHD and epilepsy which showed
decrease brainstem volume in comparison with an epi-
lepsy group and a control group [Hermann et al., 2007].
Brainstem, prefrontal, and putamen abnormalities accord
well with suggestions about the neural substrates of atten-
tion and its abnormalities in ADHD [Riccio et al., 2002;
Voeller, 1991]. Given the possible heterogeneity of the
ADHD syndrome [Fair et al., 2012], the results are encour-
aging for the identification of consistent imaging bio-
markers, that can inform future work into the aetiology,
pathophysiology, and clinical management of ADHD. To

our knowledge, brainstem white matter has not been
specifically investigated in previous studies of ADHD. The
brainstem region identified here may constitute a bio-
marker for ADHD, although it is important to stress that
independent studies are required to replicate these find-
ings, investigate the nature of the abnormality using DTI,
explore issues of diagnostic syndrome specificity and pos-
sible scanner related confounds to prediction.
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