
r Human Brain Mapping 33:2135–2146 (2012) r

Diagnosing Different Binge-Eating Disorders Based
on Reward-Related Brain Activation Patterns

Martin Weygandt,1* Axel Schaefer,2 Anne Schienle,2

and John-Dylan Haynes1,3
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Abstract: This study addresses how visual food cues are encoded in reward related brain areas and
whether this encoding might provide information to differentiate between patients suffering from
eating disorders [binge-eating disorder (BED) and bulimia nervosa (BN)], overweight controls (C-
OW), and normal-weight controls (C-NW). Participants passively viewed pictures of food stimuli
and neutral stimuli in a cue reactivity design. Two classification analyses were conducted. First, we
used multivariate pattern recognition techniques to decode the category of a currently viewed pic-
ture from local brain activity patterns. In the second analysis, we applied an ensemble classifier to
predict the clinical status of subjects (BED, BN, C-OW, and C-NW) based on food-related brain
response patterns. The left insular cortex separated between food and neutral contents in all four
groups. Patterns in the right insular cortex provided a maximum diagnostic accuracy for the separa-
tion of BED patients and C-NW (86% accuracy, P < 10�5, 82% sensitivity, and 90% specificity) as
well as BN patients and C-NW (78% accuracy, P ¼ 0.001, 86% sensitivity, and 70% specificity). The
right ventral striatum separated maximally between BED patients and C-OW (71% accuracy, P ¼
0.013, 59% sensitivity, and 82% specificity). The right lateral orbitofrontal cortex separated maximally
between BN patients and C-OW (86% accuracy, P < 10�4, 79% sensitivity, and 94% specificity). The
best differential diagnostic separation between BED and BN patients was obtained in the left ventral
striatum (84% accuracy, P < 10�3, 82% sensitivity, and 86% specificity). Our results indicate that pat-
tern recognition techniques are able to contribute to a reliable differential diagnosis of BN and BED.
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INTRODUCTION

Bulimia nervosa (BN) is a common eating disorder that
affects 1–3% of the population. The cardinal symptom of
BN is the occurrence of eating attacks (‘‘binge-eating’’),
during which a person experiences loss of control. In the
majority of bulimic patients [80–90%; American Psychiatric
Association, 1994], a binge-eating episode is followed by
vomiting to prevent weight gain. Moreover, other com-
pensatory strategies might be employed such as use of
laxatives/diuretics, phases of controlled eating/dieting,
and physical exercise. Recently, it has been discussed in
the DSM-IV [American Psychiatric Association, 1994; crite-
ria sets provided for further study] whether a second,
similar eating disorder known as binge-eating disorder
(BED) should be differentiated from BN as an autono-
mous disorder. It shares binge eating with BN as a major
symptom. However, in contrast to BN, it does not involve
regular behaviors to counteract weight gain. Both syn-
dromes are characterized by comparable levels of body
dissatisfaction and fear of weight gain [e.g., Barry et al.,
2003; please see also section Participants for further
details]. Because patients suffering from BED and BN
share such a variety of clinical symptoms, it is unclear
whether BED is an autonomous diagnostic category or a
variant of BN.

On the neuronal level, two recent neuroimaging studies
investigated differential brain activation to visual food
stimuli in patients suffering from binge-eating syndromes
[Karhunen et al., 2000; Schienle et al., 2009]. For BN
patients they found increased activation of frontal regions
involved in selective attention [anterior cingulate cortex
(ACC)] and subcortical areas involved in interoception
(insula). BED patients showed enhanced recruitment of
prefrontal regions involved in the processing of the
hedonic value of primary reinforcers [orbitofrontal cortex
(OFC)].

However, these studies were based on more conven-
tional neuroimaging analyses that focus on activation dif-
ferences across extended regions of cortex. Although
conventional methods provide insights into differential
neuronal processes, they are not optimally suited to inves-
tigate the diagnostic separability of two disorders based
on neuroimaging data. They leave out lot of potential
sources of information because they analyze activation dif-
ferences for each position of the brain independently. For
optimal classification it is important to include the infor-
mation encoded in conjoint activation in distributed pat-
terns of activity in the brain [Haynes and Rees, 2006]. This
can be achieved using multivariate pattern recognition
techniques (‘‘classifiers’’ or ‘‘decoders’’) that have higher
sensitivity compared to more traditional voxel-based anal-
ysis approaches [Pereira et al., 2009] and that are specifi-
cally designed to categorize data patterns into distinct
groups. Thus, it is important to assess whether such tech-
niques might allow diagnosing the clinical status of indi-
viduals based on their distributed patterns of brain
activity.

In line with this, we and others recently demonstrated
the relevance and power of pattern-based techniques for
cognitive paradigms in healthy subjects, for example, in
vision [Haxby et al., 2001; Haynes and Rees, 2005; Haynes
et al., 2005], language [Chen et al., 2006; Formisano et al.,
2008], motor tasks [Strother et al., 2004], emotion [Mourão-
Miranda et al., 2007], decision making [Soon et al., 2008],
attention [Mourão-Miranda et al., 2005], and lie-detection
[Davatzikos et al., 2005]. See [Haynes and Rees, 2006; Nor-
man et al., 2006; Pereira et al., 2009] for an overview of
pattern recognition in MRI. In clinical neuroimaging, clas-
sifiers have been applied to the diagnosis of several disor-
ders based on neuroimaging signals, for example, in
depression [Fu et al., 2008; Marquand et al., 2008], sub-
stance abuse [Zhang et al., 2005], schizophrenia [Koutsou-
leris et al., 2009; Meyer-Lindenberg et al., 2001], and
dementia [Kloeppel et al., 2008; McEvoy et al., 2009], how-
ever not yet to eating disorders.

In this study, we investigated how different visual food
cues (e.g., french fries, ice cream, cake, chips, etc.) are
encoded in the brain and how this encoding differs
between patients suffering from BED, BN, overweight con-
trols (C-OW), and normal-weight controls (C-NW). For
that, we conducted two pattern recognition analyses based
on data from Schienle et al. [2009]. In the first analysis, we
evaluated whether pictures depicting food cues can be
separated from pictures depicting neutral content based
on brain activation patterns of the gustatory system and
the reward system. In the second analysis, we investigated
whether it is possible to separate different eating disorders
based on spatial brain activation patterns. Here, the dis-
criminability of groups exhibiting binge-eating syndromes
was of central interest, as this analysis can provide
additional information concerning the diagnostic
autonomy of BED.

MATERIALS AND METHODS

Participants

Women suffering from BED (n ¼ 17) according to DSM-
IV research criteria [American Psychiatric Association,
1994], from BN (purging type; n ¼ 14) according to DSM-
IV and healthy controls with no previous history of eating
disorders [normal-weight (C-NW; n ¼ 19), overweight (C-
OW; n ¼ 17)] gave written informed consent to participate
in this study. All women were non-medicated, right-
handed, Caucasian, and did not smoke. Participants with
clinically relevant depression were excluded from the
study. Further, other current psychiatric comorbidities
(e.g., substance abuse, mood disorders, anxiety disorders,
etc.) led to exclusion. An exception was made for specific
phobias (two participants). Patients interested in treatment
were assisted with referrals. The study was approved
by the ethics committee of the German Society for
Psychology.
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Stimuli and Design

The participants passively viewed a total of 45 pictures
from the categories food (e.g., french fries, ice cream, cake,
chips, etc), disgust (e.g., dirty toilets, maggots, etc), and
neutral (household articles), which had been matched for
complexity, brightness, and color composition. For further
details, see [Schienle et al., 2009]. For this investigation, we
focus on food and neutral pictures.

Brain Imaging

The results presented here are based on a reanalysis of
data originally collected in [Schienle et al., 2009]. There,
brain images were acquired using a 1.5 Tesla whole-body
tomograph (Magnetom Symphony, Siemens, Erlangen, Ger-
many) with a standard head coil. For the functional imag-
ing, 380 volumes were measured using a T2*-weighted
gradient echo-planar imaging sequence with 30 slices cov-
ering the whole brain (slice thickness ¼ 4 mm; 1 mm gap,
interleaved, TR ¼ 3,000 ms; TE ¼ 50 ms, flip angle ¼ 90�,
field of view ¼ 192 � 192 mm2; matrix size ¼ 64 � 64).

Data Preprocessing and Analysis

Preprocessing

Image preprocessing was performed using SPM2 and
included slice time correction, realignment, normalization
to the Montreal Neurological Institute (MNI) brain tem-
plate, smoothing (isotropic three-dimensional Gaussian fil-
ter, full width at half maximum = 8 mm), and application
of a high pass filter (128 s). Activation parameter maps for
the experimental conditions (food, neutral, and disgust)
were calculated for each subject using a general linear
model (GLM) for the coordinates of several bilaterally
defined regions of interest (ROIs): ACC, amygdala, insula,
lateral and medial OFC, and the ventral striatum (i.e., 12
ROIs in total). The regions were selected based on previ-
ous literature on the processing of food cues [e.g., Pelchat
et al., 2004; Schienle et al., 2009; Wang et al., 2004)] and
are associated with gustatory and attentional processing as
well as the hedonic value or the incentive salience of food
stimuli or associated cues. The ROIs were created with
MARINA [Walter et al., 2003]. Except for the ventral stria-
tum, they are based on the parcellation of the brain pro-
posed by Tzourio-Mazoyer et al. [2002]. The mask for the
ventral striatum was defined manually in accordance with
[O’Dougherty et al., 2004]. The volume of the ROIs for the
left/right hemisphere is (mm3): ACC: 11,200/10,505;
amygdala: 1,760/1,984; insula: 14,864/14,160; lateral OFC:
20,624/21,776; medial OFC: 14,520/13,936; ventral stria-
tum: 2,176/2,024. The three conditions were modeled as a
boxcar function convolved with a hemodynamic response
function and entered into the model as effects of interest
(the condition disgust was modeled as a parameter of no
interest). The resulting activation parameter maps were

used in Decoding Analysis 1: Picture Categories (see
below). Finally, difference contrast maps were calculated
for the ROI coordinates for each subject separately based
on the activation parameter maps (GLM activation param-
eter estimates for food cue presentation minus activation
parameter estimates for neutral picture presentation).
These difference contrast maps were used in Decoding
Analysis 2: Ensemble Decoding of Groups (see below).

Decoding Analysis 1: Picture Categories

In a first step, we assessed to which degree brain activity
of the four different participant groups (BED, BN, C-OW,
and C-NW) encodes information about the difference
between food and neutral stimuli. For this, we used a so-
called ‘‘searchlight’’ approach [Haynes et al., 2007; Kriege-
skorte et al., 2006] that searches across the brain for local
activity patterns that are informative about the stimulus cat-
egory. For a given ‘‘center’’ voxel cvi, in the brain, the
searchlight is defined as a spherical cluster with a radius of
three voxels surrounding a given center coordinate. Within
this cluster of voxels, we extracted the spatial pattern of
responses from the activation parameter maps of the two
stimulus conditions (food, neutral) of each subject in a
given group. Then a classifier was trained and tested based
on the patterns of each searchlight position separately using
leave-one-out (LOO) cross-validation. As accuracy measure,
we calculated the percentage of correctly classified brain
responses. By iterating this procedure across all ROI coordi-
nates, we obtained an accuracy map depicting the local dis-
criminative information for the decoding of stimuli for each
of the participant groups. For details see Figure 1.

The classification algorithm we used was a linear support
vector machine (SVM) classifier [Fung and Mangasarian,
2003; http://www.cs.wisc.edu/dmi/svm/nsvm/nsvm.m].
The algorithm attempts to find a linear decision boundary
that separates the patterns of two classes (here: searchlight
activity patterns emerging during presentation of food and
neutral images, respectively). During identification of the
decision boundary the algorithm optimizes a free parameter
that determines the tradeoff between classifier complexity
and number of non-separable patterns [please see Schölkopf
and Smola 2002] for further details). Instead of explicitly
using cross-validation to optimize this parameter, the algo-
rithm approximates the cross-validation rate as this proce-
dure saves computational cost.

The decoding analysis was performed independently for
the four different participant groups. The results report
searchlight center coordinates cvi that exhibit a significant
accuracy on a family-wise-error (FWE) corrected level of P
< 0.05. Probabilities were calculated using the v2-distribu-
tion. Additionally, we also separately report coordinates
that exhibit a trend towards significance (Puncorrected ¼
0.001). To reduce the risk of false positive findings, we
defined a cluster size criterion for these coordinates, that
is, a number (k) of neighboring searchlights yielding sig-
nificant accuracies and set this threshold to k ¼ 5.
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To additionally assess whether local separability coin-
cides with regions of activation or deactivation we com-
puted a conventional t-contrast based on the GLM results
for each subject for each voxel underlying an above-chance
searchlight classifier (parameter estimates for food minus

neutral condition). Results report the percentage of voxels
located within the radius of (a cluster of) significant searchlights
that showed a significant activation difference (Puncorrected ¼
0.001, no cluster size criterion, and two-sided). Moreover,
we report the mean t-values for these voxels.

Figure 1.

Decoding of food versus neutral images. (A) ‘‘Searchlight’’

approach that searches across the brain for local activity pat-

terns that are informative about the stimulus category (food,

neutral). For a given ‘‘center’’ voxel cvi in the brain, the search-

light is defined as a spherical cluster with a radius of three vox-

els surrounding the center coordinate. (B) Within this cluster of

voxels, the spatial pattern of responses for the activation maps

is extracted for each stimulus category separately. The data

from all but one subject (1 : : : n � 1) are used as a ‘‘training

dataset’’ to train a classifier (linear Support Vector Machine

[Fung and Mangasarian, 2003]) to distinguish between patterns

from the two conditions. The classifier is then tested by applying

it to the data from the remaining ‘‘test’’ subject (n). This leave-

one-out (LOO) cross-validation procedure was then repeated n-

times by leaving out the data of one subject at a time from the

training data set. LOO cross-validation avoids the circular infer-

ence that has recently been heavily debated in neuroimaging

[Kriegeskorte et al., 2009]. The success of the classifier is an

estimate of the local information at that position in the brain.

(C) The resulting accuracy was then noted at the coordinate cvi

as the local information related to the stimulus category. This

was repeated for each center position cvi thus yielding a 3-

dimensional map of local information. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Decoding Analysis 2: Ensemble Decoding of Groups

In a second decoding analysis, we proceeded to the cru-
cial clinical analysis and investigated whether it is possible
to distinguish between the four participant groups (BED,
BN, C-OW, and C-NW). The decoding was conducted for
all pairs of eating disordered and control groups and the
pair of both eating disordered groups separately (BED &
C-OW; BED & C-NW; BN & C-OW; BN & C-NW; BED &
BN). The difference contrast maps (activation parameter
estimates for food cue presentation minus activation param-
eter estimates for neutral picture presentation) of the n sub-
jects of a pair of groups entered each pairwise analysis.
Then, we divided the data into training and test datasets by
leaving the contrast map of one subject out at a time in a
first level LOO loop. The training dataset (size: n � 1) was
then again subdivided into training and test data by leaving
another subject out (size: n � 2) in a second level or nested
LOO loop. For each coordinate cvi a linear SVM classifier
[Fung and Mangasarian, 2003] was now trained based on n
� 2 contrast maps and predicted the group of the contrast
map left out in each second level iteration. The procedure
was repeated n � 1 times for each coordinate cvi and results
in a decoding accuracy map that is independent of the con-
trast map removed in the first level loop. Once this map was
determined, we selected the five most predictive searchlight
positions cvi, separately for each of the 12 ROIs, to construct
12 ‘‘ensemble’’ classifiers (one per ROI) that were applied to
the remaining test dataset from the first level.

Finally, the ensemble classification was made on a per-
ROI basis based on the average decision of the five
selected classifiers in that ROI. The procedure was
repeated n times and resulted in one ensemble decoding
accuracy per ROI. The ensemble decoding approach was
chosen, as it was recently shown to have better generaliza-
tion abilities and robustness compared to individual classi-
fiers [Martinez-Ramon et al., 2006]. For further details, see
Figure 2.

Probabilities of observed accuracies were calculated
using the v2-distribution. We report ROIs exhibiting FWE-
corrected results (Bonferroni-correction, i.e., PFWE ¼ 0.05
[a]/12 [number of ROIs] ¼ 0.004) as well as results that
have a trend to significance (Puncorrected ¼ 0.05). For each
of these ROIs, we report the sensitivity, specificity, and the
mean of sensitivity and specificity. The latter is reported
as diagnostic accuracy measure instead of the percentage
of correctly classified patterns, as it is more robust towards
biases in the output of classifiers that could arise from an
unbalanced number of subjects in the two groups of a
pair.

To additionally assess whether local separability of
groups coincides with regions of relative activation or
deactivation, we computed a between-group t-contrast
(BED � C-OW, BED � C-NW, BN � C-OW, BN � C-NW,
and finally BED � BN; Puncorrected ¼ 0.001, no cluster size
criterion, two-sided) based on the contrast maps of the
subjects. Results report for each ROI separately the per-

centage of voxels located within the radius of searchlight
classifiers selected across all first level LOO iterations that
showed a significant difference (Puncorrected ¼ 0.001, no
cluster size criterion, two-sided). Moreover, we report the
mean t-values for these voxels.

Please note that the base classifiers of each ROI ensem-
ble classifier were selected separately for each iteration of
the first level LOO loop following their performance in the
second level loop. Therefore, we do not report coordinates
in MNI-space as the five base classifiers of maximal accu-
racy in each ROI may have varied their position across
iterations.

Finally, we used a large-scale decoding procedure to
evaluate the performance of our ensemble method. For
that, we merged all abovementioned ROIs to define a sin-
gle search space containing brain areas involved in food
cue processing. Then, we trained and tested a single SVM
classifier [Fung and Mangasarian, 2003] on patterns drawn
from this space in a standard LOO cross-validation
approach.

RESULTS

Participant Characteristics

The groups had a comparable mean age (years): BED:
26.4 (SD ¼ 6.4), BN: 23.1 (SD ¼ 3.8), C-NW: 22.3 (SD ¼
2.6), C-OW: 25.0, (SD ¼ 4.7); [F(3,63) ¼ 2.6, and P ¼ 0.07].
They were comparable with regard to mean years of edu-
cation [BED: 13.0 (SD ¼ 1.5); BN: 12.7 (SD ¼ 0.8); C-NW:
13.2 (SD ¼ 0.9); C-OW: 12.5 (SD ¼ 1.9); F(3,63) ¼ 0.7; P ¼
0.56]. The majority of participants were students. The
patients reported a comparable illness duration (BN: M ¼
7.3 years, SD ¼ 3.6; BED: M ¼ 6.8 years, SD ¼ 4.0; t(29) ¼
0.5, P ¼ 0.66) and degree of binge-eating as indicated by
self report (subscale ‘‘binging’’ of the Eating Disorder
Inventory [EDI; Diehl and Staufenbiehl, 1994]; BED: 14.4
(SD ¼ 2.0), BN: 15.8 (SD ¼ 2.0); t(29) ¼ 1.95, P ¼ 0.06).
Bulimic patients all used vomiting as the main method of
weight control. Their self-reported vomiting (means for
subscale ‘‘vomiting,’’ EDI) was pronounced [11.8 (SD ¼
2.5), whereas it was minimal in BED patients (3.0, SD ¼
2.5; t(29) ¼ 9, P < 0.001]. Four patients in the BN group
had previously suffered from anorexia nervosa (lifetime
diagnosis). BED and BN patients did not differ in further
EDI subscales: ‘‘body dissatisfaction’’; BED: 16 (3.8), BN:
15.9 (2.7); t(29) ¼ 0.1, P ¼ 0.91 and ‘‘fear of weight gain’’;
BED: 13.4 (3.3), BN: 15.4 (2.2); t(29) ¼ 1.9, P ¼ 0.07. The
mean body mass index (BMI) for the four groups were as
follows: BED: 32.2 (SD ¼ 4.0), BN: 22.1 (SD ¼ 2.5), C-NW:
21.7 (SD ¼ 1.4), C-OW: 31.6 (4.7). The BED patients and
C-OW subjects were obese and had a comparable mean
body mass index (BMI; t(32) ¼ 0.3, P ¼ 0.76). Bulimic and
C-NW subjects had a comparable mean BMI [t(31) ¼ 0.6,
P ¼ 0.54].
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Decoding Analysis 1: Picture Categories

We were able to correctly classify the stimulus category
(food, neutral) for all four participant groups, however,
there were important differences in informative brain
regions between the patients and controls (see Table I for
full details). For all four groups, we were able to decode
the stimulus category from the insula. Except for C-OW,
we were also able to decode the stimulus type from the
OFC in all groups. In patients, but not in controls, we
were able to decode the stimulus category also from two
additional regions, the amygdala and the ACC. Further-

more, decoding was above chance in the ventral striatum

but only in BED patients, whereas in BN patients the in-

formation in this region had a clear trend that failed to

reach statistical significance. On average, only 2% of all

voxels underlying significant searchlight classifiers showed

significant activation differences between stimuli in BED

patients, 5% in BN patients, 3% in C-OW, and 12% in

C-NW (Table I; Fig. 3). This suggests that multivariate

classifiers did not mainly rely on information from voxels

with strong activity differences, but included information

from voxels that show weak differential effects.

Figure 2.

Decoding of eating disorders. Example for a hypothetical data set

(three binge-eating disorder [BED, yellow] and three bulimia nerv-

osa [BN, purple] patients, i.e. n ¼ 6). Preceding the classification

analysis, we extracted the contrast map for food minus neutral for

each subject n. The decoding of clinical conditions starts with sub-

ject one. In a first level leave-one-out (LOO) loop, this subject’s

contrast map is removed from the data set. The remaining con-

trast maps are then used as training dataset (size n � 1) that is

again subdivided into training and test data in the second level

LOO loop by leaving another subject out (size n � 2). Searchlight

classifiers are now trained with the training data set of size n � 2

and the resulting classification model is used to classify the test

map of the second level LOO iteration. This two layer approach is

commonly known as a nested cross validation and it is used to fur-

ther optimize the classification while at the same time avoiding cir-

cular inferences because the second level separation into training

and test is used to find the optimal classification and then this is

tested by applying it to the first level test dataset. The procedure

is repeated n � 1 times for each coordinate cvi and results in a

decoding accuracy map that is independent of the data of subject

one. Once this map is determined, the five best performing

searchlights of each ROI (shown: ACC) are selected and trained

on all contrast maps except the map of the initially removed sub-

ject. Each of the selected classifiers is now tested on its respective

pattern from the map of subject one and comes to a decision indi-

vidually. Subsequently, the final decision is given by the average de-

cision of the individual classifiers, that is, the classifier-ensemble.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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Decoding Analysis 2: Ensemble Decoding of Groups

We were also able to correctly classify the participant
group (BED, BN, C-OW, and C-NW). Ensemble classifiers
located in the right insula and the left lateral OFC sepa-
rated between BED patients and C-NW. Classifiers in the
right ACC, the left insula and medial OFC, and the right
ventral striatum separated between BED patients and
C-OW. Classifiers in the left ACC, the right insula, and
the left ventral striatum separated between BN patients
and C-NW and classifiers in the right lateral OFC sepa-
rated between bulimic patients and C-OW. Finally,

searchlights within the right ACC, the insular cortices of
the left and right hemisphere and the left ventral stria-
tum separated between BED and BN patients. Maximal
accuracy for the separation of BED patients and C-NW
as well as for BN patients and C-NW was obtained in
the right insula (BED vs. C-NW: 86% accuracy, P < 10�5,
corr., 82% sensitivity, 90% specificity; BN vs. C-NW: 78%
accuracy, P ¼ 0.001, corr., 86% sensitivity, and 70% speci-
ficity). The best separation between BED and C-OW was
obtained in the right ventral striatum (71% accuracy, P ¼
0.013, uncorr., 59% sensitivity, and 82% specificity). Maxi-
mal accuracy for the separation of BN patients and C-

TABLE I. Cross-validation results for the decoding of picture categories in binge-eating patients, bulimic patients,

and healthy control subjects

Group/Region H CS x y z DA (%) P Mean t-value Mean beta-values Vox* (%)

BED
ACC L 16 �10 42 �4 88.2 <10�5 1.7 �0.2/�0.7 0

13 0 50 0 82.4 <10�3 1.3 �0.3/�0.8 0
R 60 10 42 12 88.2 <10�5 1.1 �0.1/�0.4 3

Amygdala R 3 28 4 �16 88.2 <10�5 1.0 0.5/0.2 0

Insula L 34 �40 �10 6 88.2 <10�5 0.1 0.1/0.1 0

lat. OFC L 7 �26 38 �16 88.2 <10�5 1.9 0.5/�0.1 10

R 9 32 26 �8 85.3 <10�4 0.3 0.3/0.2 0

v. Striatum L 2 �4 6 �8 82.4 <10�3 1.2 0.1/�0.3 0

BUL
ACC L 7 �6 38 20 85.7 <10�3 1.3 0.1/�0.3 0

7 0 24 30 85.7 <10�3 3.0 0.5/�0.5 16
6 �6 32 26 89.3 <10�4 2.8 0.4/�0.4 10

R 6 10 48 10 82.1 <10�3 1.0 0.0/�0.3 0
5 4 28 14 82.1 <10�3 1.8 0.1/�0.4 0

Amygdala L 46 �26 �2 �20 96.4 <10�6 2.1 0.5/0.0 2

Insula L 19 �38 �4 �2 92.9 <10�5 2.6 0.5/�0.1 17

18 �38 4 �2 89.3 <10�4 1.6 0.3/�0.1 1
R 7 38 �12 �6 89.3 <10�4 1.4 0.3/�0.1 4

9 42 �12 6 89.3 <10�4 1.0 0.1/�0.2 1
lat. OFC L 99 �22 44 �20 92.9 <10�5 1.6 0.5/0.1 13

5 �36 56 �2 92.9 <10�5 0.9 0.3/0.0 0

med. OFC L 1 �20 44 �20 89.3 <10�4 0.2 0.3/0.3 0

5 �24 60 �6 85.7 <10�3 1.9 0.0/�0.6 0
C-OW
Insula L 20 �44 �6 �6 85.3 <10�4 0.8 0.3/0.1 2

R 24 38 18 �14 85.3 <10�4 1.5 0.7/0.3 4
5 42 4 �6 82.4 <10�3 1.8 0.5/�0.1 4

C-NW
Insula L 21 �40 �4 6 85 <10�5 1.4 0.2/�0.1 2

R 6 46 �6 �2 82.5 <10�4 �0.2 �0.3/�0.3 0
lat. OFC L 11 �24 30 �20 82.5 <10�4 3.4 1.0/0.1 40
med. OFC L 1 �16 26 �14 85 <10�5 1.9 0.2/�0.1 5

H: hemisphere; CS: cluster size, that is the number of neighboring significant searchlights; x, y, and z: Montreal Neurological Institute
coordinate of the center of the searchlight classifier with the peak accuracy; DA(%): decoding accuracy; P: probability of the accuracy
according to v2-distribution; Mean t-value for the contrast food minus neutral for voxels underlying (a cluster of) significant searchlight
classifier(s); mean beta-values: mean beta-regression coefficients for voxels underlying a (cluster of) significant searchlight classifier(s)
for food and neutral picture presentation; Vox*(%): percentage of these voxels showing significant results for the contrast (puncorrected ¼
0.001, no cluster size criterion, two-sided). ACC: anterior cingulate cortex; OFC: orbitofrontal cortex; lat.: lateral; med.: medial; v: ven-
tral. Non-bold text indicates a significant decoding accuracy not corrected for multiple comparisons (puncorrected ¼ 0.001, k ¼ 5). Bold
text indicates that the accuracy of the classifier with the peak accuracy in a cluster is significant on a FWE-corrected level (Bonferroni-
correction, i.e., pFWE ¼ 0.05 [a]/total number of searchlight centers in a given ROI).
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OW was obtained in the right lateral OFC (86% accuracy,
P < 10�4, corr., 79% sensitivity, and 94% specificity). The
best differential diagnostic separation between BED and

BN patients was obtained in the left ventral striatum
(84% accuracy, P < 10�3, corr., 82% sensitivity, and 86%
specificity). Again, the contribution of pronounced

Figure 3.

Brain regions encoding visual food cues in BED patients, BN

patients, overweight, and normal-weight control subjects. Top:

Center coordinates of searchlight classifiers showing above-

chance decoding accuracy in the separation of visual food cues

and neutral stimuli. Axial slices were chosen to show maximally

informative regions in the amygdala and the orbitofrontal cortex

(AMY; OFC; l, lateral; m, medial; z ¼ �16), or the anterior cin-

gulate cortex and the insula (ACC; INS; z ¼ 6) respectively.

Bottom: t-statistic (food minus neutral) for each voxel underly-

ing a significant searchlight classifier based on the GLM results

for each subject. White contour lines highlight voxels showing

significant activation differences (Puncorrected ¼ 0.001, no cluster

size criterion, two-sided). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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activation differences in individual voxels to the separation
of groups was very small. On average, only 2% of all voxels
underlying selected searchlight classifiers showed significant
activation differences between BED patients and C-NW, 1%
in the case of separation of BN patients and C-NW. Signifi-
cant activation differences in individual voxels did contribute
neither to the separation of BED patients and overweight-
controls nor to the separation of BN patients and overweight-
controls. Only 2% of all voxels underlying selected search-
light classifiers showed significant activation differences in
the case of the separation of BED and BN patients. Interest-
ingly, BN patients had higher contrast values than BED
patients in the corresponding voxels in all ROIs separating
between both eating disorder groups (ACC, insula, and ven-
tral striatum), as far as the mean of t-values of voxels is con-
cerned (Table II).

Using the large-scale decoding approach, we obtained a
significant result in case of the separation of BED patients
and C-OW (71% accuracy, P ¼ 0.013, 82% sensitivity, and
59% specificity). For this pair of groups, the large-scale
approach reached the same accuracy as the ensemble
approach. For all other pairs of groups, the results were
worse and not significant.

DISCUSSION

In this study, we were able to demonstrate that the infor-
mation encoded about food stimuli as well as subjects’ clini-
cal condition can be decoded accurately from local spatial
brain patterns in gustatory and reward-related brain regions.
In contrast to several other studies that only addressed the
separability of patients from healthy controls [e.g., Fu et al.,
2008; Marquand et al., 2008; Zhang et al., 2005], we could
separate two similar syndromes, BED versus BN, from the
same disorder spectrum based on brain activation patterns.

We conducted two pattern recognition analyses. In the first
analysis, we investigated the encoding of visual food cues.
Across all patient and control groups spatial activation pat-
terns in the insula differentiated between food and neutral
pictures. Similarly, the OFC separated between stimuli in all
groups except for the C-OW. For that group it showed a clear
trend that however did not reach the required cluster size cri-
terion. Another set of regions, that is, the amygdala, the ven-
tral striatum, as well as the ACC separated between food and
non-food stimuli exclusively in eating disordered patients.

The stimulus-related information in the insula is in line
with the fact that the anterior insula is the primary

TABLE II. Cross-validation results for the decoding of eating disorders

Groups/Region H DA (%) P SEN SPE Mean t-value Mean con-values Vox* (%)

BED and C-OW
ACC R 67.6 0.031 82.4 52.9 �0.3 0.16/0.30 0
Insula L 70.6 0.016 76.5 64.7 �0.9 �0.15/0.07 1
med. OFC L 67.7 0.039 70.6 64.7 0.1 0.29/0.22 0
v. Striatum R 70.6 0.013 58.8 82.4 �1.5 �0.02/0.52 0

BED and C-NW
Insula R 86.2 <10�5 82.4 90.0 0.5 �0.04/�0.12 0

lat. OFC L 70.3 0.014 70.6 70.0 �1.0 �0.03/0.21 4

BN and C-OW
lat. OFC R 86.3 <10�4 78.6 94.1 �0.1 �0.05/�0.03 0

BN and C-NW
ACC L 67.1 0.040 64.3 70.0 0.8 0.51/0.28 1
Insula R 77.9 0.001 85.7 70.0 1.4 0.18/�0.14 3

v. Striatum L 68.2 0.037 71.4 65.0 0.1 0.44/0.40 0

BED and BN
ACC R 71.0 0.019 70.6 71.4 �0.6 0.29/0.50 0
Insula R 70.4 0.022 76.4 64.3 �1.6 �0.12/0.35 5
Insula L 68.1 0.040 64.7 71.4 �0.9 0.00/0.26 1
v. Striatum L 84.0 <10�3 82.4 85.7 �1.1 0.21/0.63 1

H: Hemisphere; DA (%): decoding accuracy calculated as the mean of sensitivity and specificity. Thereby, in each pair-wise analysis
(BED vs. C-OW; BED vs. C-NW; BN vs. C-OW; BN vs. CNW; BED vs. BN) a correctly identified subject of the group named first was
considered as a true positive; P: probability of observed DA according to v2-distribution; SEN: sensitivity; SPE: specificity; mean t-value
for the difference of contrast maps between groups (BED minus C-OW, BED minus C-NW, BN minus C-OW, BN minus C-NW, and
BED minus BN) in voxels underlying searchlight classifiers selected across all first level LOO iterations for a given ROI; mean con-
values: mean of contrast values for both groups of a pair in voxels underlying searchlight classifiers selected across all first level
LOO iterations for a given ROI; Vox*(%): percentage of voxels underlying selected searchlight classifiers showing significant t-con-
trasts (Puncorrected ¼ 0.001, no cluster size criterion, two-sided); lat.: lateral; v: ventral. Bold text indicates a significant decoding accu-
racy on a FWE-corrected level (Bonferroni-correction, i.e., PFWE ¼ 0.05 [a]/12 [number of ROIs] ¼ 0.004). Non-bold text indicates a
significant decoding accuracy according to an uncorrected threshold (Puncorrected ¼ 0.05).
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gustatory cortex [Augustine, 1996]. Gustatory sensations
can be elicited by electrical stimulation of insular neurons,
whereas insular lesions have been linked to deficits in fla-
vor recognition and reduced taste intensity [Pritchard
et al., 1999]. Convergent evidence for the role of the insula
in the processing of visual food cues has been obtained in
several neuroimaging studies [e.g., Schienle et al., 2009;
Wang et al., 2004]. Decoding in the OFC is compatible
with the fact that gustatory information is relayed from
the insula to the OFC, which is the secondary gustatory
cortex [Baylis et al., 1995]. Previous research has indicated
that the OFC represents the hedonic value of food stimuli
and it plays a central role in reward processing [e.g.,
Kringelbach, 2004]. In line with these findings, the consist-
ent involvement of the insula across groups in this study
could be understood as a basic brain response pattern to
food cues in healthy as well as disordered subjects reflect-
ing gustatory properties of food.

Subregions of the amygdala, the ventral striatum, and
the ACC separated between stimuli only in patients with
eating disorders. These structures are known to be
involved in the processing of the incentive salience of
reward-related cues [Berridge, 2009; Mahler and Berridge,
2009]. Correspondingly, a recent study [Mahler and Ber-
ridge, 2009] showed that the amygdala converts learning
into motivation in rats, and amplifies and focuses learned
incentive salience onto a particular cue thus making the
cue more attractive and in turn triggering consummatory
behavior. The ACC has been identified in a variety of
studies as being part of a brain network involved in food-
cue processing [e.g., Berridge, 2009; Mahler and Berridge,
2009; Pelchat et al., 2004; St-Onge et al., 2005]. It is
assumed that activity in the ACC reflects attentional proc-
essing of salient food-cues [Pelchat et al., 2004]. Finally,
the finding of discriminative information in the ventral
striatum is in line with studies showing that this structure
is central for the processing of the incentive value of
reward-related cues [Diekhof et al., 2008]. A direct connec-
tion between striatal activity and increased incentive
salience of food cues has been demonstrated recently [e.g.,
Farooqi et al., 2007; Kelley 2004]. Salient food cues can
elicit food ‘‘wanting’’ [Berridge, 2009] that is a potential
trigger of food consumption.

In the second analysis, we addressed the clinically cru-
cial question whether it is possible to distinguish between
the four participant groups based on brain response pat-
terns. In this analysis, the insular cortex turned out as a
key structure that was involved in the discrimination of
each participant group. Insular involvement in the separa-
tion of groups is in line with findings of previous studies
[Rothemund et al., 2007; Schienle et al., 2009] showing that
subjects suffering from several eating disorders and obese
subjects differed in their insular response to high-caloric
food cues. Garavan [2010] suggests that such group differ-
ences might be explained by differences in food craving.

Besides insular patterns, spatial brain activity patterns in
the ventral striatum, and the ACC separated between BED

patients and C-OW, BN patients and C-NW, as well as
BED patients and BN patients. In line with the findings for
the decoding of stimuli, these results could be explained
by differences of incentive salience and food wanting
between groups. Interestingly, striatal patterns and pat-
terns in the ACC were characterized by slightly stronger
responses to food-cues as compared to neutral stimuli in
BN patients and obese control subjects compared to pat-
terns of these regions in BED patients. This is indicated by
mean contrast values determined for these areas (see Table
II). Thus, our findings suggest that relative to BED
patients, food-cues are more attractive and attention grab-
bing for BN patients and obese subjects and exert a stron-
ger impact to seek and consume food.

Importantly, this interpretation does not interfere with
the results for the decoding of stimuli. Although it is true
that separation of stimuli is possible in these regions for
the BED group but is not possible for the C-OW group,
mean beta regression coefficients depicted in Table I show
that food-cue evoked patterns do not separate from neu-
tral patterns based on pronounced positive activation proc-
esses in the BED group. For the ventral striatum, patterns
of both stimulus types have a mean b-value close to zero.
Patterns in the ACC even show a latent deactivation for
food and a somewhat stronger deactivation for neutral pic-
ture presentation. Thus, it is quite possible that moderate
food-specific activation in these regions in the C-OW
group (as is indicated in Table II) induces separability
from the BED group whereas it is not sufficient to separate
between stimuli within the C-OW group. The reasons why
patterns in the striatum do not separate between stimuli in
the C-OW group remain speculative. There are studies
reporting a striatal involvement in food-cue processing of
obese subjects in terms of differential activation on the
voxel level [e.g. Farooqi et al., 2007; Rothemund et al.,
2007]. However, in line with the results of the present
study that clearly show that areas of diagnostic informa-
tion are not (necessarily) areas of pronounced activation
differences on the voxel-level, processes observed in these
studies may not be sufficiently reliable on the pattern level
to separate between stimuli.

Besides differences in food reward processing specific
differences in eating disorder behaviors between BED and
BN patients such as vomiting may account for the striatal
involvement in the separation of these groups. This view
is also supported by the analysis of the structural MRI
data of these groups [Schäfer et al., 2010]. In this study, it
could be shown that BN patients had a greater grey matter
volume of the ventral striatum compared to BED patients
and controls. Moreover, the striatal volume was negatively
correlated with the BMI of the bulimic patients and posi-
tively with their degree of vomiting. Thus, BN patients
with a larger striatum vomited more frequently and by
this executed more efficient weight control. This finding
can be interpreted in the framework of instrumental
reward conditioning, which is related to striatal functions
as it is known that the ventral striatum facilitates the
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acquisition of behaviors related to obtaining a reward
[e.g., Diekhof et al., 2008]. In this sense, BN patients purge
to reduce stress and weight, which can be labeled as nega-
tive reinforcement. Taken together these results strengthen
the assumption of the diagnostic autonomy of BED, as it is
possible to diagnose BED and BN accurately based on
brain patterns drawn from regions that are associated to
specific eating-disordered behaviors and that are coding
for the incentive salience of disorder-related stimuli.

This is the first study investigating the neural or hemody-
namic correlates of food-cue processing in patients suffering
from different binge-eating disorders and controls using
multivariate classification. This technique has several
advantages. As opposed to methods investigating differen-
tial activation [as e.g. used in Schienle et al., 2009], it allows
investigating the diagnostic information contained in food-
cue elicited activation patterns for the separation of patients
and controls as it assesses the separability of individual data
exemplars belonging to different categories. This is not pos-
sible using methods analyzing processes of differential acti-
vation as these techniques evaluate the relation of data
distributions and not individual exemplars. Furthermore,
multivariate pattern recognition techniques have higher
sensitivity compared to the conventional techniques as they
analyze the information contained in distributed patterns of
activity. This is underlined by the fact that the classification
is successful even without strong overall activation differen-
ces between groups. To put it differently, the diagnostic in-
formation is not only contained in regions with significant
univariate effects. A drawback of the study is that it still
lacks replication. To confirm the diagnostic relevance of the
identified brain regions and the performance of the classifi-
cation framework proposed a prospective blind study has
to be conducted in the future. If it will be possible to predict
diagnoses of unknown subjects in this future study based
on the classification models derived from the samples in
this study with high accuracy, this might justify the belief in
the diagnostic significance of brain regions identified and
the classification setup proposed.

To summarize, we were able to demonstrate that the in-
formation encoded about food stimuli as well as subject’s
clinical condition can be decoded accurately from local spa-
tial brain patterns. In the decoding of stimuli, the insula sep-
arated between food stimuli in patients as well as controls.
The involvement of this region could be understood as a ba-
sic brain response pattern to food cues reflecting gustatory
properties of food. In patients, the amygdala, the ACC and
the ventral striatum separated between stimuli additionally.
This suggests that eating disordered patients exhibit a devi-
ant motivational and attentional processing of visual food
cues, which could trigger binge-eating attacks. In the decod-
ing of groups the insula, the amygdala, the OFC, the ACC,
and the ventral striatum separated between groups. The fact
that regions of the incentive salience network contained
diagnostically relevant information for the separation of
BED from BN patients supports the assumption of the diag-
nostic autonomy of BED.

ACKNOWLEDGMENTS

The authors thank Carlo Reverberi, Jakob Heinzle, Ker-
stin Hackmack, Kai Goergen, Andrea Hermann, Dieter
Vaitl, and Rudolf Stark for helpful discussions and
comments.

REFERENCES

American Psychiatric Association (1994): Diagnostic and statistical
manual of mental disorders, 4th ed. Washington, DC: Ameri-
can Psychiatric Association.

Augustine JR (1996): Circuitry and functional aspects of the insu-
lar lobe in primates including humans. Brain Res Rev 22:
229–244.

Barry DT, Grilo CM, Masheb RM (2003): Comparison of patients
with bulimia nervosa, obese patients with binge eating disor-
der, and non-obese patients with binge eating disorder. J Nerv
Ment Dis 9:598–595.

Baylis LL, Rolls ET, Baylis GC (1995): Afferent connections of the
caudolateral orbitofrontal cortex taste area of the primate.
Neuroscience 64:801–812.

Berridge KC (2009): ‘Liking’ and ‘wanting’ food rewards: Brain
substrates and roles in eating disorders. Physiol Behav 97:
537–550.

Chen X, Pereira F, Lee W, Strother S, Mitchell T (2006): Exploring
predictive and reproducible modeling with the single-subject
FIAC dataset. Hum Brain Mapp 27:452–461.

Davatzikos C, Ruparel K, Fan Y, Shen DG, Acharyya M, Loug-
head JW, Gur RC, Langleben DD (2005): Classifying spatial
patterns of brain activity with machine learning methods:
Application to lie detection. Neuroimage 28:663–668.

Diehl JM, Staufenbiel T (1994): Essstörungs-inventar [eating
disorder inventory]. Supplement zum IEG. Eschborn: Verlag
Dietmar Klotz.

Diekhof EK, Falkai P, Gruber O (2008): Functional neuroimaging
of reward processing and decision-making: A review of aber-
rant motivational and affective processing in addiction and
mood disorders. Brain Res Rev 59:164–184.

Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher
PC (2007): Leptin regulates striatal regions and human eating
behavior. Science 317:1355.

Formisano E, De Martino F, Bonte M, Goebel R (2008): Who is
saying what? Brain-based decoding of human voice and
speech. Science 322:970–973.

Fu CHY, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand
AF, Williams SCR, Brammer MJ (2008): Pattern classification of
sad facial processing: Toward the development of neurobiolog-
ical markers in depression. Biol Psychiatry 63:656–662.

Fung G, Mangasarian OL (2003): Finite Newton method for
lagrangian support vector machine classification. Data mining
institute. Technical Report 02–01, Neurocomputing 55:39–55.

Garavan H (2010): Insula and drug cravings. Brain Struct Funct
214:593–601.

Haynes JD, Rees G (2005): Predicting the stream of consciousness
from activity in early visual cortex. Curr Biol 15:1301–1307.

Haynes JD, Rees G (2006): Decoding mental states from brain
activity in humans. Nat Rev Neurosci 7:523–534.

Haynes JD, Deichmann R, Rees GE (2005): Eye-specific suppres-
sion in human LGN reflects perceptual dominance during
binocular rivalry. Nature 438:496–499.

r Diagnosing Binge-Eating Disorders from fMRI r

r 2145 r



Haynes JD, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE
(2007): Reading hidden intentions in the human brain. Curr
Biol 17:323–328.

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P
(2001): Distributed and overlapping representations of faces
and objects in ventral temporal cortex. Science 293:2425–2430.

Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grüsser-Sino-
poli SM, Flor H, Braus DF, Buchholz HG, Gründer G, Schrecken-
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Möller HJ, Gaser C (2009): Use of neuroanatomical pattern clas-
sification to identify subjects in at-risk mental states of psychosis
and predict disease transition. Gen Arch Psychiatry 66:700–712.

Kriegeskorte N, Goebel R, Bandettini P (2006): Information-based
functional brain mapping. Proc Natl Acad Sci 103:3863–3868.

Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009):
Circular analysis in systems neuroscience: The dangers of dou-
ble dipping. Nat Neurosci 12:535–540.

Kringelbach ML (2004): Food for thought: Hedonic experience beyond
homeostasis in the human brain. Neuroscience 126:807–819.

Mahler SV, Berridge KC (2009): Which cue to ‘‘want?’’ Central
amygdala opioid activation enhances and focuses incentive
salience on a prepotent reward cue J Neurosci 29:6500–6513.

Marquand AF, Mourao-Miranda J, Brammer MJ, Cleare AJ, Fu
CHY (2008): Neuroanatomy of verbal working memory as a
diagnostic biomarker for depression. Neuroreport 19:1507–1511.

Martinez-Ramon M, Koltchinskii V, Heileman GL, Posse S (2006):
fMRI pattern classification using neuroanatomically con-
strained boosting. Neuroimage 31:1129–1141.

McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ Jr, Hol-
land D, Karow DS, Pung CJ, Brewer JB, Dale AM (2009): Alz-
heimer disease: Quantitative structural neuroimaging for
detection and prediction of clinical and structural changes in
mild cognitive impairment. Radiology 251:195–205.

Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF,
Weinberger DR, Berman KF (2001): Evidence for abnormal
cortical functional connectivity during working memory in
schizophrenia. Am J Psychiatry 158:1809–1817.

Mourão-Miranda J, Bokde ALW, Born C, Hampel H, Stetter S
(2005): Classifying brain states and determining the discrimi-
nating activation patterns: Support vector machine on func-
tional MRI data. Neuroimage 28:980–995.

Mourão-Miranda J, Friston KJ, Brammer M (2007): Dynamic dis-
crimination analysis: A spatial-temporal SVM. Neuroimage
36:88–99.

Norman KA, Polyn SM, Detre GJ, Haxby JV (2006): Beyond mind-
reading: Multi-voxel pattern analysis of fMRI data. Trends
Cogn Sci 10:424–430.

O’Dougherty J, Dayan P, Schultz J, Deichmann R, Friston K,
Dolan RJ (2004): Dissociable roles of the ventral and dorsal
striatum in instrumental conditioning. Science 304:452–454.

Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD (2004):
Images of desire: Food-craving activation during fMRI. Neuro-
image 23:1486–1493.

Pereira F, Mitchell T, Botvinick M (2009): Machine learning classi-
fiers and fMRI: A tutorial overview. Neuroimage 45:S199–S209.

Pritchard TC, Macaluso DA, Eslinger PJ (1999): Taste perception
in patients with insular cortex lesions. Behav Neurosci
113:663–671.

Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel
R, Flor H, Klapp BF (2007): Differential activation of the dorsal
striatum by high-caloric visual food stimuli in obese individu-
als. Neuroimage 37:410–421.
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