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Abstract: With the mapping of macroscale connectomes by means of in vivo diffusion-weighted MR
Imaging (DWI) rapidly gaining in popularity, one of the necessary steps is the examination of metrics
of connectivity strength derived from these reconstructions. In the field of human macroconnectomics
the number of reconstructed fiber streamlines (NOS) is more and more used as a metric of cortico-
cortical interareal connectivity strength, but the link between DWI NOS and in vivo animal tract-
tracing measurements of anatomical connectivity strength remains poorly understood. In this technical
report, we communicate on a comparison between DWI derived metrics and tract-tracing metrics of
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projection strength. Tract-tracing information on projection strength of interareal pathways was extracted
from two commonly used macaque connectome datasets, including (1) the CoCoMac database of collated
tract-tracing experiments of the macaque brain and (2) the high-resolution tract-tracing dataset of
Markov and Kennedy and coworkers. NOS and density of reconstructed fiber pathways derived from
DWI data acquired across 10 rhesus macaques was found to positively correlate to tract-tracing based
measurements of connectivity strength across both the CoCoMac and Markov dataset (both P< 0.001),
suggesting DWI NOS to form a valid method of assessment of the projection strength of white matter
pathways. Our findings provide confidence of in vivo DWI connectome reconstructions to represent
fairly realistic estimates of the wiring strength of white matter projections. Our cross-modal comparison
supports the notion of in vivo DWI to be a valid methodology for robust description and interpretation
of brain wiring. Hum Brain Mapp 36:3064–3075, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: connectome; macaque; diffusion imaging; tract tracing; connectivity; white matter;
connectomics
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INTRODUCTION

Ever increasingly detailed reconstructions of macroscale
connections have revealed the mammalian brain to include
a complex network of structurally and functionally inter-
acting regions (e.g., [Hagmann et al., 2008; Kotter et al.,
2007; Markov et al., 2013a; Markov et al., 2012; Oh et al.,
2014; Scannell et al., 1995; Stephan et al., 2001]). In non-
human mammalian species, tract-tracing experiments have
revealed an elaborate wiring pattern of the brain, argued
to be organized according to a putative cost-effective, hier-
archical and small-world modular topology (e.g. [Bullmore
and Sporns, 2009, 2012; Shen et al., 2012; Sporns, 2011]).
Earlier as well as contemporary studies using invasive
tract-tracing as a method for pathway reconstruction have
led to highly detailed wiring diagrams of the rhesus maca-
que [Markov et al., 2012; Stephan et al., 2001], cat [Scannell
et al., 1995], mouse [Oh et al., 2014], and rat brain [Bota
and Swanson, 2007], establishing tract-tracing as a power-
ful method for assessing white matter connectivity. Fur-
thermore, advances in MR diffusion imaging have made it
increasingly feasible to map the connections of the human
brain in vivo, resulting in detailed maps of the white mat-
ter pathways constituting the “human macroscale con-
nectome” [Hagmann et al., 2008; Sporns et al., 2005]. The
possibility of mapping white matter axonal pathways in
the human brain in vivo using MR imaging has fueled the
investigation of brain connectivity and network organiza-
tion in many cognitive, translational, and clinical neuro-
science studies [Bassett et al., 2009; Bullmore and Sporns,
2012; Filippi et al., 2013; Fornito et al., 2012; Honey et al.,
2009; van den Heuvel and Fornito, 2014; van den Heuvel
et al., 2009]).

Besides measuring the qualitative presence of an ana-
tomical pathway, both tract-tracing and MR tractography
allow for an assessment of the connectivity “quality” or
“strength” of the reconstructed pathways. Tract-tracing
techniques allow for a mapping of connectivity by means
of measurement of the density of labeling [Shen et al.,

2012]; an often used metric of connectivity strength
derived from diffusion MR techniques is the number of
reconstructed tractography streamlines [Hagmann et al.,
2008; van den Heuvel et al., 2012]. In particular, the latter
metric appears to be of growing interest to the MRI com-
munity in the examination of connectome changes in psy-
chiatric and neurological disorders (e.g. [Bullmore and
Sporns, 2012; Filippi et al., 2013; Fornito et al., 2012; van
den Heuvel and Fornito, 2014]). However, how this intro-
duced metric of weight relates to properties of bundles of
axonal projections and thus how DWI derived number of
streamlines should be interpreted in the context of connec-
tivity strength at the axonal level, remains poorly under-
stood (e.g., [Hagmann et al., 2008; Jones, 2010; Sporns,
2012; van den Heuvel et al., 2012]). Important work has
been performed to validate the binary layout and anatomi-
cal accuracy of diffusion MR reconstructions of tracts in
both the human and primate brain by means of post-
mortem examinations (e.g., [Catani et al., 2013; Li et al.,
2012]) and by means of comparisons to tract-tracing results
(e.g., [Azadbakht et al., in press; Dauguet et al., 2006;
Dyrby et al., 2007; Schmahmann et al., 2007; Thomas et al.,
2014]), but examinations of MR-derived metrics of connec-
tivity strength in context of tract-tracing findings are
sparse. In this study, we thus particularly focused on the
examination of DWI derived NOS as a metric of connectiv-
ity strength in comparison to tract-tracing derived metrics
of projection strength.

Here, we report on a macroscale connectome-
perspective examination of diffusion MR metrics and tract-
tracing based metrics of projection strength in the rhesus
macaque brain. Tract-tracing information on the connec-
tion strength of cortico-cortical anatomical pathways was
extracted from (1) the CoCoMac database of collated tract-
tracing experiments reporting on connectivity strength of
cortico-cortical pathways from weak to strong [Stephan
et al., 2001] and (2) the high-quality dataset of Markov and
Kennedy and coworkers documenting quantitative meas-
urements of projection strength of a large number of
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interareal axonal pathways of the macaque cerebral
cortex [Markov et al., 2012]. Combining these datasets
with DWI data acquired in vivo in 10 rhesus macaques,
we show evidence of DWI NOS to positively correlate to
tract-tracing derived measurements of connectivity
strength.

MATERIALS AND METHODS

In what follows, we first describe the acquisition, recon-
struction, and derivation of connectivity strength of path-
ways of the macaque cerebral connectome based on in
vivo DWI data as acquired in 10 adult rhesus macaque
monkeys. This is followed by a description of the recon-
struction and derivation of connectivity and connectivity
strength of interareal pathways between the same set of
cortical regions of the macaque connectome as extracted
from the CoCoMac database of collated tract-tracing
experiments [Stephan et al., 2001] and from the high-
quality dataset of Markov and Kennedy and coworkers
reporting on quantitative measurements of connectivity
strength of interareal pathways in the macaque brain
[Markov et al. 2012].

MRI Acquisition

Anatomical diffusion-weighted imaging (DWI) was
acquired in 10 adult macaque specimens. The demo-
graphics (10 female, Macaque mulatta, age 14 6 6.7 years)
and acquisition procedure of the animal DWI data are
described in detail as part of a previous study on connec-
tome reconstruction and analysis of the macaque cortical
brain network [Li et al., 2013]. Briefly, data acquisition
included the acquisition of high-resolution T1 images and
of diffusion-weighted images. Scanning parameters
included, T1w: TR/TI/TE 5 2600/900/3.37 ms, reso-
lution 5 0.5 3 0.5 3 0.5 mm3, FOV 5 160 3 160 3 88,
matrix 5 320 3 320 3 176, GRAPPA 5 2, 3 averages, total
scan time of 25 min; DWI: TR/TE 5 7000/108 ms, reso-
lution 5 1.1 3 1.1 3 1.1 mm3, FOV 5 141 3 132,
matrix 5 128 3 120, 43 slices, GRAPPA 5 3, 60 diffusion
directions (acquired with b 5 1000 s/mm2), 10 averages
with half of the averages having opposite phase encoding
directions [Andersson et al., 2003], in total including 600
diffusion directions with a scan time of 86 min.

Data preprocessing

As described in [Li et al., 2013], the T1 image was used
to perform automated gray matter, white matter, and CSF
segmentation. For each individual dataset, the T1 recon-
structed cortical mantle was initially segmented into 300
equal-sized, randomly distributed parcels (150 parcels per
hemisphere), creating an initial parcellation of the cortex
into small brain regions to serve as cortical areas in the
reconstructions of cortical-to-cortical pathways (see below)

[de Reus et al., 2014; Hagmann et al., 2008; Li et al., 2013;
van den Heuvel and Sporns, 2011]. The intermediate 300
parcel resolution segmentation was used to enable accu-
rate surface-based parcellation segmentations incorporat-
ing information on individual cortical folding patterns of
the macaque cortex while still ensuring good anatomical
overlap of cortical regions between the 10 specimens [Li
et al., 2013]. DWI data preprocessing included correction
for susceptibility, eddy current distortions, and motion
[Andersson et al., 2003] and realignment of the b 5 0 image
to the anatomical T1 image for anatomical reference. Next,
following a common procedure for human and non-
human primate in vivo DWI connectome studies, the dif-
fusion profile within each voxel was assessed using gener-
alized q-sampling imaging (GQI, regularization parameter
sigma 1.25) [Yeh et al., 2010], allowing for the reconstruc-
tion of multi-orientation fiber configurations (e.g., crossing
fibers) [de Reus et al., 2014; Yeh et al., 2010]. White matter
pathways were reconstructed by means of deterministic
fiber tracking allowing for complex fiber orientations [de
Reus et al., 2014], starting eight streamline seeds in all vox-
els classified as white matter. Pathways were reconstructed
by following the best fitting diffusion direction from voxel
to voxel, with fiber reconstruction continuing until a
streamline either (1) reached a voxel of low generalized
FA (equivalent to FA< 0.1), (2) exited the brain mask (i.e.,
gray/white matter mask), or (3) made a sharp turn of >45
degrees.

DWI connectome reconstruction

From the total collection of reconstructed tractography
streamlines, for each region pair i and j of the initial indi-
vidually mapped 300 cortical parcels it was determined
whether a reconstructed streamline touched both region i
and j. A pathway was said to be present when one or
more streamlines were observed, and indicated by the
number of reconstructed fiber streamlines NOS in a 300 3

300 connectivity matrix. When no streamlines were
observed between a region pair a 0 was included in the
connectivity matrix. The initial, individual mapping to a
300 3 300 matrix (based on the individual cortical segmen-
tations into 300 parcels, see atlas description above) was
applied to incorporate effects of individual variation in
cortical structure on connectome formation [Li et al., 2013].
Next, to be able to make a one-to-one comparison to the
tract-tracing datasets (see below), each individual 300 3

300 reconstructed matrix was sampled to the combined
Walker-von Bonin & Bailey (WBB47) parcellation atlas of
the macaque cortex, dividing the cortical mantle of a sin-
gle hemisphere into 39 distinct cortical regions [von Bonin
and Bailey, 1947; Walker, 1940]. The WBB47 atlas was
used as it covers the entire macaque cortex, is included in
the CoCoMac database (see below), and ensures (due to its
relatively large region sizes) a relative good spatial overlap
across specimens. The WBB47 atlas (see Fig. 1 and also the
tract-tracing description below) was used before for the
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examination of connectivity in the macaque cortex [Ste-
phan et al., 2000], as well as for a recent study examining
the network topology of the macaque connectome [Schol-
tens et al., 2014]. Using the procedure of Hagmann et al.
[Hagmann et al., 2008], resampling of the connectivity
matrix was performed by determining for each of the dis-
tinct parcels their level of overlap with the 39 cortical
regions, after which for each 39 3 (39 2 1)/2 connection
pairs their level of reconstructed streamlines NOS was
determined. We note that the WBB47 parcellation atlas
does not include a distinction between the left and right
hemisphere. Combined with the notion that the CoCoMac
database in most cases does not describe the examined
hemisphere, and the notion that the Markov–Kennedy
dataset describes injection sites in both the left and right
hemisphere, the DWI NOS connectivity matrix was formed
for one hemisphere only (chosen to be the left in the DWI
data including 150 cortical parcels). In addition, to make
sure that the initial high-to-low spatial mapping step of
our analysis (i.e., the mapping of the initial parcellation to
the WBB47 atlas) did not affect our results, an additional
analysis was performed in which the WBB47 atlas was
directly used to reconstruct the connectivity matrix (thus
not involving the 300-to-39 resampling step of the DWI
NOS data). This analysis showed consistent results with

our main analysis (see Supporting Information for the
results of this additional analysis).

Next, across the sampled 39 3 39 individual WBB47
connectivity matrices a group consensus matrix was
formed by taking the non-zero mean of the structural con-
nectivity (SC) matrices across the 10 macaque datasets. To
reduce the number of false positive reconstructions, path-
ways that were consistently observed in 60% or more of
the individual datasets were included [de Reus and van
den Heuvel, 2013]. For the resulting DWI group-
connectivity matrix (SCdwi) the connectivity strength of
each reconstructed pathway was computed as the average
number of observed reconstructed streamlines between i
and j, resulting in the weighted connectivity matrix SCdwi-

NOS. Due to the log-normal distribution of NOS, log-
transformed values (log10) were used in the correlation
analysis.

In addition to raw NOS count, several studies have
noted the potential influence of the volume of the cortical
regions on the NOS count of a region’s pathways. With
the volume of the segmented regions not being uniformly
distributed, it is argued that regions with a higher volume
are more likely to touch streamlines, therefore obtaining
a—potentially artifactual—higher NOS count [Hagmann
et al., 2008; Iturria-Medina et al., 2008; van den Heuvel

Figure 1.

(A) Thirty-nine cortical regions of the WBB47 macaque atlas.

(B) Panels show the macaque connectome map of the 39

WBB47 cortical regions and their cortico-cortical pathways as

reconstructed by DWI (left), as reconstructed from the CoCo-

Mac database (middle) and as reconstructed from the Markov–

Kennedy data (right). Cells of region pairs that were found not

to be connected are indicated by white (i.e., zero) entries in all

three matrices. Cells of region pairs of which no information on

connectivity strength was present (i.e., connectivity between

region pairs not examined) in the CoCoMac and Markov–Ken-

nedy dataset are depicted in gray. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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et al., 2013]. To control for this effect, studies have pro-
posed to correct for the volume of the two connecting
regions, defining the connectivity strength of a recon-
structed pathway between region A and region B as the
observed NOS count divided by the average of the vol-
umes of region A and region B, resulting in volume-
corrected NOS count, a weight metric often referred to in
DWI connectome literature as “streamline density” [Hag-
mann et al., 2008; van den Heuvel and Sporns, 2011].
Indeed, also in this dataset a positive correlation was
observed between regional raw NOS count and regional
volume (P< 0.0001, r 5 0.7194). This while measurements
of connectivity strength as derived from tract-tracing
experiments are (much) less influenced by this effect
(indeed, no association was observed between tract-tracing
strength and regional volume, P 5 0.21). Thus, in addition
to raw NOS count, we also examined the relationship
between streamline density of the group-averaged
weighted connectivity matrix SCdwi-streamline-density (com-
puted by dividing raw NOS count by the mean volume of
the interconnected cortical regions) and projection strength
as derived from macaque tract-tracing.

In addition to the NOS count for each DWI recon-
structed pathway, also the average fractional anisotropy
(diffusion tensor imaging derived FA), mean diffusivity
(MD), and radial diffusivity (RD, i.e., the amount of diffu-
sivity transverse to the main diffusion direction, a metric
often interpreted to be inversely related to tract myelina-
tion) was computed, taken as the weighted average over
all voxels traversed by the streamlines interconnecting i
and j. FA, MD, and RD were all computed on the basis of
traditional diffusion tensor fit, reconstructed alongside the
GQI diffusion estimates.

CoCoMac Connectome Reconstruction and

Tract-Tracing Projection Strength

Information on macroscale cortico-cortical white matter
axonal projections between regions of the macaque cortex
was obtained from the Collations of Connectivity data on
the Macaque brain database (CoCoMac, RRID: nif-0000-
00022), an open-access database describing a large collec-
tion of collated data from published macaque anatomical
tracer studies [Stephan et al., 2000, 2001; Rembrandt et al.,
2011]. Similar to the DWI data, cortical regions were
defined by means of the WBB47 parcellation atlas, divid-
ing the cortical surface into 39 nonoverlapping cortical
regions (see Fig. 1). The WBB47 parcellation scheme, the
accompanied CoCoMac extraction and the graph theoreti-
cal examination of the derived connectome map are
described in detail in a recent publication [Scholtens et al.,
2014]. The CoCoMac database was queried for all possible
combinations of 39 regions in the WBB47 atlas reporting
on the specific presence (i.e., examined and observed ana-
tomical tract) as well as the specific absence (i.e., exam-
ined, but not found tract) of anatomical projections

between brain regions across all studies included in the
database, resulting in the inclusion of data of 126 studies.
From these reports a 39 3 39 binary SC matrix was con-
structed, including an anatomical tract between region i
and region j if at least three or more studies in the CoCo-
Mac database examined this pathway and the number of
positive reports across these studies was at least 60%
(referred to as prevalence, reducing the inclusion of poten-
tial false positive reports [Scholtens et al., 2014]; Other set-
tings of the number of studies and prevalence resulted in
similar findings). The (consistent) presence of a connection
was marked as a 1 between i and j in the adjacency matrix
SCcocomac, an absence was marked as a 0 [Shen et al.,
2012]. If information on the connectivity between two
regions was not present in the CoCoMac database, the
connection was deemed to be absent and presented as
“not a number” (NaN) in the connectivity matrix (and as a
result not included in our examination of connectivity
strength) [Shen et al., 2012]. CoCoMac provides limited
information on demographics of the specimens included
in the reported studies, with of 6% (8 out of 126) of studies
included in the examined WBB47 extraction reporting
information on age (age range of reported studies 1–25
years) and 10% reporting on gender (12 out of 126 studies,
86% males/14% females). CoCoMac includes information
on connectivity of the species macaca fascicularis, macaca-
fuscata, macaca mulatta, and macaca nemestrina.

The CoCoMac database classifies the strength of
observed anatomical pathways based on the original
descriptions of the level of tracer density/strength [Shen
et al., 2012]. As described in one of the original papers
accompanying the CoCoMac database pathways are
categorized into three strength classes: 1 (weak), 2 (inter-
mediate), and 3 (strong) (Stephan et al., 2001); pathways of
which no information on connectivity is present are
labeled as a NaN and accordingly not taken into account
in our weight comparison analysis. Using this extracted
information, for each of the reconstructed tracts in the con-
nectivity matrix SC two types of connectivity strength val-
ues were examined: (A) as a majority vote across the
study reports, resulting in a ordinal value of 1 (weak), 2
(moderate), or 3 (strong) forming a weighted connectivity
matrix SCtract-CCM-majority, and (B) as the non-zero, non-
NaN mean of the ordinal strength values reported by the
studies reporting levels of strength, resulting in a 39 3 39
weighted connectivity matrix (SCtract-CCM) with cell entries
reflecting the connection strengths as a continuous value
ranging from 1 to 3.

Connectome Reconstruction from Markov–

Kennedy Dataset of Quantitative Measurements

of Connectivity Strength

As mentioned, the CoCoMac database is limited in that
it contains collated, categorical information on connectivity
strength, classifying pathways into “weak,” ”moderate,”
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and “strong.” Recent detailed tract-tracing studies of Mar-
kov and Kennedy and coworkers have reported quantita-
tive measures of connectivity strength in the macaque
brain [Markov et al., 2013a, 2013b, 2012]. Furthermore, the
Markov–Kennedy data were acquired in consistent experi-
mental settings, using one single parcellation scheme of
the macaque cortex and using one type of tract-tracing
methodology. In contrast to CoCoMac database extrac-
tions, the Markov–Kennedy dataset does not (yet) include
a full coverage of the macaque cortex describing 29 target
regions (32%) of the 91 cortical regions defined in the cor-
tex parcellation atlas, but it nevertheless provides one of
the most detailed maps of cortico-cortical pathways of the
macaque cortex. From the 29 injection sites across 28 mac-
aques, the Markov–Kennedy dataset describes a 29 3 29
mapping of all existing pathways between these regions,
reporting a connectivity matrix of 66% density [Markov
et al., 2012]; of the 91 recording regions it provides infor-
mation on efferent pathways to the 29 injection sites. As
documented, the Markov–Kennedy dataset describes con-
nectivity data of 28 specimens, including M. fascicularis
(27) and M. mulatta (1) [Markov et al., 2012], with the
majority of samples referred to as “adult” (13 adults, two
6-month old and one 12-month old, rest not explicitly
reported) and with three documented reports of inclusion
of male specimens and 13 of female specimens (rest not
explicitly reported) [Markov et al., 2014].

The Markov–Kennedy dataset provides quantitative
information on the projection strength of the reported
interareal pathways, reported as the weight index of
extrinsic fraction of labeled neurons (FLNe) [Markov et al.,
2013a]. Repeated injections in a number of primary visual
regions across specimens revealed modest inter-subject
variation in FLNe [Markov et al., 2012]. In this study, the
FLNe weight index as documented in the Markov–Ken-
nedy dataset and as used by Markov et al. for macaque
connectome analysis [Markov et al., 2013a, 2013b] was
used for comparison to DWI NOS. The FLNe 91 3 29 data
as described in [Markov et al., 2012] and as presented at
http://core-nets.org/index.php was used. Next, to allow
overlap with the reconstructed DWI NOS connectivity
matrix, the 91 cortical regions as used by Markov et al.
were (manually) mapped to the WBB47 cortical atlas; Sup-
porting Information Table 1 describes the 91-to-WBB47
region-to-region mapping. Next, using this region-to-
region mapping a WBB47-based FLNe connectivity matrix
(SCtract-FLNe) was formed: in those cases in which the corti-
cal areas of a WBB47 region-pair overlapped multiple
regions of the 91-region atlas, FLNe scores of the connect-
ing interareal tracts were averaged; in those cases in which
information on connectivity strength was missing from the
Markov–Kennedy dataset (i.e., information on efferent con-
nectivity of regions outside the 29 injection sites) a NaN
was included in SCtract-FLNe, and these connections were
not taken into account in the tract-tracing to diffusion
MRI-based comparison; this resulted in a SCtract-FLNe, con-
nectivity matrix of 76% density. For the correlation analy-

sis, log (log10) transformed values were used [Markov
et al. 2013a].

Statistical Comparison between Connectivity

Strength as Measured by tract-Tracing and

Diffusion MRI

For the main topic of investigation of this study, connec-
tivity strength of reconstructed tracts derived from tract-
tracing (variants SCtract and SCtract-FLNe) and from DWI
analysis (SCdwi-NOS) were compared by means of correla-
tion analysis, comparing levels of connectivity strength of
pathways mutually observed in both reconstructions. First,
for the analysis in which the tract-tracing connectivity
strength was determined as a majority vote of the reports in
the CoCoMac database (i.e., SCtract-CCM-majority), for each
class of strength (i.e., s 5 1, s 5 2, and s 5 3) the weights of
the existing corresponding connections in the (raw and log-
transformed) SCdwi-NOS matrix were selected and differen-
ces in DWI-based connectivity strength between the three
classes s 5 1, s 5 2, and s 5 3 were tested using the Jonck-
heere–Terpstra test, a statistical test allowing for the evalua-
tion of an ordering effect in the presented data (i.e., here
s 5 1< s 5 2<= 3). Second, the more continuous SCtract-CCM

weights were compared to (log transformed) SCdwi-NOS by
means of linear regression analysis. Third, a correlation pro-
cedure was performed for the weights derived from the
Markov–Kennedy data, correlating (log transformed)
SCtract-FLNe values with (log transformed) SCdwi-NOS values
for tracts observed in both reconstructions.

RESULTS

Comparison of Connectivity Strength Derived

from DWI-NOS and CoCoMac

Figure 1 illustrates the WBB47 DWI NOS, CoCoMac and
Markov–Kennedy reconstructed macaque connectome
maps. A positive significant relationship between tract-
tracing strength and NOS was observed in the SCtract-major-

ity data, with tract-tracing connectivity strength defined as
a majority vote across reports in the CoCoMac database,
revealing a significant positive ordering in DWI NOS
strength across the three categories of tract-tracing strength
(raw NOS: P 5 0.0063; log-transformed NOS: P 5 0.0013,
Fig. 2B, Jonckheere–Terpstra).

Additional regression analysis between strength values
SCtract-CCM and SCdwi-NOS confirmed a positive relationship
between DWI and tract-tracing metrics of connectivity
strength, revealing a significant positive relationship (NOS
log transformed, p 5 1.6 3 1023, r 5 0.2481, Fig. 2A, linear
regression, surviving Bonferroni correction for multiple
testing; including spatial distance as a covariate revealed a
similar positive correlation (p 5 1.5 3 1024, r 5 0.22). (Note:
as other studies have used a redistribution of the raw
NOS count to a Gaussian distribution rather than a log
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transform [e.g. Hagmann et al., 2008; van den Heuvel
et al., 2012], we also tested this type of connection strength
in relationship to SCtract-CCM, resulting in a similar positive
relationship [see Supporting Information Figure 1].) Fur-
thermore, taking streamline density SCdwi- streamline-density

as a DWI metric of connection strength (dividing off the
volume of the connected regions [see Methods]) revealed a
similar—even slightly stronger—positive relationship
between SCdwi- streamline-density and SCtract-CCM (log trans-
formed, P 5 1.011 3 1026, r 5 0.3133, Fig. 2C). As an addi-
tional test, categorizing NOS density into three categories
(weak [lowest 33% of SCdwi- streamline-density], moderate
[middle 33%] and strong [top 33%]) similar to the three
classes of strength in the CoCoMac database, again
revealed a positive relationship between DWI and CoCo-
Mac connectivity strength (chi-squared: 22.24,
P 5 1.8 3 1024).

Comparison of Connectivity Strength Derived

from DWI-NOS and Markov–Kennedy

Comparing connectivity strength derived from macaque
diffusion MRI to the Markov–Kennedy quantitative infor-
mation on projection strength also revealed a positive rela-
tionship, showing a significant correlation between SCdwi-

streamline-density and SCtract-FLNe (log transformed, P 5 2.4407
3 10205, r 5 0.2620, Fig. 3). Furthermore, similar to the
analysis of the CoCoMac data, taking streamline density
SCdwi- streamline-density (dividing off volume of the con-
nected regions from raw NOS count) as a metric of DWI
connectivity strength again revealed a positive (and again
slightly stronger) association (SCdwi- streamline-density versus
SCtract-FLNe, log transformed, P 5 8.28 3 10207, r 5 0.3040,
Fig. 3, Including spatial distance as a covariate:
p 5 2.4 3 1026, r 5 0.29).

Association between Metrics of White Matter

Complexity and tract-Tracing Strength

As a post hoc examination of the specificity of the
observed effect between SCtract and SCdwi-NOS values a
comparison between tract-tracing strength (SCtract-CCM-

majority, SCtract-CCM, SCtract-FLNe) and metrics of white mat-
ter integrity (FA, MD, and RD) of the reconstructed tracts
was performed. In contrast to the evaluation of NOS, cor-
relation analysis revealed no associations between tract-
tracing strength and FA (FA to SCtract-CCM P 5 0.8448,
Jonckheere–Terpstra | FA to SCtract-CCM P 5 0.3203 linear
regression; FA to SCtract-FLN P 5 0.0302 linear regression).
Interestingly, a negative correlation was observed between
CoCoMac connectivity strength and DWI derived MD
(P 5 0.0056, r 5 0.1661) and RD (P 5 0.0062, r 5 0.1642; see
Supporting Information Figure 3), an effect also observed
between FLNe weights of the Markov–Kennedy data and
DWI MD (P 5 0.0004, r 5 0.2198) and DWI RD (P 5 0.0018,
r 5 0.1957; Supporting Information Figure 4). These

Figure 2.

(A) A positive relationship (P< 0.05, linear regression) between

CoCoMac derived connectivity strength and DWI derived con-

nectivity strength was verified in the analysis in which axon density

strength from CoCoMac was taken as a majority vote (resulting in

three strength categories of connections of 1 [weak], 2 [moder-

ate], and 3 [strong] projections, see Methods). A significant

increasing staircase pattern of NOS connectivity strength was

observed across the three CoCoMac strength categories (Jonck-

heere–Terpstra test, P 5 0.0013). (B) Correlation analysis

revealed a positive correlation between connection strength as

derived from DWI (weights reflecting log of NOS) and as derived

from CoCoMac (estimation of continuous values derived from

averaging of ordinal strength values across reported studies). (C)

Correlation analysis between NOS density values and CoCoMac

strength values similarly revealed a significant, positive association.
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findings suggest strong connections to display a relatively
lower MD/RD (reflecting a higher white matter complex-
ity) than weak pathways. With no clear correlation
between NOS and RD or MD values (P 5 0.77) present in
the DWI data, this effect suggests a relative unique contri-
bution to the explained variance of tract-tracing weights.

Indeed, a multilinear model with both SCdwi-NOS and
SCdwi-RD as independent variables, explained more var-
iance in both the CoCoMac and Markov–Kennedy data-
sets: the total amount of explained variance in the
CoCoMac data increased by a factor of 1.39 as compared
to SCdwi-NOS alone, with both SCdwi-NOS (P 5 0.0002) and
SCdwi-RD (P 5 0.0132) as significant unique predictors [1.29
in a SCdwi-NOS 1 SCdwi-MD model, with SCdwi-NOS

(p 5 5.0 3 1024) and SCdwi-MD (P 5 0.0327)]. Similarly, the
total amount of explained variance in the Markov–Ken-
nedy FLNe data increased by a factor of 1.83 as compared
to SCdwi-NOS alone, with both SCdwi-NOS (P< 0.001) and
SCdwi-RD (P 5 0.0151) as significant unique predictors [1.42
in a SCdwi-NOS 1 SCdwi-MD model, with SCdwi-NOS

(P< 0.0001) and SCdwi-MD (P 5 0.0202)].

Edge Classes

The association between DWI NOS and tract-tracing
strength was found to be relatively consistent across differ-
ent types of selected subsets of edges across the network.
Examining the SCdwi-streamline-density–SCtract-CCM association
for short-range (shortest 33%), mid-range (33–66%) and
long-range (top 33%) connections in a post hoc analysis
again revealed positive correlations, with mid-range tracts
(p 5 7.5 3 1024, r 5 0.46) showing the strongest effect
(short: p 5 3.6 3 1024, r 5 0.35; long: P 5 0.065 ns, r 5 0.20;
data shown in Supporting Information Figure 2). Similar
results were found with the Markov–Kennedy data, with
mid-range tracts again showing the strongest effect (short-
range: r 5 0.18, P 5 0.0747 ns; mid-range: r 5 0.38,
p 5 2.9 3 1024; long-range: r 5 0.28, P 5 0.0211).

In addition, examining the association between SCdwi

and SCtract-CCM for intramodular connections (describing
edges spanning between nodes of the same node commun-
ities) versus intermodular connections (describing edges
spanning between nodes of different modules) both
revealed a positive correlation (p 5 2.9 3 1024, r 5 0.34, and
p 5 7.3 3 1024, r 5 0.26 respectively). Overlapping results
were observed for intramodular connections in the Mar-
kov–Kennedy data (p 5 1.2 3 1025, r 5 0.34), but the rela-
tionship SCdwi-streamline-density–SCtract-FLNe did not reach
significance for intermodular connections (P 5 0.15 ns,
r 5 0.15; data shown in Supporting Information Figure 6).

DISCUSSION

This study reports on a positive association between
DWI-derived number of reconstructed fiber streamlines
(NOS) and connectivity strength of interareal pathways as
derived from tract-tracing data in the macaque brain.
Extending previous studies focusing on the spatial overlap
between DWI and tract-tracing derived connectome maps
our findings show a positive association between connec-
tivity strength of anatomical pathways as measured by
DWI and as measured by tract-tracing. Our study suggests
that MR derived pathways with a higher NOS count
reflect -to some level- pathways with a higher fiber density
and/or axonal tract volume.

The observed association with tract-tracing connectivity
strength was found to be the strongest for the number of
reconstructed streamlines NOS, with RD or MD explaining
additional variance in a combined model; no clear associa-
tion was found between FA and tract-tracing strength.

Figure 3.

(A) Correlation analysis between DWI-derived and tract-tracing

derived metrics of projection strength of interareal white matter

connections as provided by the high-quality quantitative dataset

of Markov and Kennedy and coworkers [Markov et al., 2012];

(see Methods), revealed a positive correlation between DWI

number of streamlines NOS and tract-tracing metrics of connec-

tivity strength FLNe (P 5 2.4407 3 10205, r 5 0.2620, both val-

ues log10 transformed). (B) Correlation analysis between

streamline density and FLNe strength similarly revealed a posi-

tive, significant association.
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This suggests that NOS provides information about con-
nectivity strength not provided by FA, information that is
above and beyond information provided by RD and MD.
Findings suggest DWI NOS and streamline density to be
fairly accurate markers for in vivo assessment connectivity
strength. The clearest relationships between DWI derived
and tract-tracing derived data were observed for log trans-
formed data, and although the biological underpinnings of
this type of distribution in context of connectivity data
remains unclear, this is in support of a suggested lognor-
mal distributions of connectivity strength in the mamma-
lian brain [Bota et al., 2015; Hagmann et al., 2008; Markov
et al., 2012; Oh et al., 2014; van den Heuvel and de Reus,
2014; van den Heuvel et al., 2015]. Taken together, our
observations suggest that reconstructed number of tractog-
raphy streamlines may include a useful approximation for
axonal number in in vivo DWI connectome studies. Future
studies further examining this potential validation of DWI
NOS and streamline density using other connectome data-
sets (as for example the highly detailed connectome maps
of the mouse [Oh et al., 2014] and rat brain [Bota and
Swanson, 2007; Bota et al., 2015]) would be of high
interest.

Our findings are encouraging for DWI derived metrics
of connectivity strength to be considered as a valid marker
for in vivo assessment of white matter connectivity
strength. However, for a fair discussion, a number of tech-
nological issues on both methodologies have to be consid-
ered when interpreting the results of our cross-modality
comparison. First, our study is limited to the evaluation of
cortical tracts only and does thus not include information
on DWI and tract-tracing strength of subcortical–cortical
tracts. The current study builds on our previous work [Li
et al. 2013] in which detailed cortical surface meshes of the
macaque cortex were reconstructed, which were then used
(in this study) as initial network nodes in the reconstruc-
tion of the connectivity networks. Reconstruction of white
matter pathways around subcortical regions are known to
be particular challenging (and thus more sensitive to mak-
ing incorrect reconstructions) as many white matter fiber
bundles (such as spino-thalamic cortical tracts) pass
through a series of nuclei with touching boundaries, mak-
ing the correct reconstruction of the complex wiring archi-
tecture around subcortical regions even more difficult. In
addition to this, information on tract-tracing data between
sub-cortical structures and between sub-cortical and corti-
cal structures is sparse for the CoCoMac database and
absent in the case of the Markov–Kennedy data. To avoid
the inclusion of any additional variation by including only
sparsely and noisy sampled data we limited our evalua-
tion to cortico-cortical tracts in this study.

In this context, it is generally noted that the analysis of
DWI data may lead to false positive and false negative
reconstructions of pathways [de Reus and van den Heu-
vel, 2013; Johansen-Berg and Rushworth, 2009]. Current
local modeling algorithms (still) have difficulty recon-
structing the correct diffusion/fiber directions in white

matter voxels of complex fiber architecture and in voxels
near cortical gray matter areas. It has been mentioned that
the nature of (deterministic) fiber tracking—starting seeds
in each part of the white matter and using hard evaluation
and stopping criteria—has been suggested to lead towards
a possible overestimation of weights on long-range tracts
[Hagmann et al., 2008], as well as an increasing difficulty
of correctly completing long-range tracts [Jbabdi and
Johansen-Berg, 2011; Johansen-Berg and Rushworth, 2009;
Jones, 2008; van den Heuvel et al., 2012]. As a result, DWI
approaches have been reported to result in consistent con-
nectome reconstructions in test–retest examinations, but
also ones in which certain classes of connections are sys-
tematically underrepresented and others overrepresented
[Bassett et al., 2011; Zalesky et al., 2010]. In this study,
high-quality DWI data (in total 600 directions) combined
with a GQI (see Methods) [Yeh et al., 2010] was used to
allow for the reconstruction of multi-orientation fiber con-
figurations. This to provide (some) resolving power in
voxels where the diffusion signal is complex, for example
in places of spraying, kissing or bending fibers [Yeh et al.,
2010]. Several other methods to resolve complex diffusion
orientations and to reconstruct fiber pathways have of
course been proposed and would be equally promising to
examine in context of tract-tracing connectivity strength.
Although a comparison between different diffusion recon-
struction and tractography methods is not the main topic
of our study, an examination of the class of (also often-
used) probabilistic reconstruction methods for DWI data
with respect to tract-tracing strength would be of interest.
In a previous publication of our group [Li et al., 2013],
probabilistic tractography as implemented in the FMRIB’s
Diffusion Toolbox (FDT, http://www.fmrib.ox.ac.uk/fsl/)
[Behrens et al., 2007, 2003] was used to reconstruct white-
matter cortico-cortical connections of the macaque macro-
scale connectome. FDT was used to reconstruct the diffu-
sion probability density functions in each brain voxel,
combined with tractography starting 1000 streamline seeds
per cortical vertex in each of the 300 starting regions on
the cortical sheet (being the same 300 starting regions as
used in this study, see Methods). Next, per specimen a
connectome map was formed using the derived
“probabilistic streamlines” [Li et al., 2013], with probabilis-
tic streamline count taken as weights for the reconstructed
interareal pathways. Here, in an additional analysis we
translated these computed probabilistically weighted con-
nectome maps to the WBB47 39 3 39 cortical atlas (using
the same procedure as in our deterministic approach) and
correlation analysis again revealed a significant, positive
correlation between DWI derived connectivity strength
and tract-tracing measurements of connectivity strength, in
both the CoCoMac dataset (P 5 1.5657 3 10204, r 5 0.1715)
and the Markov–Kennedy dataset (P 5 3.3702 3 10209,
r 5 0.2442; data shown in Supporting Information
Figure 5).

Second, it should be considered that (collated) tract-
tracing datasets also have their limitations, further
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complicating a direct comparison of tract-tracing to DWI.
Tract-tracing methodology, similar to DWI analysis, is also
sensitive to producing false-positive and false-negative
tract reconstructions [Oh et al., 2014]. Indeed, for some
tracts, studies in CoCoMac explicitly report their presence,
while others explicitly report their absence. In this study,
we minimized the effects of false positives (i.e., reported
tracts that are not truly anatomically present) by including
only those tracts that were found present in the majority
of study reports and/or specimens, and by focusing our
analysis on tracts consistently observed in both DWI and
tract-tracing reconstructions. In this context, it is important
to note that—as being the case in many tract-tracing based
connectome reconstructions—both the CoCoMac and Mar-
kov–Kennedy reconstructed macaque connectome maps
are based on a collation of data across a large number of
specimens, combining data into one single connectome
map, thus largely ignoring inter-subject variability and
hemispheric asymmetry. As a result, collated tract-tracing
connectome maps do not take into account individual vari-
ation in connectivity layout and strength. Moreover, in
particular the CoCoMac database includes data from a
wide range of types of experiments, combining data across
anterograde or retrograde viral tracer techniques, multiple
parcellation atlases, multiple macaque species and varying
experimental settings. As a result, notwithstanding CoCo-
Mac being a well-respected and often used database for
assessing information on macaque brain connectivity (e.g.
[Harriger et al., 2012; Modha and Singh, 2010; Shen et al.,
2012; Sporns, 2011; Stephan et al., 2001]), it has to be kept
in mind that the database contains a somewhat
“potpourri” of information on interareal connectivity of
the macaque brain. The Markov–Kennedy tract-tracing
dataset contains data from (mostly) a single macaque spe-
cies and has been acquired in as consistent experimental
settings as possible. In addition, considering that our per-
formed DWI versus tract-tracing comparison involves a
cross-correlation between independently acquired data-
sets—with a comparison between tract-tracing and DWI in
the same specimens perhaps including a more optimal
(but very difficult to perform in a connectome perspective)
approach—no correction regarding potential differences in
demographics between the datasets is/can be performed.
MRI acquisition involved data of 10 macaques (all macaca
mulatta, mean age 14 years), but information on demo-
graphics of the tract-tracing datasets is sparse. As men-
tioned, CoCoMac includes a collation of data across a large
number of studies, with information on age-range and
gender being present in only a small percentage of studies
(<10%). The majority of the Markov–Kennedy data is
reported to include adult specimens, with some samples
in developing stages. With development and aging
reported to have a clear effect on white matter integrity in
both human and primate species (e.g. [Bennett et al., 2010;
Betzel et al., 2014; Chen et al., 2013; Sexton et al., 2014])
this is a limiting factor of our DWI versus tract-tracing
comparison. However, to give a complete picture, it is

worth to note that the far majority of these DWI studies
that report on development and aging to have a modulat-
ing effect on white matter microstructure (in diffusion
MRI approximated by FA and/or MD/RD), rather than
on NOS. It is for the latter that we find the most clear rela-
tionship with tract-tracing metrics of connectivity
strength.

As a general third methodological remark, it is important
to realize that both connectome reconstructions are likely to
include false positive and false negative reconstructions.
Indeed, although not the focus of our investigation (as binary
overlap has been the topic of other studies, e.g., [Azadbakht
et al., in press; Dauguet et al., 2006; Dauguet et al., 2007;
Dyrby et al., 2007; Thomas et al., 2014]), we note that the
reconstructed DWI and tract-tracing connectome maps are
far from perfectly aligned. Some connections were only
observed in the tract-tracing data and others only observed
in the DWI reconstructions. Computing the level of binary
overlap did reveal significant overlap between the tract-
tracing and DWI derived connectome maps (SCtract-CCM and
SCdwi-NOS: 59.3% Matthew’s correlation coefficient
(MCC) 5 0.24, P 5 1.0202 3 10209 | SCtract-FLNe and SCdwi-

NOS: 52.6%, MCC 5 0.2305, P 5 7.9696 3 10211), but the total
level of overlap is modest (see Supporting Information for
computation of overlap and additional analysis). In this con-
text, we report that (as previously noted [Markov et al.,
2012]) the level of overlap between macaque connectome
maps derived from CoCoMac and Markov–Kennedy was
significant, but relatively low (overlap of 63.1%, MCC 5 0.30,
P< 0.001), with the Markov–Kennedy data identifying
previously unobserved interareal tracts (see [Markov et al.,
2012]). Nevertheless, testing Markov–Kennedy strength
across the three different CoCoMac classes in a post hoc
analysis revealed a clear significant staircase pattern (with
group average Markov–Kennedy weights of CoCoMac
Class 3 being 2.3 times higher than Class 2, and Class 2
being 2.06 times higher than values of Class 1, Jonckheere–
Terpstra test, P< 0.0001) and correlation analysis between
CoCoMac interpolated connectivity strength values and
Markov–Kennedy weights across tracts observed in both
datasets also revealed a significant, positive association
(SCtract-CCM versus log transformed SCtract-FLNe, P 5 2.6221
3 10207, r 5 0.3310).

In this technical note, we report on a simple but poten-
tially important correlation between in vivo diffusion MRI
derived number of tractography streamlines and tract-
tracing projection strength. Our findings provide evidence
of the number and density of tractography streamlines of
DWI reconstructions of macroscale connectome pathways
to form a valid in vivo approximation of white matter tract
strength. Our comparison of tract-tracing to DWI-derived
NOS may thus provide confidence for a growing number
of studies that use DWI techniques to map connectome
changes in disease, reporting alterations of reconstructed
number of streamlines and accompanying brain network
alterations in a wide variety of neurological and psychiat-
ric disorders.
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