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Abstract: To spatially cluster resting state-functional magnetic resonance imaging (rs-fMRI) data into
potential networks, there are only a few general approaches that determine the number of networks/
clusters, despite a wide variety of techniques proposed for clustering. For individual subjects, extrac-
tion of a large number of spatially disjoint clusters results in multiple small networks that are spatio-
temporally homogeneous but irreproducible across subjects. Alternatively, extraction of a small num-
ber of clusters creates spatially large networks that are temporally heterogeneous but spatially repro-
ducible across subjects. We propose a fully automatic, iterative reclustering framework in which a
small number of spatially large, heterogeneous networks are initially extracted to maximize spatial
reproducibility. Subsequently, the large networks are iteratively subdivided to create spatially repro-
ducible subnetworks until the overall within-network homogeneity does not increase substantially. The
proposed approach discovers a rich network hierarchy in the brain while simultaneously optimizing
spatial reproducibility of networks across subjects and individual network homogeneity. We also pro-
pose a novel metric to measure the connectivity of brain regions, and in a simulation study show that
our connectivity metric and framework perform well in the face of low signal to noise and initial seg-
mentation errors. Experimental results generated using real fMRI data show that the proposed metric
improves stability of network clusters across subjects, and generates a meaningful pattern for spatially
hierarchical structure of the brain. Hum Brain Mapp 36:3303–3322, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The brain can be viewed as a complex network of func-
tionally and structurally interconnected regions, which can
be seen as hierarchical networks. In this hierarchical struc-
ture, each network may consist of subnetworks and each
subnetwork is further composed of sub–subnetworks [Fer-
rarini et al., 2009; Meunier et al., 2010]. Bassett et al. [2010]
presented clear evidence of a hierarchical organization in
brain networks, and several studies in the field of neuro-
science have focused on extracting properties of this orga-
nization. These include the number of networks,
subnetworks, and sub–subnetworks, and the relationships
among networks and subnetworks. fMRI has been exten-
sively used to explore these networks and to extract their
patterns of regional brain interactions in terms of changes
in the blood oxygenation level dependent (BOLD) signals
either during task or rest conditions.

Rs-fMRI is commonly used for investigating neural
mechanisms in the brain when a subject is performing no
externally directed task [Greicius et al., 2003; Beckman
et.al. 2005; Fox and Raichle, 2007]. Rs-fMRI studies have
focused on the mapping of the patterns of functional con-
nectivity through measuring the level of synchronization
between neurovascular events in anatomically separated
brain regions [Friston et al., 1993; Fox et al., 2005; Li et al.,
2009]. While the initial rs-fMRI study [Biswal et.al., 1995]
illustrated the temporal correlations between a few prede-
fined regions of interest (ROIs), many methods have since
been proposed to extract whole-brain resting state net-
works (RSNs) formed by discrete sets of functionally con-
nected regions. The terms “component,” “network,” and
“cluster” are used interchangeably in the literature to refer
to a RSN.

Analysis of the rs-fMRI data provides an efficient
approach to probe effects of brain disease (e.g., schizo-
phrenia, depression, and Alzheimer’s) on brain networks
[Grigg and Grady, 2010; Greicius, 2008; Schwindt et al.,
2013]. Although traditional model-driven methods (e.g.,
seed-based univariate [Biswal et al., 1995], and multivari-
ate [Grigg et al., 2010] [Afshin-Pour et al., 2014] techni-
ques) are easy to implement and interpret, they suffer
from the need to define proper seeds to generate data
appropriate for specific research questions and hypotheses.
Hence, many of the recent rs-fMRI studies identify RSNs
based on functional connectivity among all brain regions
[Cole et al., 2010]. Without defining seed regions, model-
free methods (e.g., independent component analysis (ICA)
[Beckmann et al., 2005; Calhoun et al., 2009], principal
component analysis (PCA), [Afshin-Pour et al., 2014], and
clustering [Bellec et al., 2010]) examine the overall patterns

of connectivity among all regions in the brain instead of
examining connectivity with a single seed region or among
a small number of ROIs [van den Heuvel and Hulshoff
Pol, 2010; Li et al., 2009]. All these approaches help to
explore organization of the brain’s functional connectivity
and their relative utility is an important topic of study in
the neuroimaging community [Afshin-Pour et al., 2014;
Cole et al., 2010; Yan et al., 2011].

Clustering methods may be considered as model-free
techniques that do not assume an explicit distribution for
temporal vectors, that is, time series. In fMRI, clustering
methods parcel the temporal vectors into several sets such
that the time-series within each set have a high level of
pair-wise similarity. The regions associated with the time-
series of each set are functionally connected, and form a
brain network through their similar, for example, corre-
lated, time series. Hence, the clustering techniques have
similarities with seed-based methods and their results are
relatively easy to interpret [Margulies et al., 2010; van den
Heuvel and Hulshoff Pol, 2010]. Moreover, in contrast to
the more common use of ICA, clustering techniques do
not require visual inspection and selection of relevant
components, thus avoiding subjective human errors.
Therefore, a variety of clustering algorithms have been
applied to rs-fMRI data to partition the brain into clusters
of voxels or regions that are functionally connected (i.e.,
RSNs). These algorithms implement hierarchical [Cohen
et al., 2008; Salvador et al., 2005; Cordes et al., 2002],
K-means [Mezer et al., 2009], and spectral clustering [van
den Heuvel et al., 2008] approaches. In addition to the
clustering algorithms, two other factors may generally
affect the clustering results: the similarity measure and
number of clusters. Quantifying the synchronization
between regional time series, as a pair-wise similarity mea-
sure, plays an important role in functional connectivity
analysis of RSNs. Therefore, a variety of metrics has been
proposed to estimate such spatial coactivations [Cao and
Worsley, 1999; Sun et al., 2004].

In spite of successful application of clustering meth-
ods in extracting RSNs, the number of network clusters
strongly affects the results. In cluster analyses, typically
7–11 RSNs are extracted [Bellec et al., 2010; van den
Heuvel et al., 2008]. For individual subjects, a large
number of disjoint clusters may be used to cover all
gray matter results in many small spatial networks that
are spatio-temporally homogeneous but spatially irrepro-
ducible across subjects while providing a fine-detailed
segmentation of each brain [Ma et al., 2011]. Alterna-
tively, using a small number of clusters creates spatially
large networks that are temporally heterogeneous but
more spatially reproducible across runs, sessions, and
subjects.
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In addition, validation of RSNs is not trivial due to lack
of “ground truth” [Bellec et al., 2010]. Hence any cluster-
ing strategy should deal with spatial reproducibility and
within network temporal homogeneity of the derived
RSNs as data-driven quality measures; and a clustering
framework has to carefully evaluate these characteristics of
the identified networks. Almost all of the clustering meth-
ods attempt to parcel the data into a predefined number
of disjoint clusters so that these clusters have high intra-
cluster similarity and low intercluster similarity. However,
achieving this depends on the number of clusters chosen
to avoid intracluster heterogeneity where two clouds of
time series vectors are assigned to a single cluster while
their similarity is relatively low.

Several works used the stability of clusters across differ-
ent sessions to determine the number of clusters in fMRI
data sets [Bellec, 2013; Bellec et al., 2010; Cai et al., 2014;
Kelly et al., 2010, 2012; Thirion et al., 2014; Yeo et al.,
2011]. However, they may fail in determining the correct
number of clusters on datasets with hierarchical network
structure [Bellec, 2013]. Although the exact nature of the
structure of brain networks derived from rs-fMRI is still a
matter of debate, the notion of a hierarchical structure of
the brain is accepted and incorporated into some models
[Ferrarini et al., 2009; Meunier et al., 2010]. Extraction of
such a hierarchical structure is considered an important
issue in the identification of brain networks.

In this study, we propose an automated, iterative reclus-
tering framework to extract hierarchically organized RSNs
and subnetworks from rs-fMRI data of a group of subjects.
We will show that modeling of the brain networks as a
hierarchal structure helps to reliably estimate the brain
networks. This is due to the fact that for each iteration, the
proposed algorithm estimates only a few networks from a
relatively small similarity matrix. This means scaling
down the dimensionality of the problem in an iteration,
which results in a more reliable estimation of the brain
networks.

The proposed framework includes two novel contribu-
tions to address the aforementioned issues: (1) new tempo-
ral similarity measures that quantify the functional
connectivity, that is, energy ratio (ER) and weighted
energy ratio (WER) and (2) a new iterative reclustering
approach that discovers the network hierarchy in the brain
by iteratively subdividing large heterogeneous networks to
create new homogeneous subnetworks. To determine the
number of subnetworks at each iteration, we maximized a
spatial reproducibility metric as a cluster stability
measure.

The proposed pair-wise, temporal similarity measure is
defined based on an orthogonal projection. We show that
in comparison to conventional measures, this similarity
measure provides more spatially reproducible experimen-
tal results for real fMRI data sets. Since we implement the
proposed framework as a region-based approach, we start
by segmenting the brain into connected regions based on
region growing [Bellec et al., 2010]. Then, we extract the

time series associated with each connected region using
PCA. In this approach, the number of time series is
reduced with minimum loss of information. The similarity
between two regions is then computed based on the ratio
of signal subspace energy to the residual energy resulting
from orthogonal projection of one region’s time series onto
the signal subspace spanned by another region’s time
series. The concept of ER has been used before in [Hos-
sein-Zadeh et al., 2003] in activation detection in fMRI. It
may also be considered as a multivariate regression signal
to noise ratio measure. The ER approach can be easily
replaced by other temporal similarity metrics that measure
similarity between two regional subspaces. Hence, we
briefly explain some important metrics below and discuss
their merits by comparing experimental results obtained
from real fMRI data sets as a function of the spatial repro-
ducibility of the network results across subjects.

In the second step, we propose a spatial reproducibility
metric that is constructed on the basis of split-half resam-
pling and Jaccard similarity coefficients. Split-half resam-
pling has been used successfully in NPAIRS to obtain
prediction and reproducibility metrics for optimization of
functional neuroimage processing and analysis [Strother
et al., 2002, 2004]. Such subsampling has strong theoretical
support for stabilizing resampling results in difficult high
dimensional variable selection and regularization problems
such as clustering [Meinshausen and B€uhlmann, 2010]. We
introduce the measurement of spatial reproducibility and
illustrate the application of the proposed metric to: opti-
mize the number of networks in the clustering approach
in terms of maximizing the reproducibility of RSNs, and
evaluate the performance of different similarity measures
to provide the most reproducible networks that can be
inferred from real fMRI data sets in group studies. Hence,
the reproducibility measurement can be used as a criterion
to evaluate and compare the results of different clustering
approaches.

Subsequently, a temporal homogeneity measure is calcu-
lated for each reproducible network. The network’s
regions are iteratively subdivided until the overall homo-
geneity does not change substantially. The number of suc-
cessive iterations creating subnetworks is determined in
the same way as that of the first coarse network clustering
scale, based on the reproducibility criterion. This iterative
reclustering framework finally defines potential network
clusters that are both spatially reproducible across subjects
and temporally homogeneous within each network.

In the next section, we state the proposed clustering
algorithm in detail, and introduce different possible tem-
poral similarity measures including the ER and WER. To
assess the performance of the proposed clustering algo-
rithm and compare it with other approaches, we define a
homogeneity measure for the clustering results. Also, we
use the NPAIRS split-half resampling framework to esti-
mate the reproducibility of the results. Using these two
quality metrics, the proposed clustering algorithm is com-
pared with a common spectral clustering in terms of the
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homogeneity and reproducibility of the resulting clusters.
Also, we compare different temporal similarity metrics
and explore their effects on the final clusters.

MATERIALS AND METHODS

Real fMRI Data

In all subjects, a functional imaging sequence and a
high-resolution anatomical sequence were acquired with a
Siemens Trio 3T MRI magnet. In the fMRI experiment, T2*
functional images were acquired using an EPI pulse
sequence (TE 5 30 ms, TR 5 2,000 ms, flip angle 5 708,
FOV 5 200 mm). For each subject, a T1-weighted anatomi-
cal volume was also acquired using SPGR (TE 5 2.6 ms,
TR 5 2,000 ms, FOV 5 256 mm, slice thickness 5 1 mm).
During the acquisition of the resting-state fMRI data, the
subjects were instructed to keep their eyes closed and the
physiological data, that is, signals heart rate and respira-
tory, were also recorded during the scanning. The resting-
state fMRI data of 31 healthy young adult subjects (20–30
years) were collected during a rest period of 340 s (i.e., 170
volumes). For each subject, a T1-weighted anatomical vol-
ume was also acquired using SPGR (TE 5 2.6 ms,
TR 5 2,000 ms, FOV 5 256 mm, slice thickness 5 1 mm) for
coregistration with the functional images.

Preprocessing

Preprocessing procedures were chosen based on Van
Dijk et al. [2010], and performed using routines in the
AFNI software package (afni.nimh.nih.gov/afni, version
2011_12_21_1014), with the exception of steps for band-
pass filtering, nuisance components’ regression, and nor-
malization by voxels’ standard deviations, which were
executed in MATLAB R2011b (http://www.mathworks.
com/). AFNI-based preprocessing included slice-scan time
correction with Fourier interpolation followed by physio-
logical artifact removal using RETROICOR. Using the
VOLREG routine, the data were motion corrected to mini-
mize the effects of head motion on subsequent analyses.
The 50th scan of each subjects’ fMRI data was taken as the
target scan, and the remaining scans of the subjects were
individually registered using 7th order Lagrange polyno-
mial interpolation to their target scan. To transfer func-
tional data to MNI1 space, for each subject two transforms
were estimated: a transform that registers the fMRI target
scan of a subject to its structural image, and a transform
that registers the structural image to the MNI template.
These transforms were combined to constitute one aggre-
gated transform, and subsequently each subject’s scans
were transformed to MNI space using its individual aggre-
gated transform. Afterwards, the registered data were

resliced to a voxel size of 4 mm3. To improve signal detec-
tion, spatial smoothing was achieved by applying a 3D
spatial Gaussian filter with full width half
maximum 5 8 mm on the data in MNI space. Subse-
quently, very low frequency fluctuations and high fre-
quency noise were removed using a Butterworth band-
pass filter with the pass band from 0.01 to 0.1 Hz. The
maximum attenuation for the pass band (0.01–0.1 Hz) is 1
db, and the minimum attenuation for stop bands (0–0.005
Hz and 0.125–0.25 Hz) is 20 db. The first 20 scans of each
subject were omitted to remove the transient response
effect of the band-pass filter. To estimate nuisance regres-
sors, white matter and ventricle masks were generated by
creating a binary mask from the ICBM2 white matter and
CSF3 probabilistic maps [Mazziotta et al., 2001], based on
a threshold level of 0.8 (�80% chance of containing white
matter or CSF). Then the subsequent masks were eroded
using a 3 3 333 square morphological structuring ele-
ment. For each subject, the white matter and ventricles’
mean time-series were regressed out from all time-series.
Finally, the time-series of each subject were mean-
removed and normalized to their standard deviation. The
preprocessing reduced the dimensionally of the data sig-
nificantly. Generally, for each subject’s preprocessed data,
95% of the variance can be described by its first 48
eigenvectors.

To extract functional regions, we used an Automated
Anatomical Labeling atlas [AAL; Tzourio-Mazoyer et al.,
2002] as an initial segmentation of the brain into 116
regions. This initial parcellation guarantees that the subse-
quent brain regions will include the voxels only from one
anatomical segment. Also, it limits the computational
demand [Tzourio-Mazoyer et al., 2002]. The white matter
region was discarded as it is not expected to display sig-
nificant BOLD activations during resting-state. Each of the
remaining anatomical regions was segmented into several
regions based on a region growing algorithm. We started
with a seed voxel within an AAL segment. Since the
region growing is sensitive to the seed, we considered the
seed as the voxel with the time-series that had the highest
mean correlation with the other time-series in the AAL
segment. Then, the adjacent voxels were connected to the
seed if their correlations were higher than a certain thresh-
old, that is, 0.7 in this article. These voxels and the seed
voxel formed a region. We continued adding the adjacent
voxels to the region if their correlations with the seed
time-series were above the defined threshold. The algo-
rithm stops when there are no more voxels to add with a
correlation above the threshold. We excluded the formed
region from the AAL segment and reapplied the region
growing with a new seed from the remaining voxels
within the AAL segment until each voxel was assigned to

1Montreal Neurological Institute (http://www.bic.mni.mcgill.ca/
ServicesAtlases/HomePage).

2International Consortium for Brain Mapping.
3Cerebrospinal fluid.
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a region. We continued performing this algorithm on all
AAL segments.

In the region-growing algorithm, time courses of spa-
tially similar voxels in different subjects were concatenated
in the temporal domain. The region-growing algorithm
uses the correlation coefficient between the concatenated
time-series as the similarity metric between voxels. Using
this framework, the initial AAL regions were split into 680
regions. These 680 regions were clustered into several net-
works using the proposed framework described below.

Simulated Data Sets

We used simulated data sets to evaluate the ability of
the proposed framework in determining the true number
of cluster networks as well as the accuracy of the extracted
networks. Our simulated data sets consisted of 5 fixed,
disjoint networks (K) comprising 8 separate fixed, disjoint
regions (R) for each network distributed over Nv voxels
per region in 150 volumes per subject. A common, random
stimulation pattern was generated for regions within each
network. These random temporal patterns were convolved
with the hemodynamic response function (HRF) to pro-
duce the simulated BOLD signal of each cluster. The HRF
was modeled according to the following Gamma function
[Friston et al., 1998; Lange and Zeger, 1997]:

hðt; s;rÞ ¼ exp 2t=
ffiffiffiffiffi
rt
p� � e:t

s

� � ffiffiffiffiffiffi
s=r
p

t > 0

0 t < 0

8><
>: (1)

To model the HRF variations in different regions within
a network, the s and r HRF parameters were randomly
selected in the ranges of [3, 7] and [0.05, 0.21], respectively.
Then, by adding fractional Gaussian noise with the Hurst
exponent equal to 0.8, and different variances to the simu-
lated activation time series, voxel time series were gener-
ated (for more detail on fractional Gaussian noise see
[Maxim et al., 2005]). The noise variances were chosen to
acquire voxel-wise signal to noise ratios (SNRs) of 215,
210, 25 (dB). Here, SNR is defined as the 20 log10(STDsig-

nal/STDnoise), where STD represents the standard deviation
of noise and signal. Similar to the approach proposed in
[Bellec et al., 2010], we prepared different sets of simulated
data by adjusting the following free parameters: the num-
ber of subjects involved in the analysis (NS), the number
of voxels in each region (NV), and the average SNR in a
network.

To explore the effect of error in the initial segmentation
of gray matter we considered P% of the voxels in each
region of a network to be mis-segmented and set them to
have the activation signal of randomly chosen networks.
The parameter P is referred to as the nonoverlapping
parameter throughout the article, which specifies the per-
centage of nonoverlap between the segmented and actual
regions. To study the effect of “size of segmented regions”

in our connectivity measurement and framework, the
number of voxels in a region was also varied. The free
parameters were selected in the following ranges: NS= {10,
16, 22}; NV= {10, 20, 30}; SNR= {215, 210, 25}; and P 5 {0,
10, 20, 30, 40}. Note that Ns is limited to the range of 10–22
to span relatively weak to moderate group-wise signal-to-
noise ratios. Also, Ns is chosen as an even number to avoid
unbalanced split-halves in the resampling procedure.

Proposed Clustering Framework

In this section, we present an overview of the iterative
reclustering framework that automatically produces a hier-
archical structure of functional brain networks (see Fig. 1).
In the following subsections, each block of the approach
will be presented in detail. In the first step, we apply PCA
on the time series data of each segmented region and
select the first few eigenvectors that express 70% of the
variance as the subspace representing the activations in
that region. In the Supporting Information Figure S2
shows that 70% of the variance provides the most repro-
ducible networks of the brain. Then, we compute similar-
ity matrices for each subject using the PCA subspaces to
obtain a temporal similarity measure between all pairs of
the 680 segmented regions. Thereafter, we apply the clus-
tering algorithm (see the next subsection) on the seg-
mented regions to estimate the optimal number of
clustered networks, and the reproducibility of the adja-
cency matrix describing the estimated functional connec-
tions in the brain. Afterwards, the homogeneity of each
network cluster is measured by averaging the pair-wise
similarities between the subspaces of the spatially sepa-
rated regions within that network cluster. The similarities
may be assessed by different metrics, and we describe and
evaluate some common similarity metrics later in the article
(see Reproducibility Metric with Split-half Resampling sub-
section). The estimated networks are sorted from the least
homogeneous to the most homogeneous. Then, these net-
works are reentered into the clustering framework for up to
m separate, reclustering iterations. In each iteration, the least
homogenous network is selected to split into several subnet-
works using the clustering algorithm. Then these new net-
works and the remaining networks from previous iterations
are again sorted based on their homogeneity, and once again
the least homogenous network is fed into the clustering
algorithm. The iterations continue until the average homoge-
neity of all networks does not increase substantially by
performing a new iteration. For each iteration, our approach
provides the number of networks (i.e., Km), the estimated
segmented regions in each network, the total reproducibility
(Rm), and the average homogeneity (i.e., Hm).

Clustering algorithm

Figure 2 presents a flowchart of the clustering algorithm
and our scheme for estimating the number of clusters. For
the ith iteration denote the estimated cluster networks

r Determining Hierarchical Functional Networks in RS-fMRI r

r 3307 r



ordered by homogeneity as RSN1,. . .,RSNKm21, with RSN1

the least homogenous network. In the next step, the algo-
rithm clusters RSN1 into k subnetworks. To determine the
number of subcluster networks of RSN1, we perform split-
half resampling of the subjects 300 times and measure the
reproducibility of the clustering results. For each split, this
step: (1) produces split-similarity matrices by averaging
the individual subjects’ similarity matrices in each split; (2)
extracts a binary adjacency matrix for each split by spec-
tral clustering of the averaged, split-similarity matrix; and
(3) computes spatial reproducibility as a function of the
number of clusters (k) using a Jaccard similarity metric
(see the next subsection). The above procedure is repeated
for k = 1,. . .,kmax clusters and the “number of clusters” that
maximizes the reproducibility of the clustering results
(kopt) is chosen as the optimal number, and two binary
adjacency matrices were then added together to produce
the split-half adjacency matrix for this splitting. Finally,
we cluster the average of the 300 split-half adjacency mat-
rices to extract the most reproducible clusters (i.e., network
clusters) across subjects.

We have focused on clustering using the spectral clus-
tering algorithm with “normalized cuts,” out of the avail-

able variants of spectral clustering, because of its simple
implementation and solution by known optimized linear
algebra tools [Shi and Malik, 2000]. However, other clus-
tering algorithms may also be used in the proposed
framework.

Reproducibility metric with Split-half resampling

Cross-validation resampling schemes have been widely
used to estimate model parameters. The basic idea of these
procedures is to split the data into two independent sets
(training and test) and use them to estimate model param-
eters and evaluate the accuracy of the estimated model
[Stone, 1974]. Split-half resampling, which has been suc-
cessfully used in the context of neuroimaging in the
NPAIRS framework, splits the data into two independent,
approximately equal-size sets and performs up to NCN/2/2
different data splits for N independent data sets, where
NCN/2 represents the number of possible combinations of
N objects taken N/2 objects at a time [Strother et al., 2002,
2004]. Similarly, we choose subjects as the basic resam-
pling unit, and use the split-half resampling procedure to

Figure 1.

The flowchart shows the proposed approach for the estimation of the brain networks. In each

iteration, the least homogenous network is split into several subnetworks. The iteration contin-

ues until the percent change in homogeneity is less than 1%.

r Shams et al. r

r 3308 r



nonparametrically calculate the reproducibility histograms
of clustering as a function of “number of clusters.”

We use B replications of split-half resampling. In each
split, we average the subjects’ similarity matrices of each
half to yield two split-similarity matrices, which are consid-
ered the resampled observations. Clustering is only per-
formed on the least homogeneous network (e.g., RSN1), for
which the averaged split-similarity matrices are clustered
into k={1,. . .,kmax} clusters resulting in two different parti-
tions: Pk

1 5 {RSN1-1
1, RSN1-2

1. . . RSN1-k
1} and Pk

2 5 {RSN1-1
2,

RSN1-2
2 . . . RSN1-k

2}. To evaluate the reproducibility, we
measure the similarity between partitioning results comput-
ing the maximum intercluster similarity for each RSN12i

1

across all RSN12j
2 by, Jaccard RSN1

1-i;RSN2
1-j

� �
. We define

the reproducibility of the networks RSN1
1-i as follows:

Rep RSN1
12i

� �
¼ maxj Jaccard RSN1

12i;RSN2
12j

� �
(2)

Then, for k clusters, the similarity of two partitioning
results is measured by averaging the k maximum-Jaccard-

coefficients for RSN12i
1 with all RSN12j

2. By this proce-
dure, we measure the reproducibility of the clusters for
one pair of split-half as a function of k (i.e., number of
clusters) and b (i.e., the split number and b 2 1; . . . ;Bf g),
Ĵ bf g kð Þ. This can be mathematically expressed as:

Ĵ bf g kð Þ ¼ 1

k

Xk

i¼1
Rep RSN1

12i

� �
(3)

We use the J values from all data splits to generate a
reproducibility histogram for each “number of clusters,”
which for each k is summarized using its median over the
entire b, -J kð Þ ¼ median Ĵ bf g kð Þ; 1 � b � B

� �
, to avoid sensi-

tivity to outlier values. Consequently, kOPT is chosen to
maximize the reproducibility of the results as

kOPT ¼ argmaxk
�J kð Þ
� �

(4)

The final networks, RSN12i, output for homogeneity
testing in Figure 2 are generated by averaging the 300 kOPT

adjacency matrices acquired from different split-half

Figure 2.

The flowchart shows the split-half resampling based clustering

algorithm in which the most heterogeneous network (i.e., cluster)

is clustered into kopt subnetworks. The algorithm splits the N sub-

ject into two sets randomly, and calculates two split-half similarity

matrices. Note that only the regions within the input network are

taken into account, and the similarity matrices describe the con-

nections between the regions within the input network. Using the

similarity matrices, the algorithm clusters the regions into k nono-

verlapping clusters (k 5 1, kmax 5 45), and provides two adjacency

matrices. The Jaccard coefficient between two adjacency matrices

indicates the reproducibility of the algorithm. The split resampling

framework is repeated several times. The final reproducibility is

defined as the median of the Jaccard coefficients over different

random splits. The k value that optimizes reproducibility is consid-

ered as the optimum number of clusters (kopt). The adjacency

matrices acquired for kopt and for different split-half resampling

are averaged Then, the clustering algorithm is applied on the aver-

age adjacency matrix, and the final kopt clusters, that is, subnet-

works are produced. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

r Determining Hierarchical Functional Networks in RS-fMRI r

r 3309 r

http://wileyonlinelibrary.com


resamplings, and reapplying the spectral clustering algo-
rithm on the average adjacency matrix to detect the final
kOPT cluster networks. Another strategy to acquire a group
clustering is to apply the clustering on the average similar-
ity matrices. We compared these two strategies later in the
results (See Fig. 8). The final clusters RSN12i from the
average adjacency matrix are matched with the estimated
split-half cluster networks to obtain their Jaccard coeffi-
cient. We consider the reproducibility of RSN12i as the
average reproducibility of its matching clusters in the
split-half resampling procedures. If we assume RSN12i is
matched with RSN1

12i then its reproducibility is defined
as:

Rep RSN12ið Þ ¼ Rep RSN1
12i

� �
¼

maxjJaccard RSN1
12i;RSN2

12j

� �

2max2jJaccard RSN1
12i;RSN2

12j

� �
; 1 � i � kOPT

(5)

where max2 returns the second maximum element. Gener-
ally, in low numbers of clusters, there is a higher chance
to estimate similar clusters across the two splits. The sec-
ond term in equation (5) removes that bias (See the Sup-
porting Information for the bias assessment of different
measures). After performing the above clustering proce-
dure, the RSN1 will be replaced with the subnetwork
RSN1-1,. . .,RSN1-kopt. Consequently, the number of the clus-
ter networks at the current iteration is updated as follows:

Km ¼ Km212 1ð Þ 1kopt (6)

In addition, we calculate the global reproducibility of
the approach in the current iteration (i.e., Rm) as follows:

Rm ¼
Rm212w1Rep RSN1ð Þ1

Xkopt

i¼1
w12iRep RSN12ið Þ; m>1

Xkopt

i¼1
wiRep RSNið Þ; m ¼ 1

8><
>:

(7)

where wi, and w12i are the relative number of voxels in
the whole brain included in RSN1, RSN12i.

Between-region temporal similarity

The cross correlation between the average time series of
two regions has been widely used to estimate their func-
tional connectivity. This region-based, pairwise similarity
reduces the multivariate problem to a bivariate one, using
the average over the voxels in each region. To avoid this
reduction and its simplifying assumptions about the local
covariance structure, multivariate similarity measures, like
canonical correlation analysis and RV coefficients, can be
used to measure the association between times series from
two regions incorporating the local covariance [Robert and
Escoufier, 1976]. These are descriptive measures of the cor-
relation between two sets and can be easily combined

with region-based functional connectivity algorithms
[Zhang et al., 2010].

In the appendix, we briefly review two conventional
similarity measures (RV-coefficient and canonical correla-
tion analysis, CCA) and propose two additional similarity
measures (ER and WER). We test the utility of these 4
measures in our proposed clustering framework. In all
cases, we first apply PCA on the time series data of each
region and select the first few eigenvectors that express
70% of the variance as the subspace representing the time
series of that region. Then, we apply pair-wise functional
connectivity measures to these subspaces.

Within-network homogeneity

To quantify within-network (temporal) homogeneity (Hi,
i.e., overall connectivity in the network), we average the
pair-wise temporal similarity between the regions in each
of the k cluster networks. Then, we record the distribution
and median across the k networks to provide an overall
homogeneity measure.

RESULTS

Results of Simulated Data

We applied the proposed framework on the simulated
data sets to produce reproducibility histograms for 50
splits, and grouped the simulated regions into K clusters
to obtain the number of reliable network clusters and
regions per cluster in the data sets. We examined these
two issues for 40 randomized simulations as a function of
the nonoverlapping parameter (P), SNR, number of subjects
(Ns), and number of voxels (Nv) and plot the results in
Figure 3. Figure 3a shows the percentage of correct estima-
tion of actual number of clusters, that is, 5 clusters as a func-
tion of P, SNR, Ns, and Nv. Each row indicates the results
acquired for each value of Ns 5 10, 16, and 22, and the col-
umns represent the results for each value of Nv (Nv=10, 20,
30). Finally, the colors blue, green, and brown represent the
results acquired for SNR=25, 210, 215 dB, respectively.

Figure 3b represents the percentage overlap of the esti-
mated networks with the true networks as a function of
the nonoverlapping parameter (P), SNR, number of sub-
jects (Ns) and number of voxels (Nv). The accuracy of the
resultant network clusters is calculated by measuring the
Jaccard metric between the true networks and the esti-
mated networks. The rows and columns reflect the values
of NS (10, 16, 18) and NV (10, 20, 30), respectively. Finally,
the colors blue, green, and red represent the results
acquired for SNR=25, 210, 215 dB, respectively.

Figure 3a shows that the number of subjects does not
significantly affect accuracy of the determined number of
clusters and Figure 3b shows that it has only a small
impact on the accuracy of the resultant network clusters
for small regions and lower SNR values. In Figure 3a,
when the SNR is large, that is, 25 dB (blue), or P< 40%,
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the proposed framework successfully determines the cor-
rect number of clusters 100 percent of the realizations,
regardless of Nv and Ns. Moreover, for Nv 5 30, the

method only failed for the smallest SNR 5 215 dB, and
the largest lack of overlap between starting segmentations
and true regions, P 5 30 or 40%. Finally, Figure 3b shows

Figure 3.

The results acquired for the simulation dataset. (a) The percent-

age accuracy in estimating the correct number of clusters. (b)

The percentage of the overlap between the estimated networks

and the simulated networks, which is illustrated for different val-

ues of nonoverlapping parameter (P). Different colors represent

the simulations with different SNRs. Rows represent the results

for different number of subjects (Ns=10,16,22), and Columns

indicate the results for different number of voxels

(Nv=10,20,30). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

r Determining Hierarchical Functional Networks in RS-fMRI r

r 3311 r

http://wileyonlinelibrary.com


that the extracted networks are 100% accurate provided
the regions are moderately sized (i.e., NV� 20), and initial
segmentation errors are not too large (i.e., P� 20). These
simulated results indicate that the proposed method is
quite accurate unless it encounters a combination of small
cluster regions, with relatively low SNRs and large initial
segmentation errors.

Results of Experimental fMRI Data

Evaluation

Four different similarity measures (RV coefficient, CCA,
ER, and WER) were applied to the segmented fMRI data
of each subject to construct four similarity matrices. Sub-
jects were then randomly split into two independent, split-
half sets, 300 times. For each split, the resultant average
similarity matrices of each set were parceled into a range
of k 5 2, . . ., 45 clusters using the normalized cut clustering
technique. The Jaccard coefficients were calculated by Eq.
(3) for each k. For the initial clustering step (i.e., m=0) Fig-
ure 4 displays box-whisker plot distributions of the split-
half reproducibility metrics, calculated using four different
similarity measures, as a function of the number of clus-
ters (k). It can be seen that all but RV of the similarity
measures (ER, WER, and CCA) show their maximal
median reproducibility (J) at k 5 4 clusters while the RV
measure shows the highest reproducibility at k 5 5 clus-

ters. For ER, the greatest median reproducibility occurs at
k 5 4 clusters (JER(4) 5 0.88), which is significantly larger
than the second largest ER value at k 5 5 (P< 1025, paired
t test). Furthermore, for k=4 ER is significantly larger than
the second largest value of CCA (P< 1024). Hence, the
optimal number of clusters is found to be four (kOPT 5 4).
After k=4 the reproducibility decreases sharply to a local
minimum at 8 clusters (JER(8) 5 0.53). Hence, this number
of clusters produces the networks with the least reproduci-
bility. After that local minimum, ER lifts slightly to a local
maximum at 11 clusters (JER(11) 5 0.65) which is signifi-
cantly greater than k 5 10 (P< 1025). After another local
maximum at 14 clusters (JER(14) 5 0.62), reproducibility
decreases slowly to around 0.5 at 45 clusters.

Figure 5 shows the four network clusters formed accord-
ing to the ER measure in the first step of our algorithm.
Each of these four principal clusters is then reclustered to
explore the hierarchy of its subclusters.

To evaluate the performance of the iterative reclustering
framework under conditions similar to direct clustering
(i.e., clustering in a one-step process with the same spec-
tral clustering method using normalized cuts), we meas-
ured the cluster homogeneity and reproducibility metrics
as a function of “number of clusters,” that is, Figure 6a,b,
respectively. Figure 6a illustrates the homogeneity mea-
sure of the resulting networks versus “number of clusters”
(k 2[1,. . .,26]) for the ER method. The homogeneity for k=1
indicates the initial homogeneity of the 680 segmented

Figure 4.

Reproducibility acquired for the first iteration of the clustering

algorithm versus the number of clusters (k 5 1, kmax 5 45). The

clustering algorithm was applied on the real fMRI dataset with dif-

ferent similarity measures, that is, RV, CCA, ER, and WER. The

boxplots represents the distribution of the reproducibility values

acquired over 50 split-half resamples. k 5 4 generates the most

stable clustering in the first iteration. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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gray matter regions before applying the proposed cluster-
ing method. As Figure 6a shows, the overall network
homogeneity for direct clustering of the results from the
first iteration in Figure 4 (blue distributions) gradually
increase while approaching an asymptotic value of 0.38,
without obvious fluctuation in the range of 21–26 clusters.
Subsequently, the network’s regions are iteratively subdi-
vided into kOPT subnetworks that maximize subnetwork
reproducibility until the homogeneity does not signifi-
cantly change after a new iteration of the algorithm (Hm11

– Hm)/Hm <0.01 (orange distributions). In Figure 6a, the
within-network temporal homogeneity of the iterative
reclustering (orange) is always higher than that of regular
clustering (blue) (P<0.001).

With iterative reclustering, the number of network clus-
ters jumps discontinuously depending on the value of
kOPT for each iteration. In contrast, with regular clustering,
the brain is partitioned into k networks without iteratively
estimating subnetworks, so the number of network clus-
ters increases continuously by 1. Figure 6b shows that for
the proposed iterative subnetworks (orange distributions),
spatial network reproducibility stays relatively high (>0.8)
while it quickly drops for regular clustering to approxi-
mately 0.5 (blue distributions). Overall, while Figure 6a
shows that iteratively reclustering subnetworks has a small

impact on network homogeneity, Figure 6b shows that it
has a very large impact on network reproducibility. We
should emphasis that our estimation of subnetworks’
reproducibility at each iteration ignores the fact that their
originating network is not perfectly reproducible. There-
fore, the actual reproducibility of the subnetworks is

Figure 5.

The four large clusters obtained in the first iteration of the cluster-

ing algorithm with the ER similarity measure. Default mode, visual,

somatosensory networks are represented in red, green, blue,

respectively. The subcortial structures form a network, which is rep-

resented in beige. The color intensity of a voxel represents the cross

correlation between that voxel’s time series and the average time

series over all voxel in the network. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

(a) Within cluster homogeneity and (b) clustering reproducibil-

ity versus number of networks (i.e., clusters; k) obtained by the

direct clustering approach (blue), and the proposed iterative

reclustering framework (orange). The direct clustering approach

clusters the initial 680 brain regions into k clusters. The iterative

reclustering framework clusters the regions within a cluster that

acquired using the previous iteration of the algorithm. In each itera-

tion, the number of subnetworks is determined based on the

reproducibility metric, and it may increase by more than 1. There-

fore, the proposed clustering approach did not generate the results

for some of the possible number of networks, for example, 1, 2, 3,

7, 13, 14, and so forth. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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overestimated and is always less than that measured here.
This is true for the subnetworks of all iterations except the
first iteration, which we start with the whole gray matter
as one cluster of the 680 segmented regions. This is an
essential point when comparing the reproducibility of dif-
ferent techniques in Figure 6.

Figure 7 illustrates the reproducibility histograms of
truncated time series in terms of the number of clusters.
We applied the proposed framework on smaller fractions
of the data (2/3, 1/2, and 1/3 of the temporal length of
the data), not only to evaluate the efficiency of the pro-
posed framework for determining the number of network
clusters but also to examine consistency of reproducibility
peaks from shorter time series. Note that the location of
the global maximum of the reproducibility (i.e., kOPT 5 4)
is not changed with the length of the time series used in
the analysis from 300 to 100 s. The major effect of using
truncated time series is a decrease in the overall reprodu-
cibility at each value of k. Moreover, when smaller frac-
tions of the time series are used, the local peaks at 11 and
14 network clusters disappear but the trough of reproduci-
bility (i.e., [7, 9]) does not significantly change.

The idea of constructing the group similarity matrix by
averaging over the resampled adjacency results of cluster-
ing has been proposed in different forms in previous work
[Salvador et al., 2005, van den Heuvel et al., 2008; Bellec
et al., 2010]. Figure 8 shows the similarity of network

Figure 7.

The effect of time-series length on the reproducibility of the cluster-

ing algorithm, and the estimation of the optimum number of clus-

ters. The figure shows the reproducibility of the first iteration of

the clustering algorithm versus the number of clusters (k 5 1,

kmax 5 45). The clustering algorithm was applied on the real fMRI

dataset with ER as the similarity measure. The boxplots represent

the distribution of the reproducibility values acquired over 50 split-

half resamples. Different colors represent the results for the time-

series length of 50, 75, 100, and 150. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 8.

The similarity values between the network clusters extracted

from adjacency matrices and those extracted from average simi-

larity matrix as a function of the number of split-half resamples.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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results from the average of resampled adjacency matrices
to the networks resulting from using the average of single
subject similarity matrices. Similarity is measured as the
Jaccard metric between two sets of results acquired from
the two strategies. The similarity sharply increases while
approaching an asymptotic value of 99% for kOPT 5 4 or 3
clusters. In contrast, the other numbers of clusters result in
less similar results between the two different approaches.
These results support our proposed use of kOPT to extract
conserved reproducible results from both average similar-
ity and resampled adjacency matrices.

To evaluate the effect of the number of subjects involved
in the analysis, we applied the proposed framework on
smaller numbers of subjects (10, 16, and 22). Figure 9 illus-
trates the reproducibility histograms from smaller groups of
subjects, as a function of the number of clusters. This figure
shows that the reproducibility of the results decreases with
decreasing numbers of subjects involved in the analysis, but
the maximum spatial reproducibility of the resultant net-
work clusters remains at four (i.e., kOPT=4). Moreover, the
framework shows consistent behavior in terms of a stable
local peak occurring at 11 clusters in contrast to the local
peak at 14 clusters, which dramatically drops off and disap-
pears as the number of subjects decreases.

Functional brain hierarchy

The results of iterative reclustering of the four large net-
work clusters with maximum ER are shown in Figure 10a–

d as four principal hierarchies that subcluster to a total of
24 minor network clusters, that is, (a) 3, (b) 4, (c) 5, and
(d) 12. Each large network cluster at the first level is coded
with a specific color. The first three main network clusters
consist of the (a: RSN1) default mode networks, (b: RSN2)
visual networks, and (c: RSN3) somatosensory networks,
respectively. The fourth large network cluster consists of
areas like hippocampus, rectus, amygdala, olfactory, cere-
bellum, caudate, putamen, thalamus, and a small part of
supplementary-motor area.

In the first partitioning of Figure 10a, RSN1 is decom-
posed into the default mode network consisting of pre-
frontal, anterior cingulate, posterior cingulate, inferior
temporal gyrus, superior parietal region [Damoiseaux
et al., 2006], and RSN1-2 that includes some part of
frontal-mid (L/R), cingulum-mid, frontal-sup-medial (R),
and large sections of inferior frontal (pars triangularis)
(L/R), super marginal (R/L), and Temporal mid (R/L).
In this branch, the last reclustering iteration parcels the
RSN1-2 into right and left hemisphere regions (RSN1-2-
1/2).

The visual network of Figure 10b, the most homogene-
ous network cluster of the first 4, is decomposed into four
extra homogeneous parts in one reclustering stage:
occipital-superior, calcarine (R/L), and cuneus (R/L) are
placed in RSN2-1, Lingual and fusiform are placed in
RSN2-2, occipital-mid and occipital-inf are placed in
RSN2-3, and part of precuneus (R/L) is placed in RSN2-4.

Figure 9.

The effect of group size on the reproducibility of the clustering

algorithm, and the estimation of the optimum number of clusters.

The figure shows the reproducibility of the first iteration of the

clustering algorithm versus the number of clusters (k 5 1,

kmax 5 45). The clustering algorithm was applied on the real fMRI

dataset with ER as the similarity measure. The boxplots represent

the distribution of the reproducibility values acquired over 50

split-half resamples. Different colors represent the results for

group size of 10, 16, 22, and 31. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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For RSN3 of Figure 10c, the first subclustering results in
two subnetworks: RSN3-1 consisting of supp-motor-area,
postcentral, paracentral-labule, and RSN3-2 including
insula, rolandic-oper, cingulum-mid, heschl, temporal-sup,
and parts of precentral. In the next reclustering iteration of

RSN3-2, rolandic-oper, insula, and temporal-sup are
placed in RSN3-2-2 and the rest of the regions, cingulum-
mid, heschl and part of precentral, constitute RSN3-2-1.
This then subclusters into three small subnetworks, plac-
ing precentral, postcentral, and supramarginal in different

Figure 10.

The networks and their hierarchal structure extracted using the

proposed clustering algorithm are represented. The first iteration

of algorithm generates 4 networks including: (a) Default mode

(RSN1), (b) Visual (RSN2), (c) Somatosentory (RSN3), and (d)

subcortical structures (RSN4). (a): RSN1 is declared as a hetero-

geneous network, and in the second iteration, it is partitioned

into two subnetworks (i.e., RSN1-1 and RSN1-2). RSN1-1 is

declared as homogenous while RSN1-2 was declared as heteroge-

neous. Then, in the third iteration, RSN1-2 is partitioned into two

subnetworks (i.e., RSN1-2-1 and RSN1-2-2), which are considered

as homogenous subnetworks. (b): RSN2 is declared as a heteroge-

neous network, and in the second iteration, it is partitioned into

four subnetworks (i.e., RSN1-1, RSN1-2, RSN1-3, and RSN1-4).

All four subnetworks did not pass the heterogeneity criterion, and

therefore, they did not partitioned. (c): RSN3 is declared as heter-

ogeneous networks. Then it is splitted into 2 subnetworks (i.e.,

RSN3-1 and RSN3-2). RSN3-2 is heterogeneous, and then is parti-

tioned into 2 subnetworks (i.e., RSN3-2-1 and RSN3-2-2). RSN3-

2-1 is declared as heterogeneous, and in the fourth iteration is

partitioned into 3 subnetworks (i.e., RSN3-2-1-1, RSN3-2-1-2,

RSN3-2-1-3, and RSN3-2-1-4). (d): RSN4 is also known as hetero-

geneous, and it is then partitioned into two subnetworks (i.e.,

RSN4-1 and RSN4-2). Both RSN4-1 and RSN4-2 are declared as

heterogeneous, and in the second iteration, they partitioned into

2 and 3 subnetworks, respectively. RSN4-2-1 and RSN4-2-2 are

declared as heterogeneous, and they are partitioned into 6 and 2

subnetworks in the third iteration. RSN4-2-2-1 is declared as het-

erogeneous, and it is splitted into 2 subnetworks in the fourth

iteration. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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subnetworks as shown by the inset slice indicated by the
blue arrow.

The fourth main network cluster, RSN4 of Figure 10d,
has the least homogeneity, and is partitioned into two
reproducible parts: the whole cerebellum along with a
small part of supp-motor-area (RSN4-1) and the functional
network consisting of subcortical, orbitofrontal cortex and
medial temporal parts (RSN4-2). Continuing the iterative
reclustering, RSN4-1 is decomposed into two sub–subnet-
works consisting of cerebellum-crus (I/II) (RSN4-1-1) and
cerebellum (RSN4-1-2) while a small part of supp-motor-
area is linked to the cerebellum crus subnetwork. In the
other branch, the algorithm finds the following three
reproducible subnetworks: temporal lobe subnetwork:
temporal-lobe-superior, temporal-middle, temporal pole
mid, temporal inferior and hippocampus, and para-
hippocampus; thalamus, putamen, and caudate; rectus, lat-
eral superior frontal gyrus (Frontal_sup), and inferior
orbit. Finally, the temporal lobe subnetworks (RSN-4-2-1)
are divided into six further subnetworks satisfying the
HThres constraint: hippocampus and part of amygdala,
para-hippocampus, and part of fusiform, temporal-pole-
sup (R/L), temporal-pole-midd (R/L), temporal-inf (L),
and temporal-inf (R). In the other sub-branch, putamen
and caudate (RSN4-2-2-1) separate from thalamus (RSN4-
2-2-1) subnetworks and then, putamen and caudate move
to two different subnetworks.

DISCUSSION

In this study, we have proposed a hierarchical frame-
work for rs-fMRI data called iterative reclustering to auto-
matically identify reproducible RSNs and subnetworks,
which may characterize the hierarchical structure of the
brain. Most of the previous studies have used clustering
methods with a predefined number of clusters and have
not discovered the hierarchy of the brain’s functional net-
works. We have derived a reproducibility measure based
on split-half resampling and a network homogeneity mea-
sure based on pair-wise temporal similarity, which tests
the spatial reliability of the resultant networks, and opti-
mizes the number of clusters for a particular homogeneity
threshold, respectively.

One of the contributions of this study is to demonstrate
the performance of an optimized reproducibility criterion
to determine the number of network clusters in the data.
The results of experimental data shown in Figures 4, 7,
and 9 demonstrate that the reproducibility of the extracted
networks fluctuate as a function of the number of clusters,
subjects and length of time series per subject especially for
less than 15 clusters but always has a clear peak at 4 net-
work clusters followed by a large dip in the 7–9 cluster
range.

Ignoring the reproducibility of extracted clusters may
alter the results significantly. For instance, choosing a
number of clusters that falls in a trough in the reproduci-

bility curve results in unstable networks across different
groups of subjects. In addition, Figures 4, 7, and 9 all
show a similar trough for all four of the similarity meas-
ures tested reflecting the fact that attempts to directly
extract 7–10 network clusters are likely to produce rela-
tively unstable networks.

Figure 6b shows that iterative reclustering is able to
completely avoid this unstable trough, with improved
temporal homogeneity, but only by hierarchically subdi-
viding the 4 cluster networks shown in Figure 5.

Similar to subspace estimation techniques, the proposed
clustering algorithm can potentially detect more detailed
substructures of resting brain networks by increasing the
number of iterations. Recently, some authors have sug-
gested extracting 70 networks or more to acquire a more
detailed picture of brain connectivity structures [Abou-
Elseoud et al., 2010]. However, to assess between-network
connectivity structure in subspace estimation techniques,
for example, ICA, the correlation coefficients between the
temporal responses of the estimated network have to be
assessed [Jafri et al., 2008]. This may represent a problem
for such approaches as some common subspace estimation
techniques including ICA may not be stable in the tempo-
ral domain [Afshin-Pour et al., 2014]. In contrast, for each
iteration of our framework, as each network is decom-
posed to its constituent subnetworks, their homogeneity
and reproducibility is assessed, and the stable, hierarchical
relationships between them are estimated.

We assessed the sensitivity of our approach to the
choice of temporal similarity measure. As the results in
Figure 4 show the ER and CCA measures produce gener-
ally similar curves and both peak at k 5 4 clusters. Also,
the WER and RV measures provide generally similar
curves with the clear exception of k 5 4, where RV pro-
duces clusters with significantly lower reproducibility.
Despite such local differences, all the similarity measures
produce the same general features of the reproducibility
measure curve versus the number of clusters. For example,
the local peaks seen in Figure 4 for k between 10 and 15
are in reasonable agreement with other resting-state stud-
ies in which 10–14 large-scale RSNs are detected from
fMRI data of 10–30 subjects [Beckmann et al., 2005; Damoi-
seaux et al., 2006; De Luca et al., 2006; Laird et al., 2011;
Afshin-Pour et al., 2014]. In addition, this finding is in
agreement with related studies using the BrainMap data-
base [Toro et al., 2008; Smith et al., 2009].

Using N 5 31 subjects, these analysis techniques reveal
only general large-scale networks. Studies with larger
groups of subjects indicate that estimation of functional
networks may require more than subspaces of 10–14
detectable components. For example, Kiviniemi et al.
[2009] processed the resting-state fMRI dataset of N 5 55
subjects, and detected 42 reliable independent compo-
nents. Also, Abou-Elseoud et al. [2010] argue that the
number of components �20 provides a general picture of
large-scale brain networks, but model order 70 6 10 offers
a more detailed evaluation of RSNs in a group ICA
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setting. The proposed technique generates the brain net-
works with the highest possible spatial resolution. This
spatial resolution (i.e., the number of iterations in the pro-
posed clustering algorithm) is bounded by the contrast to
noise ratio (CNR) and heterogeneity of the group under
study. Having a higher CNR helps the proposed algorithm
to better identify the subnetworks within a network, and
split them into the functional modules.

We have assessed the sensitivity of our approach in esti-
mating the number of clusters in Figures 7 and 9; our clus-
tering techniques can reliably estimate the number of
clusters even with 50 time-points per subject or with 10
subjects. This robustness may be induced using a spatial
criterion, that is, reproducibility, for primary estimation of
the number of clusters. Having a large sample size of vox-
els in the spatial domain may alleviate instability which
occurs from having a limited number of subjects or time-
points. In fact, many fMRI resting-state techniques use
spatial domain criterion to provide a robust estimation of
the brain networks [e.g., Afshin-Pour et al., 2012].

Our cluster results in Figure 10 from experimental fMRI
data are consistent with previous studies of the hierarchi-
cal organization of the human fMRI networks. For exam-
ple, the first three large network clusters extracted in this
study (RSN1-3) are fairly similar to the large modules
reported previously in the Meunier et al., studies as
Parieto-frontal, occipital, and central (2009, 2010).

The main advantage of our iterative reclustering frame-
work over other methods is that it allows us to quantita-
tively assess the number of clusters to extract at any
iterative stage while maximizing spatial reproducibility
and temporal homogeneity. Then using these metrics we
can investigate as large a hierarchy of networks and sub-
networks as we wish to compute while preserving their
reproducibility and temporal homogeneity.

However, our iterative reclustering framework suffers
from several interacting limitations: the number of clusters
in each scale is determined by split-half resampling, which
can be a time consuming task without high performance
computing resources, and the initial anatomical segmenta-
tion may affect the results. To overcome the latter limita-
tion, our proposed framework could be applied on a
voxel-wise rather than a region-wise basis provided suffi-
cient computing resources are available.

Two sources of bias may exist in the results provided in
this work: (1) as we are determining the number of clus-
ters using the maximization of reproducibly, the estimated
reproducibility for the proposed technique may be an
overestimation of the actual reproducibility of the tech-
nique. Ideally, another dataset, that is, validation dataset,
has to be used to measure the reproducibility of the pro-
posed technique with the estimated optimum number of
clusters from the original dataset. This will provide an
unbiased measure of the reproducibility metric. (2) In the
results in Figure 9, the effect of using different numbers of
subjects on the reproducibility is provided. However, the
subject subsamples are not independent and enforce a

smooth transition toward the results of the larger sample,
which may not reproduce well in a larger, independent
resting-state fMRI dataset.

CONCLUSION

We developed an automatic framework called iterative
reclustering to identify the RSNs in rs-fMRI data. Our
framework contains three major contributions. First, to
build a similarity matrix, two new similarity measures
between pairs of regions are derived based on PCA and a
subspace ER. Secondly, to determine the number of RSN
clusters in the brain, a reproducibility measure is sug-
gested, which is based on split-half resampling and the
Jaccard similarity coefficient. Finally, to achieve reliable
RSNs, an iterative reclustering approach is performed to
enforce spatiotemporal homogeneity of the resulting net-
works, and maximize their reproducibility across subjects.
Our iterative reclustering framework reveals a hierarchical
organization of the brain, and defines potential network
clusters that are both spatially reproducible across subjects
and temporally homogeneous within each network.

We evaluated the proposed framework with real fMRI
datasets against a direct clustering method. The evaluation
results indicate that our method achieves consistent and
substantial improvements over direct clustering in terms
of reproducibility and network homogeneity.

APPENDIX

RV-COEFFICIENT

The RV coefficient, as a multivariate generalization of
correlation, measures the closeness of two data matrices.
As Escoufier defined in [Escoufier, 1973], RV is a similarity
measure between positive semidefinite matrices (e.g.,
covariance matrices). Also, Robert and Escoufier showed
that several linear multivariate statistical analyses (e.g.,
CCA and PCA) could be defined by maximizing the RV-
coefficient subject to specific constraints [1976].

Consider two sets of eigenvectors obtained by applying
PCA to the sets of time series from two brain regions. We
put the eigenvectors of one region in the rows of a data
matrix X (p3n) and that of the other region in the rows of
another data matrix Y (q3n) where n refers to number of
time points and p and q refer to the number of associated
eigenvectors of each region. The RV coefficient is defined
as:

RV X;Yð Þ ¼ trace SXY:SYXð Þ

trace S2
X

� �
:trace S2

Y

� �� �1 2=
(8)

where SX ¼ XTX and SY ¼ YTY are the within set covari-
ance matrices and SXY ¼ XTY and SYX ¼ YTX ¼ ST

XY are the
cross covariance matrices of the vectors in the X and Y
data matrices, if 1/n is used as a normalizing factor for all
of them [Robert and Escoufier, 1976]. According to the def-
inition, the RV coefficient particularly measures the close-
ness between two data sets’ configurations even if the data
points’ dimensions in the two sets are different. Assuming
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that all variables are zero-mean, RV(X,Y) is independent
of data rotation, translation, and global changes of scale in
each data sets. Moreover, its values fall in the closed inter-
val [0,1].

Canonical Correlation Analysis

Proposed by Hotelling [1936], canonical correlation anal-
ysis (CCA) measures the overall linear correlation between
two sets of multidimensional variables. With X and Y data
matrices defined as above, consider two canonical vectors
wx and wy of size 13p and 13q. Canonical correlation
analysis can be defined as the problem of finding wx and
wy such that the correlation between the linear combina-
tions x=wxX and y=wyY is maximized, that is,

wx;wy

� �
¼ argmaxcorr x; yð Þ

¼ argmax
wxX:YTwy

T

|wxX||wyY|
¼

wxSXYwy
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

x SXwx

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

y SYwy

q
0
B@

1
CA
(9)

As rescaling canonical vectors has no effect on the frac-
tion, the above optimization is equivalent to the maximiza-
tion of wxSXYwy

T subject to constraints
wT

x SXwx ¼ wT
y SYwy ¼ 1. It has been shown that the canoni-

cal vectors, wx and wy, that maximize the above expression
subject to the constraints are the eigenvectors correspond-
ing to the largest eigenvalues of the matrices S-1

X SXYS-1
Y SYX

and S-1
Y SYXS-1

X SXY, respectively [Mardia, 1979]. The largest
eigenvalues of these matrices are equal to the squared
canonical correlation, max corr x; yð Þ. In this article, the sum
of the eigenvalues is used as a measure of similarity
between two sets of data extracted from two regions.

ENERGY RATIO AND WEIGHTED ENERGY

RATIO

As above, X and Y are two sets of multidimensional var-
iables having associated time series xi and yi as columns,
respectively. Hence, each xi and yi is one of the principal
components obtained for each region. For calculating the
similarity between each vector in region x (i.e., xi) and
time series in region y, {y1,y2, . . ., yq}, we used the orthogo-
nal projection of xi onto the signal subspace spanned by
the yi’s (i.e., Y-subspace). The orthogonal projection is
given by PY.xi, where PY is the projector matrix defined as

PY ¼ Y YTY
� �21

YT (10)

PY is an idempotent matrix and thus, the energy of the
projection of xi onto the Y-subspace and the energy of the
residual can be written as xi

TPYxi and xi
T(I2PY)xi, respec-

tively. Similarity between xi and Y-subspace can be
defined by the ratio of the energy of the signal in the Y-
subspace to the energy of the residual

Sim xi;Yð Þ ¼ xT
i

PYxi

.
xT

i
I2PYð Þxi

(11)

Consequently, the similarity between data matrices X
and Y can be calculated as

1

p

Xp

i¼1
Sim xi;Yð Þ1 1

q

Xq

j¼1
Sim yj;X

� �
(12)

In the PCA process, the eigenvalues, [kx1, kx2, . kxp] and
[ky1, ky2, . kyq] represent the variances of the variables on
each principal component axis. As these eigenvalues take
into account the contribution of each eigenvector to the
total variation of time series in each region, we use the
eigenvalues as the weights of the ERs to define the follow-
ing similarity measure

WER X;Yð Þ ¼ 1

KX

Xp

i¼1
kxiSim xi;Yð Þ1 1

KY

Xq

j¼1
kyjSim yj;X

� �
(13)

where KX ¼
Pp
i¼1

kxi and KY ¼
Pq
i¼1

kyi. In the rest of the arti-

cle, we call these similarity measures, the ER and WER,
respectively.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Cheryl Grady for pro-
viding the resting state data set, and for the generosity of
Jack & Anne Weinbaum, Sam & Ida Ross, Joseph & San-
dra Rotman in support of the imaging centre at Baycrest.

REFERENCES

Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O,
Kiviniemi V (2010): The effect of model order selection in
group PICA. Hum. Brain Mapp 31:1207–1216.

Afshin-Pour B, Hossein-Zadeh GA, Strother SC, Soltanian-Zadeh
H (2012): Enhancing reproducibility of fMRI statistical maps
using generalized canonical correlation analysis in NPAIRS
framework. NeuroImage 60:1970–1981.

Afshin-Pour B, Grady C, Strother S (2014): Evaluation of spatio-
temporal decomposition techniques for group analysis of fMRI
resting state data sets. NeuroImage 87:3632382.

Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR,
Moore SW, Bullmore E (2010): Efficient physical embedding of
topologically complex information processing networks in
brains and computer circuits. PLoS Comput Biol 6:1000748

Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005): Investiga-
tions into resting-state connectivity using independent compo-
nent analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–
1013.

Bellec, P (2013): Mining the Hierarchy of Resting-State Brain Net-
works: Selection of Representative Clusters in a Multiscale
Structure, International Workshop on Pattern Recognition in
Neuroimaging (PRNI), Philadelphia, PA, USA, pp 54–57.

Bellec P, Rosa-Neto P, Lyttelton OC, Benali H, Evans AC (2010):
Multi-level bootstrap analysis of stable clusters in resting- state
fmri. Neuroimage 51:1126–1139.

r Shams et al. r

r 3320 r



Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional
connectivity in the motor cortex of resting human brain using
echo-planar MRI. Magn Reson Med 34:537–541.

Cai W, Ryali S, Chen T, Li CR, Menon V (2014): Dissociable roles
of right inferior frontal cortex and anterior insula in inhibitory
control: evidence from intrinsic and Task-related functional
parcellation, connectivity, and response profile analyses across
multiple datasets. J Neurosci 34:14652–14667.

Calhoun VD, Liu J, Adali T (2009): A review of group ICA for
fMRI data and ICA for joint inference of imaging, genetic, and
ERP data. Neuroimage 45:S163–S172.

Cao J, Worsley KJ (1999): The geometry of correlation fields, with
an application to functional connectivity of the brain. Ann
Appl Probab 9:1021–57.

Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K
(2002): Hierarchical clustering to measure connectivity in fMRI
resting-state data. Magn Reson Imaging 20:305–317.

Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van
Essen DC, Schlaggar BL, Petersen SE (2008): Defining func-
tional areas in individual human brains using resting func-
tional connectivity MRI. Neuroimage 41:45–57.

Cole DM, Smith SM, Beckmann CF (2010): Advances and pitfalls
in the analysis and interpretation of resting-state FMRI data.
Front Syst Neurosci 4:18

Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ,
Smith SM, Beckmann CF (2006): Consistent resting-state net-
works across healthy subjects. Proc Natl Acad Sci USA 103:
13848–13853.

De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith
SM (2006): fMRI resting state networks define distinct modes
of long-distance interactions in the human brain. Neuroimage
29:1359–1367.

Escoufier Y (1973): Le traitement des variables vectorielles. Bio-
metrics 29:751–760.

Ferrarini L, Veer IM, Baerends E, van Tol MJ, Renken RJ, van der
Wee NJ, Veltman DJ, Aleman A, Zitman FG, Penninx BW, van
Buchem MA, Reiber JH, Rombouts SA, Milles J (2009): Hier-
archical functional modularity in the resting-state human
brain. Hum. Brain Mapp 30:2220–2231.

Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993): Functional
connectivity: The principal-component analysis of large (PET)
data sets. J Cereb Blood Flow Metab 13:5–14.

Friston KJ, Josephs O, Rees G, Turner R (1998): Nonlinear event-
related responses in fMRI. Magn Reson Med 39:41–52. doi:
10.1002/mrm.1910390109

Fox MD, Raichle ME (2007): Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imaging.
Nat Rev Neurosci 8:7002711.

Grady CL, et al (2010): A multivariate analysis of age-related dif-
ferences in default mode and task-positive networks across
multiple cognitive domains. Cerebral Cortex 20:1432–1447.

Greicius M (2008): Resting-state functional connectivity in neuro-
psychiatric disorders. Curr Opin Neurol 24:424–430.

Greicius MD, Krasnow B, Reiss AL, Menon V (2003): Functional
connectivity in the resting brain: A network analysis of
the default mode hypothesis. Proc Natl Acad Sci USA 100:253–
258.

Grigg O, Grady CL (2010): Task-related effects on the temporal
and spatial dynamics of resting-state functional connectivity in
the default network. PLoS One 5:e13311

Hossein-Zadeh GA, Ardekani BA, Soltanian-Zadeh H (2003): Acti-
vation detection in fMRI using a maximum energy ratio statis-

tic obtained by adaptive spatial filtering, IEEE Trans Med
Imaging 22:795–805.

Hotelling H (1936): Relations between two sets of variates. Biome-
trika 28:312–377.

Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008): A method
for functional network connectivity among spatially independ-
ent resting-state components in schizophrenia. Neuroimage 39:
1666–1681.

Kelly C, Uddin LQ, Shehzad Z, Margulies DS, Castellanos FX,
Milham MP, Petrides M (2010): Broca’s region: linking human
brain functional connectivity data and non-human primate
tracing anatomy studies. Eur J Neurosci 32:383–398.

Kelly C, Torob R, Martinoa AD, CoxaCL, Bellece P, Castellanosa
FX, Milham MP (2012): A convergent functional architecture of
the insula emerges across imaging modalities. NeuroImage 61:
1129–1142

Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR,
Glahn DC, Beckmann CF, Smith SM, Fox PT (2011): Behavioral
interpretations of Keller et al. Neural Correlates of BOLD
Functional Connectivity J. Neurosci., April 10, 2013, 33(15):
6333–6342, 6341 intrinsic connectivity networks. J Cogn Neuro-
sci 23:4022–4037.

Lange N, Zeger SL (1997): Non-linear fourier time series analysis
for human brain mapping by functional magnetic resonance
imaging. J R Stat Soc: Ser C (Appl Stat) 46:1–29. doi: 10.1111/
1467-9876.00046

Li K, Guo L, Nie J, Li G, Liu T (2009): Review of methods for
functional brain connectivity detection using fMRI. Comput
Med Imaging Graph 33:131–139.

Ma S, Correa NM, Li X, Eichele T, Calhoun VD, Adalı T (2011):
Automatic identification of functional clusters in fMRI data
using spatial dependence. IEEE Trans Biomed Eng 58:3406–3417.

Margulies DS, B€ottger J, Long X, Lv Y, Kelly C, Sch€afer A,
Goldhahn D, Abbushi A, Milham MP, Lohmann G, Villringer
A (2010): Resting developments: A review of fMRI post-
processing methodologies for spontaneous brain activity.
Magn Reson Mater Phys 23:289–307.

Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R,
Bullmore E (2005): Fractional gaussian noise, functional MRI
and alzheimer’s disease. Neuroimage 25:141–158.

Mazziotta JC, Toga A, Evans A, Fox P, Lancaster JL, Zilles K,
Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L,
Thompson P, MacDonald D, Iacoboni M, Schormann T,
Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K,
Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R,
Mazoyer B (2001): A probabilistic atlas and reference system for
the human brain: International Consortium for Brain Mapping
(ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322.

Meinshausen N, B€uhlmann P (2010): Stability selection. J R Stat
Soc B 72:417–473.

Meunier D, Lambiotte R, Bullmore ET (2010): Modular and hier-
archically modular organization of brain networks. Front Neu-
rosci 4:200

Mezer A, Yovel Y, Pasternak O, Gorfine T, Assaf Y (2009): Cluster
analysis of resting-state fMRI time series. Neuroimage 45:1117–
1125.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME (2005): The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci USA 102:9673–9678.

Robert P, Escoufier Y (1976): A unifying tool for linear multivariate
statistical methods: The RV-coefficient. Appl Stat 25:257–265.

r Determining Hierarchical Functional Networks in RS-fMRI r

r 3321 r

info:doi/10.1002/mrm.1910390109
info:doi/10.1111/1467-9876.00046
info:doi/10.1111/1467-9876.00046


Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D,
Bullmore E (2005): Neurophysiological architecture of func-
tional magnetic resonance images of human brain. Cereb Cor-
tex 15:1332–1342.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE,
Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF
(2009): Correspondence of the brain’s functional architecture
during activation and rest. Proc Natl Acad Sci U S A, 106:
13040–13045.

Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Sidtis J,
Frutinger S, Muley S, LaConte S, Rottenberg D (2002): The
quantitative evaluation of functional neuroimaging experi-
ments: The NPAIRS data analysis framework. Neuroimage, 15:
747–771.

Strother S, La Conte S, Kai Hansen L, Anderson J, Zhang J,
Pulapura S, Rottenberg D (2004): Optimizing the fMRI data-
processing pipeline using prediction and reproducibility per-
formance metrics: I. A preliminary group analysis. Neuro-
image 23:S196–S207.

Schwindt GC, Chaudhary S, Crane D, Ganda A, Masellis M,
Grady CL, Stefanovic B, Black SE (2013): Modulation of the
default-mode network between rest and task in alzheimer’s
disease. Cerebral Cortex 23:168521694.

Shi J, Malik J (2000): Normalized cuts and image segmentation.
IEEE Trans Pattern Anal Machine Intell 22:888–905.

Stone M (1974): Cross-validatory choice and assessment of statisti-
cal predictions. J R Stat Soc. Ser B (Methodological) 36:111–147.

Sun FT, Miller LM, D’Esposito M (2004): Measuring interregional
functional connectivity using coherence and partial coherence
analyses of fMRI data. NeuroImage 21:6472658.

Thirion B, Varoquaux G, Dohmatob E, Poline JB (2014): Which fMRI
clustering gives good brain parcellations? Front Neurosci 8:167

Toro R, Fox PT, Paus T (2008): Functional coactivation map of the
human brain. Cereb Cortex 18:2553–2559.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,
Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated
anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15:273–289.

van den Heuvel MP, Hulshoff Pol HE (2010): Exploring the brain
network: A review on resting-state fMRI functional connectiv-
ity. Eur Neuropsychopharmacol 20:519–534.

van den Heuvel M, Mandl R, Hulshoff Pol H (2008): Normalized
cut group clustering of Resting-state fMRI data. PLoS One 3:e2001

Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW,
Buckner RL (2010): Intrinsic Functional Connectivity As a Tool
For Human Connectomics: Theory, Properties, and Optimiza-
tion. J Neurophysiol 103: 297–321.

Yan X, Kelley S, Goldberg M, Biswal BB (2011): Detecting over-
lapped functional clusters in resting state fMRI with connected
iterative scan: A graph theory based clustering algorithm.
J Neurosci Methods 199:108–118.

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Z€ollei L, Polimeni JR,
Fischl B, Liu H, Buckner RL (2011): The organization of the
human cerebral cortex estimated by intrinsic functional con-
nectivity. J Neurophysiol 106:1125–1165.

Zhang H, Zhang X, Sun Y, Liu J, Li W, Tian J (2010): A weighted-
RV method to detect fine-scale functional connectivity during
resting state. NeuroImage 54:2885–2898.

r Shams et al. r

r 3322 r


	l
	l
	l
	l
	l

