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Abstract: The study on structural brain asymmetries in healthy individuals plays an important role in
our understanding of the factors that modulate cognitive specialization in the brain. Here, we used
fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346
healthy participants (20–86 years) and performed a graph theoretical analysis to investigate this brain
laterality from a network perspective. Findings revealed that the left hemisphere is significantly more
“efficient” than the right hemisphere, whereas the right hemisphere showed higher values of
“betweenness centrality” and “small-worldness.” In particular, left-hemispheric networks displayed
increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemi-
sphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial
attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we
observed significant gender differences in measures of global connectivity. By analyzing the structural
hemispheric brain networks, we have provided new insights into understanding the neuroanatomical
basis of lateralized brain functions. Hum Brain Mapp 35:4944–4957, 2014 VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Hemispheric lateralization in the human brain has been
a constant focus of interest in different fields of neuro-
sciences. The hemispheres of the human brain are func-
tionally and structurally asymmetric. The study of such
asymmetries provides important clues to the neuroana-

tomical basis of lateralized brain functions [see for review,
Toga and Thompson, 2003]. Diffusion tensor imaging
(DTI) [Basser et al., 1994; Jones and Leemans, 2011; Tour-
nier et al., 2011] provides a validated and sensitive way of
identifying hemispheric changes in brain white matter
(WM). In that context, WM asymmetries have been
observed, mainly focusing on the arcuate fasciculus
because of its relationship to hemispheric specialization of
language [e.g., Buchel et al., 2004; Catani et al., 2007; Nuci-
fora et al., 2005; Rodrigo et al., 2007; Takao et al., 2011;
Thiebaut de Schotten et al., 2011; Vernooij et al., 2007].
Other DTI studies have explored fractional anisotropy
asymmetry in the cingulum [e.g., Gong et al., 2005;
Kubicki et al., 2003; Takao et al., 2011], corticospinal tract
[e.g., Park et al., 2004; Westerhausen et al., 2007], and unci-
nate fasciculus [Kubicki et al., 2002]. Our understanding of
structural asymmetries is still largely limited to the level
of individual structures. In the present study, we decided
not to focus on these regional asymmetries, but instead
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concentrate on the capacity of information flow within and
between regions of a hemisphere, by investigating the
hemispheric structural network with a graph theoretical
approach [Hagmann et al., 2008].

It has been suggested that some aspects of brain asymme-
tries also interact with gender. For example, gender differen-
ces have been reported in the structural asymmetry of the
planum temporale, with greater asymmetries in males
[Jancke et al., 1994; Kulynych et al., 1994]. These gender dif-
ferences in brain asymmetries have been proposed as the
underlying origin of gender differences in lateralized behav-
iors, such as motor and visuospatial skills, and linguistic
performance. Furthermore, hemispheric asymmetry reduc-
tion in older adults (known as the HAROLD effect), inter-
preted as a compensatory neural mechanism to counteract
age-related efficiency decline, has been frequently reported
in studies of functional brain aging [Cabeza 2002; Cabeza
et al., 1997, 2004; Morcom et al., 2003; Reuter-Lorenz et al.,
2000]. To date, very scant data is available regarding WM
asymmetries and its potential changes with age [Ardekani
et al., 2007; Hsu et al., 2008, 2010; Kovalev et al., 2003; Lebel
et al., 2008]. For example, Ardekani et al. [2007] found that
hemispherical anisotropy decreases with age. It has been
suggested that this loss of asymmetry is associated with a
loss of myelinated nerve fibers. Despite these advances in
brain asymmetry research, however, little is known about
whether there are differences in the topological organization
of brain networks between the hemispheres and whether
those differences are related to age and gender.

In the present study, the structural network dissimilar-
ities will be characterized by means of a graph theoretical
analysis [for review, see Bullmore and Sporns, 2009],
which provides a novel way to explore topological and
geometrical properties of brain networks, such as cluster-
ing coefficient, small-worldness, efficiency, and path
length [Rubinov and Sporns, 2010]. To date, only a few
studies have examined hemisphere-related differences in
the topological organization of brain networks. Iturria-
Medina et al. [2011] used diffusion-weighted MR tractog-
raphy in 11 healthy subjects (23–38 years); it was found
that the right hemisphere is more efficient and intercon-
nected than the left hemisphere [Iturria-Medina et al.,
2011]. Another study [Tian et al., 2011] reported a gender-
hemisphere interaction in functional brain networks of 86
young, healthy adults (17–25 years) using resting-state
functional MRI. Specifically, they found that compared
with females, males have a higher normalized clustering
coefficient in the right hemispheric network but a lower
clustering coefficient in the left hemispheric network.

However, to our knowledge, no study currently exists in
which structural network dissimilarities between hemispheres
and their associations with both gender and age have been
investigated. In the present study, we analyzed the left and
right hemispheric networks of a large cohort of 346 healthy
participants (20–86 years) with a graph theoretical approach.
After constructing hemispheric networks for each participant,
we further calculated topological parameters, such as small-

worldness, local efficiency, and betweenness centrality and
investigated their associations with gender and age.

MATERIALS AND METHODS

Participants and MRI Data Acquisition

The present study included data from 346 normal sub-
jects and were separated into three age groups, defined by
the 33rd and 66th percentile to obtain an equal distribution
of the number of subjects across the three age groups: (a)
20.17–42.21 years (young adults, 112 subjects, 63 males, 49
females), (b) 42.22–60.92 years (middle-aged adults, 116 sub-
jects, 54 males, 62 females), and (c) 60.93–86.20 years (older
adults, 118 subjects, 52 males, 66 females). The data of all
subjects are part of the Information eXtraction from Images
data base, which is made publically available by the Impe-
rial College London (http://biomedic.doc.ic.ac.uk/brain-
development/index.php?n=Main.Datasets). All subjects that
participated in this study had no history of neurological
and psychiatric disorders. Informed consent was obtained
from each subject, and Ethical approval was granted by the
Thames Valley MREC. Diffusion tensor images were
acquired with a Phillips 3T system using the following
parameters: single shot spin-echo; TR 12,000 ms; TE 51 ms;
slice thickness 2 mm; voxel size 5 1.75 3 1.75 3 2 mm3.
Diffusion gradients were applied along 14 noncollinear
directions with a b-value of 1000 s/mm2. Additionally, one
nondiffusion weighted image (b 5 0 s/mm2) was acquired.

DTI Preprocessing

The DTI data were preprocessed in ExploreDTI [Lee-
mans et al., 2009] and consisted of the following steps: (a)
the diffusion data were corrected for subject motion and
eddy-current induced geometrical distortions [Leemans
and Jones, 2009] and (b) the diffusion tensors were calcu-
lated using the RESTORE approach [Chang et al., 2005].
More detailed descriptions of these steps can be found
elsewhere [Caeyenberghs et al., 2010a, b, 2011].

WM Tractography

For each individual dataset, WM tracts of the brain net-
work were reconstructed (Fig. 2A) as described previously
[Basser et al., 2000]. Fiber pathways were generated by
starting seed points sampled uniformly throughout the data
at 2-mm isotropic resolution. Trajectory propagation was
terminated if fractional anisotropy (FA) < 0.2 or if the angle
between consecutive steps exceeded 45 degrees. The step
size was set at 1 mm.

Construction of the Left and Right Hemispheric

Networks

The whole-brain fiber tract reconstructions of the previous
step were segmented into left and right hemispheric

r Hemispheric Lateralization in Structural Brain Networks r

r 4945 r

http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Datasets
http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Datasets


networks, each containing the same number of homologous
regions of the automated anatomical labeling atlas [Fig. 2B,
AAL, Tzourio-Mazoyer et al. 2002]. Using this procedure,
we obtained 45 cortical and subcortical regions for each
hemisphere, each region of interest (ROI) representing a
node of a hemispheric network (see Figs. 1 and 2C), and the
edges between two nodes reflecting a reconstructed WM
tract. Important to note, all reconstructed data were visually
checked for registration accuracy for each subject. We rein-
spected the data in three orthogonal planes to ensure that
the registration has been performed correctly and that no
additional artifacts have been introduced into the data.

Interregional connectivity was then examined by deter-
mining the percentage of tracts (number of fiber connec-
tions normalized for the total number of tracts—so that
results were not skewed by raw fiber count) between any
two labels (i.e., any two regions of the AAL template

within a hemisphere) [Hagmann et al., 2008]. This value
became the edge weight in the connectivity matrix. Besides
these weighted graph analyses, a binary network analysis
was performed, whereby we only considered the exis-
tence/absence of fiber pathways. More specifically, the
network edges were defined as 1 if there was at least one
connection between both regions and as 0 otherwise [Hag-
mann et al., 2008; Shu et al. 2009]. As a result, for each
participant, there were four connectivity matrices: for both
hemispheres the “percentage of tracts” and “binary” (each
represented by a symmetric 45 3 45 matrix, Fig. 2C).

Graph Theory Analysis

We used the Brain Connectivity Toolbox [Rubinov and
Sporns, 2010; https://sites.google.com/site/bctnet/] to

Figure 1.

Cortical and subcortical regions for each hemisphere (upper panel left hemisphere, lower panel

right hemisphere, 45 nodes in each hemisphere) as anatomically defined by a prior template

image in standard stereotaxic space. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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compute several network metrics including measures of
network segregation (e.g., clustering coefficient), integra-
tion (e.g., path length and efficiency), and centrality (e.g.,
betweenness centrality). These metrics were quantified at
both the network and regional levels. The equations to cal-
culate each of these measures can be found in Rubinov
and Sporns [2010]. We only provide brief definitions for
each of the network properties used in this study.

The small-worldness of a structural network has two
key metrics: the clustering coefficient C and the character-
istic path length L of the network. The clustering coeffi-
cient of a node represents the number of edges that exist
between its nearest neighbors. The clustering coefficient of
a network is thus the average of clustering coefficients
across nodes and is a measure of network segregation. The
characteristic path length of a network is the average
shortest path length between all pairs of nodes in the net-
work and is the most commonly used measure of network
integration [Rubinov and Sporns, 2010]. Global efficiency
is inversely related to characteristic path length: networks

with a small average characteristic path length are gener-
ally more efficient than those with large average character-
istic path length. We also calculated regional efficiency as
a standard nodal connectivity measures. Regional effi-
ciency is the global efficiency computed for each node
[Sporns and Zwi, 2004].

To evaluate the topology of the constructed hemispheric
networks, these parameters were compared to the corre-
sponding mean values of a benchmark random graph
[Maslov and Sneppen, 2002]. Thus, the small-worldness
index of each hemispheric network was obtained as [C/
Crand]/[L/Lrand], where Crand and Lrand are the mean clus-
tering coefficient and the characteristic path length of ran-
dom networks [Bassett and Bullmore, 2006]. In a small-
world network, the clustering coefficient is significantly
higher than that of random networks (C/Crand ratio
greater than 1), whereas the characteristic path length is
comparable to random networks (L/Lrand ratio close to 1).

Finally, betweenness centrality was calculated as mea-
sure of centrality, which is based on the idea that central

Figure 2.

Structural networks were explored using graph theory through

the following steps: (A) First, for each DTI dataset a whole-

brain tractography was performed using ExploreDTI. (B) Then,

we defined the network nodes as the regions of the AAL tem-

plate for each hemisphere. Each hemispheric network contained

the same number of homologous regions of the AAL, that is, 45

regions. (C) We next determined a continuous measure of asso-

ciation between nodes. This was the percentage of tracts

between each pair of regions of the AAL template, resulting in

two 45 3 45 connectivity matrices for each subject, one for the

left hemisphere and the other for the right hemisphere. Finally,

from the hemispheric networks, measures of local and global

connectivity were computed. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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nodes participate in many short paths within a network
and consequently act as important controls of information
flow [Rubinov and Sporns, 2010].

Statistical Analysis

To determine whether there were significant differences
in any of the global network parameters, the general linear
model procedure was used to perform a three-way
repeated-measures analysis of variance (ANOVA) with
gender (male, female) and age group (young adults,
middle-aged, elderly) as a between-subject factor, and
hemisphere (right, left) as a repeated-measures factor. Sig-
nificant main and interaction effects were further explored
by post hoc tests using Tukey correction.

The statistical analyses for the regional nodal parameters
were similar to those for global network parameters. In
brief, a three-way repeated-measures ANOVA was used to
determine the significant differences in the three regional
nodal parameters. If the hemisphere main effect survived
the threshold, a paired t-test was performed to identify
which brain regions exhibited rightward of leftward asym-
metries. Bonferroni corrections for multiple comparisons
were made (hence P < 0.001 was considered significant
following correction for the node-specific analyses regard-
ing the 45 regions). If the main effect of age group or gen-
der survived the statistical threshold, further t-tests were
performed. The threshold for all these tests was set at P <
0.0005 (90 regions). All statistical analyses were performed
with the Statistica software (StatSoft).

RESULTS

Overall Organization of the WM Networks

In this study, we constructed structural networks based
on separate hemispheres rather than on the whole brain.
We found that the normalized clustering coefficients c
were larger than one (i.e., the clustering coefficients for
these networks were larger than those of their matched
random networks) and the normalized path lengths k

were nearly one (i.e., the path lengths of these networks
were comparable to those of their matched random net-
works) for 12 subgroups (3 age groups 3 2 hemispheres 3

2 genders) of structural networks. When evaluating the
global network parameters using a summary parameter
“small-worldness” r 5 c/k, we observed that r was larger
than one in our 12 subgroups of structural networks.
Thus, these hemispheric networks exhibited prominent
small-world properties, consistent with previous whole-
brain structural network studies [Gong et al., 2009; Hag-
mann et al., 2007, 2008; Iturria-Medina et al., 2008].

Furthermore, using the three-way repeated-measures
ANOVA, we found that the overall normalized clustering
coefficient c, normalized path length k, and the small-
worldness r, showed significant differences between age
groups and hemispheres (see Table I). More specifically,
we found increased values of c, k, and r in the structural
networks of the right hemisphere as compared to the left
hemisphere. Using post hoc (Tukey) testing, we observed
that the older adults (age group 3) showed increased val-
ues of c, k, and r in their networks as compared to the
young adults (age group 1) (all corrected P’s < 0.05).

Global Efficiency of the Structural Networks

Our results showed that the global efficiency of struc-
tural networks using binary networks of the brain was
affected by gender, hemisphere, and age group (see Table
I). We found that males had greater global efficiencies
than females. Moreover, there was an interaction between
hemisphere and age group (Table I, indicated by a). Post
hoc Tukey revealed that the global efficiency was the high-
est for the left hemisphere of the young adults (all P’s <
0.001). The global efficiency of the right hemisphere of the
young adults demonstrated also a higher global efficiency
than the right hemisphere of the elderly (P < 0.001). Tukey
post hoc tests showed that the global efficiency of the left
hemisphere of middle-aged adults was higher than for the
right hemisphere of the middle-aged adults (P < 0.001)
and both hemispheres of older adults (right: P < 0.001;
left: P < 0.01). Finally, the left hemisphere of the group of

TABLE I. Hemispheric, age group, and gender effect on global and local network parameters revealed by a three-

way repeated-measures ANOVA

g k r Eglob Bc Eloc

Hemisphere effect F-value 255 253 223 71.69 277 271
P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Age group effect F-value 6.07 3.95 6.65 15.54 4.94 6.27
P-value <0.001 <0.05 <0.001 <0.001 <0.01 <0.001

Gender effect F-value 16.13
P-value <0.001

Interaction F-value 3.63a

P-value <0.05

aOnly one interaction was significant, that is, the hemisphere by age group for global efficiency.
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the elderly revealed a higher global efficiency than the
right hemisphere (P < 0.001).

Betweenness Centrality of the Structural

Networks

First, a three-way repeated-measures ANOVA demon-
strated a significant main effect of hemisphere and age
group on the betweenness centrality (as shown in Table I).
We found that betweenness centrality of the right hemi-
spheric networks was higher than for the left hemispheric
networks. Compared with young adults, elderly showed
significant greater betweenness centrality (P < 0.01).

Regional Nodal Properties of the Hemispheric

Networks

For regional measurements, local efficiency was computed
using the binary networks. We considered only local effi-
ciency as network property in these analyses to reduce Type
I errors and it has been suggested to be the most important
measure of network analysis [Rubinov and Sporns, 2010].

Two-way repeated-measures ANOVA revealed a signifi-
cant age effect and hemisphere effect on local efficiency
(as indicated in Table I). The left hemisphere was signifi-
cantly more efficient than the right hemisphere. Further-
more, post hoc Tukey testing revealed that the young
adults revealed higher values of local efficiency than the
elderly (all P < 0.001). No significant main effect of gender
or significant interaction effects were found.

Paired t-tests for the hemisphere effect were performed
to further determine the regional differences. Bonferroni
corrections for multiple comparisons were made, hence P
< 0.001 was considered significant following correction for
the node-specific analyses regarding the 45 regions.

Twenty eight brain regions exhibited significant left-
greater-than-right asymmetries (Fig. 3 and listed in Table
II) mainly involving regions of the heteromodal or unimo-
dal association cortex. To investigate the interregional
changes in topological properties and connectivity, we
used the functional brain divisions described by Mesulam
[1998]. The 28 brain regions were grouped into five major
divisions: association, paralimbic, limbic, primary, and
subcortical. Association division consisted of 14 brain
regions, paralimbic had six, limbic one region, four sub-
cortical regions, and primary had three brain regions.

Regions including two paralimbic regions (middle cin-
gulate gyrus and parahippocampal gyrus), and three
regions of the association cortex (the fusiform gyrus,
supramarginal gyrus, and angular gyrus) were identified
as regions with significant right-greater-than-left asymme-
tries, as shown in Table II.

In addition, t-tests for the age effect were also per-
formed for each region to evaluate the differences between
young and old adults at the regional level. The threshold
for all tests was set at P < 0.0005 (90 regions). Both nega-
tive (young adults > old adults) and positive (young
adults < old adults) age effects were found on the regional
efficiency in the individual regions across both hemi-
spheres (see Fig. 4 and Table III). Lower nodal efficiency
in older adults as compared to young adults was located
in 11 regions of the heteromodal or unimodal association
cortex (bilateral middle frontal gyrus, bilateral triangular
part of the inferior frontal gyrus, bilateral middle occipital
gyrus, bilateral inferior occipital gyrus, right superior occi-
pital gyrus, left inferior parietal gyrus, and left angular
gyrus), 4 subcortical regions (bilateral caudate nuclei and
bilateral thalamus), 1 paralimbic region (right orbital part
of the middle frontal gyrus), and 1 limbic region (olfactory
cortex). By contrast, higher regional efficiency in old adults
as compared to young adults was observed in four

Figure 3.

Image depicting significant main effect of hemisphere on efficiency.

Size of the ROIs (spheres) represents value of the nodal efficiency

for the right and left hemispheric network, collapsed across age

groups. The colors of the nodes refer to: blue: regions with signifi-

cant left-greater-than-right asymmetries (P < 0.001), yellow:

regions with significant right-greater-than-left asymmetries (P <
0.001), green: not significant. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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paralimbic regions (bilateral middle cingulate gyrus, bilat-
eral posterior cingulate gyrus) and one region of the asso-
ciation cortex (left precuneus).

DISCUSSION

In the present study, we analyzed the left and right
hemispheric networks of a large cohort of 346 healthy par-
ticipants (20–86 years) with a graph theoretical approach.
The principal goal was to determine the differences in the
topological organization of brain networks between the
hemispheres. Additionally, interactions between age and
gender were also explored, as discussed next.

Small-Worldness of the Hemispherical Networks

A small-worldness topology is responsible for a high
efficiency with a low wiring cost, and this kind of organi-

zation is actually shared by many networks in social, tech-
nological, information, or biological domains [Barabasi and
Albert, 1999]. This kind of network organization is also
highly suitable for human brain networks, allowing both
segregation and integration of information [Bullmore and
Sporns, 2009; Guye et al., 2010]. Our results have shown
the “small-worldness” for the 12 subgroups (3 age groups
3 2 hemispheres 3 2 genders) of structural networks. This
finding is consistent with previous whole-brain structural
network studies using diffusion tractography in normal
adults [Gong et al., 2009; Hagmann et al., 2007, 2008;
Iturria-Medina et al., 2008] and in patient populations [Lo
et al.; 2010; Shu et al., 2009, 2011; van den Heuvel et al.,
2010; Wen et al., 2011].

However, compared with the small-world properties of
matched random networks, an increased normalized path
length and clustering coefficient (along with an increase in
small-worldness) was observed in the networks of the
older adults and right-hemisphere networks. Given that
the small-world topology is an optimal balance between
local specialization and global integration as networks
evolved over time to cope with high complexity of
dynamic behavior [Bullmore and Sporns, 2009], our find-
ings of increased normalized path length/clustering coeffi-
cient and small-worldness in these networks indicate a
shift away from an optimal “small-world” network organi-
zation toward an imbalanced structural architecture with a
more random configuration, in which all nodes have
roughly the same number of connections.

Right-Hemispheric Networks are Less Efficient

A significant leftward asymmetry on measures of effi-
ciency and interconnectivity was found. Interestingly, we
observed that the right hemisphere presents a higher
betweennes centrality than the left hemisphere. When con-
sidered in combination with the small-world characteris-
tics, efficiency, and betweenness centrality results of the
right hemisphere, this induces us to think that the configu-
ration in the right hemispheric network is less optimal for
information processing. Small-world characteristics were
different between the two cerebral hemispheres. Com-
pared to the left hemisphere, the right hemisphere showed
greater normalized clustering coefficient and larger nor-
malized path length that led to a significant larger small-
world index. In other words, right-hemispheric networks
tend to have a more random configuration relative to left
hemispheric networks. Moreover, the left hemisphere
showed increased efficiency at both global and local levels
in the left hemisphere as compared to the right hemi-
sphere, suggesting that the brain regions in the left hemi-
sphere interconnect in better integration compared to the
right hemisphere. The increase in betweenness centrality
indicates a putative compensation mechanism of the right
hemisphere for the reduced efficiency of parallel informa-
tion transfer. Our results are contrary to those of Iturria-

TABLE II. Significant hemisphere effects on local effi-

ciency revealed by paired t-tests (P < 0.001)

Region Classification

Left > Right
Precentral gyrus Primary
Superior frontal gyrus (dorsal) Association
Orbitofrontal cortex (superior) Paralimbic
Middle frontal gyrus Association
Orbitofrontal cortex (middle) Paralimbic
Inferior frontal gyrus (triangular) Association
Rolandic operculum Association
Supplementary motor area Association
Olfactory Limbic
Superior frontal gyrus (medial) Association
Orbitofrontal cortex (medial) Paralimbic
Rectus gyrus Paralimbic
Anterior cingulate gyrus Paralimbic
Calcarine fissure Primary
Superior occipital gyrus Association
Middle occipital gyrus Association
Inferior occipital gyrus Association
Inferior parietal lobule Association
Paracentral lobule Association
Caudate Subcortical
Putamen Subcortical
Pallidum Subcortical
Thalamus Subcortical
Heschl gyrus Primary
Superior temporal gyrus Association
Temporal pole of the superior temporal gyrus Paralimbic
Middle temporal gyrus Association
Inferior temporal gyrus Association

Right > Left
Middle cingulate gyrus Paralimbic
Parahippocampal gyrus Paralimbic
Fusiform gyrus Association
Supramarginal gyrus Association
Angular gyrus Association
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Medina et al. [2011], who found higher global efficiency in
the right hemisphere. However, it is questionable whether
their sample size (N 5 11) would be sufficiently large to
make a reliable inference. Consistent with our results, con-
versely, left-greater-than-right-asymmetries were found in
healthy adolescents [Dennis et al., 2013] as well as in neo-
nates brains [Ratnarajah et al., 2013].

The hemispheric effect was further localized in terms of
regional efficiency. Specifically, brain regions involved in
motor actions and language played crucial roles in effi-
cient communication in the left hemisphere, while brain
regions involved in memory and visuospatial attention
played crucial roles in efficient communication in the left
hemisphere. Previous studies reporting structural asymme-
tries of the human brain have been described in terms of
gyrification, regional volumes, or WM microstructure dif-
ferences using a variety of techniques, that is, MRI mor-
phometry, neuropsychological investigation of patients
with brain lesions, tachistoscopic/dichotic investigations
[for a comprehensive review, see Toga and Thompson,
2003], whereas our regional asymmetry analysis is based

on the fiber connectivity pattern of each region in terms of
its nodal efficiency. Despite the differences between the
measures and procedures used in different studies, we
found a considerable regional correspondence between
previous studies, and our asymmetry findings [Lerch
et al., 2006].

Hemispheric lateralization for language is one of the
most robust findings of cognitive neuroscience [Josse and
Tzourio-Mazoyer, 2004]. We observed significant leftward
asymmetries in language-relevant temporal regions of the
AAL template, including the superior temporal gyrus,
superior temporal pole, Heschl gyrus, Rolandic opercu-
lum, and inferior frontal regions, such as the triangular
part of the inferior frontal gyrus which comprises Broca’s
region. These findings agree well with many structural
reports [e.g., Good et al., 2001; Luders et al., 2006; Watkins
et al., 2001] and the documented left hemispheric domi-
nance for language [Price, 2000].

Beyond language, motor function plays an important
role for the discussion of connectivity and hemispheric lat-
eralization. In correspondence with previous human

Figure 4.

Figure illustrating significant main effect of age group on local

efficiency. Size of the ROIs (spheres) represents value of the

nodal efficiency for the right and left hemispheric network for

each age group. The colors of the nodes refer to: red: higher

nodal efficiency in older adults as compared to young adults

(positive age effect) (P < 0.0005); blue: higher nodal efficiency in

young adults as compared to older adults (negative age effect) (P

< 0.0005), green: not significant. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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studies, leftward asymmetries for the precentral gyrus and
supplementary motor area, regions associated with motor
control actions, have been well recognized for right-
handed subjects [Dadda et al., 2006; Luders et al., 2006;
Rogers et al., 2004]. In addition, a leftward asymmetry was
found in several basal ganglia of our AAL atlas, such as
caudate nucleus, putamen, and pallidum. Their role has
been implicated in a number of important motor functions
[Coghill et al., 1994; Jones et al., 1991], in particular in the
initiation of motor responses [Coxon et al., 2010; Toxopeus
et al., 2007]. Unfortunately, previous structural network
analyses were limited to cortical regions without including
subcortical regions in their parcelation schemes. In the
future, it might be more meaningful to use advanced inte-
grative atlases including basal ganglia to explore how con-
nectivity of these basal ganglia regions could be related to
asymmetries. Moreover, leftward asymmetries in lan-
guage- and motor-related fibers, including the parieto-
premotor part of the superior longitudinal fasciculus, the
corticospinal tract, and the arcuate fasciculus, have been
observed in healthy adults [Stephan et al., 2007], and
infants [Dubois et al., 2009].

The cingulate gyrus of our AAL atlas gave mixed
results. Leftward asymmetry was found for the anterior
cingulate, whereas rightward symmetry was demonstrated
in the middle cingulate. Previous reports on cingulate
asymmetry have been inconsistent, depending on the used
methodology. Leftward asymmetries for the cingulate
have been found in cortical thickness [Luders et al., 2006]
and DTI studies [Gong et al., 2005]. Rightward asymme-
tries are previously reported using volumetric and voxel-
based measures [Watkins et al., 2001]. For the first time, in
our study we were not limited to the whole cingulate
region without making distinction between its anterior,
middle, and posterior parts, using the AAL template.

Beyond language and motor functions, memory and
visuospatial attention play also an important role for the
discussion of connectivity and lateralization. First of all,
we found a rightward asymmetry in terms of efficiency in
the parahippocampal gyrus of the AAL template, which is
thought to be involved in memory encoding and retrieval,
and is consistent with the widely reported right-sides
asymmetries for the hippocampal regions [Bigler et al.,
1997; Good et al., 2001; Pegues et al., 2003]. The other
right-lateralized regions, that is, fusiform gyrus, supramar-
ginal gyrus, and angular gyrus of our parcelation scheme,
are compatible with the specialization of right visual and
parietal cortices for visuospatial attention. For example,
Tuch et al. [2005] found a lateralization of correlations
between behavioral reaction time performance on a
speeded visuospatial attention task and fractional anisot-
ropy values to right visual and parietal WM pathways,
including the right optic radiation, right posterior thala-
mus, and right medial precuneus WM.

All these nodal analyses appear to support the fact that
the left hemisphere has a leading role for language and
motor control, whereas right hemispheric areas play a
dominant role in the implementation of memory and
visuospatial functions.

Structural Networks are Less Efficient in Older

Adults

Although WM networks of old adults showed prominent
small-world properties, the underlying organization of the
WM networks was altered in older adults, resulting in a
decreased overall global efficiency and reduced regional
local efficiency. In other words, the aging network becomes
less connected. This decrease may be related to morphomo-
lecular changes in neurons, axons, dendrites, and synapses,
as well as the accumulation of neuropathologies that occur
with age [Hof and Morrison, 2004]. This decreased struc-
tural connectivity of the older adults appears consistent
with previous functional [Achard and Bullmore, 2007] and
structural [Gong et al., 2009] network studies of aging on
one hand, and previous studies reporting alterations in
DTI-based metrics with age, on the other hand [Hsu et al.,
2008, 2010; Lebel et al., 2008]. The regional efficiency
showed extensive changes across the cerebral cortex in
aging. As shown in Figure 4, reduced efficiency was found
in 17 regions predominantly in the frontal, occipital, parie-
tal, and subcortical regions. Hence, our findings support
the notion of aging as a “disconnection syndrome” from a
network perspective. In contrast, five regions localized in
cingulate gyrus and precuneus showed increased efficiency,
indicating a putative compensation mechanism of network
reorganization in aging.

Structural Networks are Less Efficient in Women

In addition to the age-related network changes, we found
a significant difference in global network connectivity

TABLE III. Significant age group effects on local effi-

ciency revealed by post hoc t-tests (P < 0.0005)

Region Side Classification

Young > Elderly
Middle frontal gyrus R/L Association
Orbitofrontal cortex (middle) R Paralimbic
Inferior frontal gyrus (triangular) R/L Association
Olfactory cortex L Limbic
Superior occipital gyrus R Association
Middle occipital gyrus R/L Association
Inferior occipital gyrus R/L Association
Inferior parietal lobule L Association
Angular gyrus L Association
Caudate R/L Subcortical
Thalamus R/L Subcortical

Elderly > Young
Middle cingulate gyrus R/L Paralimbic
Posterior cingulate gyrus R/L Paralimbic
Precuneus L Association
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between males and females. Specifically, females displayed
a significantly increased characteristic shortest path length.
The path length of a node expresses how close it is con-
nected globally to other nodes of the network, with shorter
path lengths reflecting higher levels of efficient access to
information [Rubinov and Sporns, 2010]. The average
inverse shortest path length is a related measure known as
the global efficiency [Latora and Marchiori, 2001], which is
the most commonly used measure of functional integration
[Achard and Bullmore, 2007]. Females showed strong
decreases in global efficiency. However, the absence of gen-
der effects on local efficiency marks the fact that gender
does not strongly affect the local connectivity or local orga-
nization of the brain networks, indicating that the effects on
global efficiency and shortest path length are likely to be
related to organizational effects rather than just reduced
local connectivity. This finding of an affected global organi-
zation in females does not overlap with previous studies
[Gong et al., 2009; Tian et al., 2011], where they showed
that females had a denser local clustering and higher local
network efficiency. Possible explanations for these conflict-
ing results are the used tractography methods [e.g., Behrens
et al., 2007; Jeurissen et al. 2011] and diffusion MRI sequen-
ces [Bassett et al., 2011]. Nevertheless, recent studies on the
effects of different acquisition schemes [Bassett et al., 2011;
Vaessen et al., 2010] and tractography algorithms [Bastiani
et al., 2012] on graph metrics revealed that the effect was
small in healthy volunteers. With the structural network-
based approach still in its infancy years, it is clear that fur-
ther studies are necessary to identify gender differences in
structural WM networks, which may play an important role
in explaining differences in cognitive function or in resil-
ience to disease.

LIMITATIONS

Several issues need to be addressed. First, we used a
DTI-based streamline tractography approach [Basser et al.,
2000; Mori et al., 1999] to define the edges of the structural
network. This is by far the most widely applied tractogra-
phy method, mainly for its simplicity, robustness, and
speed [Cheng et al., 2012; Griffa et al., 2013]. Such a trac-
tography method, however, is not able to resolve crossing
fiber bundles [Jones et al., 2013; Mori and van Zijl, 2002;
Tournier et al., 2011]. Many other algorithms could be
used to develop the structural network, but choosing one
is not a trivial matter, because different tractography algo-
rithms for analysis of the same imaging data can lead to
subtly different graph theoretical results [Bastiani et al.,
2012]. Further studies should reconstruct anatomical net-
works with diffusion tractography methods that have the
advantages of overcoming fiber crossings and being robust
to image noise [e.g., Behrens et al., 2007; Dell’acqua and
Catani, 2012; Dell’acqua et al., 2007, 2010, 2013; Descoteaux
et al., 2009; Hess et al., 2006; Jbabdi and Johansen-Berg,
2011; Jeurissen et al., 2011, 2013; Tournier et al., 2004, 2007,

2008, 2013; Tuch, 2004; Wedeen et al., 2005, 2008]. Impor-
tantly, despite of its advantages over more conventional
tractography approaches, these methods still present
important limitations as well, such as a the difficulty to
separate real from false connections and the ambiguity in
modeling [Parker et al., 2013; Tax et al., 2014; Jones and
Cercignani, 2010]. Related to this issue, more recent acqui-
sition sequences have been shown to generate networks
with a higher probability of long-distance connections
than the classical DTI sequences [Bassett et al., 2011; Zale-
sky et al., 2010a, b]. Nevertheless, recent studies on the
effects of different acquisition schemes on graph metrics
[Bassett et al., 2011; Vaessen et al., 2010] revealed that the
effect was small in healthy volunteers.

Moreover, we adopted the AAL template as parcelation
scheme, which is based on a sulcal patterns from only one
subject. The main advantage of using the AAL template
for nodal parcelation is that it can support direct compari-
son of results to prior connectome studies using the same
AAL template in healthy adults [e.g., Gong et al., 2009; Li
et al., 2009] and patient populations [e.g., Lo et al., 2010;
van den Heuvel et al., 2010; Zalesky et al., 2011]. It is
important to consider that although the atlas that we used
was carefully checked for registration errors, in the future
it might be more meaningful to apply a probabilistic atlas
of human brain to regional parcelation or define individ-
ual brain regions through a combination of DTI with fMRI
given the interindividual variability of anatomical struc-
tures [Thompson et al., 1996, Sporns et al., 2005].

Moreover, future studies should include information on
the level of education of the participants and a formal assess-
ment scale of handedness, such as the Edinburgh Handed-
ness Inventory [Oldfield, 1971]. These two factors may be
considered important confounders of the described differen-
ces in the topological organization of brain networks
between the hemispheres. The interactions with handedness
and level of education should be explored in further studies.

Finally, other currently available MRI sequences have
further improved the detection of WM damage in elderly,
such as T2-weighted imaging and fluid-attenuated inver-
sion recovery (FLAIR) scans [for a review, see Gunning-
Dixon et al., 2009]. Because FLAIR and T2 scans can be
very sensitive in detecting WM hyperintensities, a more
complete evaluation can be obtained to objectively assess
WM lesions in the older adults’ group by integrating these
modalities. The extent of detected WM damage can pro-
vide long-term neurological and behavioral prognostic
information. Further studies correlating the abnormalities
seen on FLAIR with graph metrics need to be done to bet-
ter define the age-related changes in the organization of
the WM networks.

CONCLUSIONS

Despite the present findings, this study on structural
network dissimilarities between hemispheres and their
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associations with gender and age is still preliminary, and
further studies are needed. First, we observed that small-
world properties were present for the structural hemi-
spheric networks across age groups and gender. Further
studies, simultaneously evaluating the small-world charac-
teristics of functional and structural hemispheric networks,
are needed. Second, we observed that the topological
architecture of the hemispheres was different. Specifically,
the left hemisphere was significantly more efficient and
interconnected than the right hemisphere. As has been
mentioned, brain asymmetries are closely related to later-
alized processes like language, memory, visuospatial atten-
tion, and motor control. Thus, further analysis of the
relationship between hemispheric asymmetries and per-
formance on behavioral parameters should be carried out.
Investigating hemispheric lateralization is not only impor-
tant for our general understanding of human brain func-
tion, but also with regard to the many clinical disorders
that implicate hemispheric asymmetries, such as schizo-
phrenia, autism, and stroke. Graph theoretical analyses
might be able to understand how brain asymmetries in
brain disorders are caused and how they can be
influenced.
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