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Baseline Activity Predicts Working Memory
Load of Preceding Task Condition
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Abstract: The conceptual notion of the so-called resting state of the brain has been recently challenged by
studies indicating a continuing effect of cognitive processes on subsequent rest. In particular, activity in
posterior parietal and medial prefrontal areas has been found to be modulated by preceding experimental
conditions. In this study, we investigated which brain areas show working memory dependent patterns
in subsequent baseline periods and how specific they are for the preceding experimental condition. Dur-
ing functional magnetic resonance imaging, 94 subjects performed a letter-version of the n-back task with
the conditions 0-back and 2-back followed by a low-level baseline in which subjects had to passively
observe the letters appearing. In a univariate analysis, 2-back served as control condition while 0-back,
baseline after 0-back and baseline after 2-back were modeled as regressors to test for activity changes
between both baseline conditions. Additionally, we tested, using Gaussian process classifiers, the recogni-
tion of task condition from functional images acquired during baseline. Besides the expected activity
changes in the precuneus and medial prefrontal cortex, we found differential activity in the thalamus,
putamen, and postcentral gyrus that were affected by the preceding task. The multivariate analysis
revealed that images of the subsequent baseline block contain task related patterns that yield a recogni-
tion rate of 70%. The results suggest that the influence of a cognitive task on subsequent baseline is strong
and specific for some areas but not restricted to areas of the so-called default mode network. Hum Brain
Mapp 34:3010-3022, 2013.  © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The authors of this article cannot promise that the article
at hand will have a lasting impact on the subsequent
thinking of the reader. However, reading is a good exam-
ple to illustrate that processing of information can last for
a period of time that exceeds the pure perception of an ar-
ticle. The reading of a scientific article may cause subse-
quent judgment of the results, evaluation of the new
concepts and ideas introduced in the study and estimation
of their impact and contribution to the field. These proc-
esses impacting the brain’s state are a direct consequence
of the previously perceived information. Under this
assumption, intrinsic unstimulated brain activity (also
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referred to as “resting state”) does not represent a stable
and unique state in which the human brain remains in a
“default mode”. Rather memories and impressions are res-
onated and processed continuously.

The predominant number of resting state studies
focused on brain activity in pure resting periods and on
functional networks which are more active during rest
than during cognitive demanding tasks [Fransson, 2005;
McKiernan et al., 2006; Thomason et al., 2008; Shmuel and
Leopold, 2008; van den Heuvel et al., 2009; Shehzad et al.,
2009; Meindl et al., 2009]. One prominent network is the
default mode network (DMN) comprising medial frontal
regions, the ventral anterior and the posterior cingulate
cortex, the precuneus and the lateral parietal cortex [Gus-
nard and Raichle, 2001; Greicius et al.,, 2003; Beckmann
et al., 2005; De Luca et al., 2006]. Consistently across task
modalities and experimental designs, the DMN has been
found to be more activated during rest periods than dur-
ing attention demanding tasks [Shulman et al., 1997b;
Mazoyer et al, 2001; McKiernan et al., 2003; Tamas
Kincses et al., 2008]. Increased activity in this network has
been associated with self-monitoring and episodic memory
processes.

The idea that task performance and stimulus selection
can have a significant impact on default mode areas in
subsequent rest, however, is rather new and has only
been addressed by a few studies. In a study reported by
Schneider et al. [2008], subjects were exposed to pictures
with different emotional intensity and different degrees of
self-relatedness. They found a specific influence of self-
relatedness ratings on hemodynamic activity in subse-
quent rest, primarily in the ventral medial prefrontal cor-
tex and the medial orbitofrontal cortex that could be
distinguished from emotional valence and self-related
effects during observation of the images. Waites et al.
[2005] investigated the effect of prior performance of an
orthographic lexical retrieval task on resting-state net-
works. In a comparison of rest before and after the acti-
vation task, widespread changes in functional
connectivity were observed in all individuals. However,
on the group level, the results point out only to a slightly
increased functional connectivity of the posterior cingu-
late cortex (PCC) and the medial frontal gyrus with fron-
tal lateral areas. A recent study of our own group
explored the influence of cognitive load on subsequent
rest [Pyka et al., 2009]. Twenty-five subjects completed a
letter-version of the n-back task including the conditions
0-back, 1-back, and 2-back, separated by resting state
blocks. Using independent component analysis (ICA), we
identified a network whose time course was anticorre-
lated to the task demands with high overlap to the DMN.
Activity after 1-back and 2-back was significantly higher
than after 0-back. As DMN activity has been associated
with self-referential processes, we hypothesized that
demanding working memory tasks lead to increased sub-
sequent cognitive processing of the own recent past in
comparison to a the simple 0-back task. Task-rest interac-

tions have also been observed outside default mode
regions in the context of motor learning and memory con-
solidation [Albert et al., 2009; Tambini et al., 2010]. Albert
and colleagues reported increased activity in a lateral
fronto-parietal and cerebellar resting state network after a
11-min lasting visuomotor training task. Tambini et al.
compared 8 min of resting state data before and after a
21-min lasting encoding task and found increased func-
tional connectivity between the right fusiform face area
and the lateral occipital complex and between the right
fusiform face area and the parahippocampal place after
the object-face encoding task. Overall, these studies pro-
vide evidence that resting state activity, both during
short- and long-term rest, is not only a correlate of intrin-
sic (default mode) processes in the unstimulated brain,
but seems to be directly affected by preceding cognitive
information. Thus, the resting state appears to be an
obligatory part in the processing of information, which
possibly has been underestimated so far.

In our previous study, ICA delivered a decomposition
of the fMRI data that revealed a component associated
with task-rest interaction [Pyka et al., 2009]. Due to the na-
ture of the ICA however, task-related activity in the subse-
quent rest period could not be directly attributed to
specific brain regions. In particular, it remained unclear
whether task-rest interactions are restricted to areas of the
DMN or extend those. In this study, we therefore investi-
gated the interaction of cognitive tasks and subsequent
baseline periods in terms of its spatial distribution and dis-
criminating power. We analyzed an independent dataset
of 94 subjects who performed a similar letter-version of
the n-back task as in our previous study [Pyka et al., 2009]
containing 0-back and 2-back tasks with intermediate base-
line periods lasting for 30 s. In contrast to our previous
study, we did not use a “pure” resting phase but a low-
level baseline (letter fixation) in which subjects passively
observed the same letters that occurred during 0-back and
2-back. Using a general linear model (GLM), we investi-
gated which brain regions reveal differential activity
between the two baseline phases, that is, between baseline
after 2-back (B2-back) and baseline after 0-back (B0-back).
Technically, we reversed the classical GLM, using 0-back,
B0-back, and B2-back as explanatory variables and 2-back
as unmodeled condition. With this model, we were able to
treat both baseline blocks as separate conditions and could
specifically address the question, which areas have higher
activity during B2-back compared with B0-back and vice
versa. We expected that regressors for B2-back and BO-
back would reveal baseline activity modulated by preced-
ing task type. On the basis of our previous findings [Pyka
et al., 2009], we hypothesized that DMN areas, such as the
precuneus and the medial prefrontal cortex, show signifi-
cantly increased activity during B2-back compared with
B0-back. We also assumed that the GLM analysis would
indicate which areas beyond the DMN are modulated by
cognitive load pointing to alterations in rest that are possi-
bly specific for a working memory task, a question that
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could not directly be addressed within the previous analy-
sis using ICA.

If the low-level baseline activity is modulated by the pre-
ceding task, baseline data should also contain sufficient in-
formation to “forecast” the preceding task type on the level
of individual subjects. We used two types of classifiers to
assess the recognition of task condition from baseline activ-
ity. As several studies highlighted the precuneus as a key
region of the DMN [Gusnard and Raichle, 2001; Greicius
et al., 2003; Cavanna and Trimble, 2006; Yan et al., 2009],
we hypothesized that in particular activity in the precuneus
is predictive for the preceding task condition. In a first clas-
sification approach, we therefore used the individual beta
values of the precuneus during B2-back and BO0-back,
obtained from the above GLM analysis, to classify the pre-
ceding task. In a second classification analysis, we addition-
ally estimated the discriminating power of baseline activity
using a pattern classification approach. Although in univari-
ate analyses the explanatory power of regressors is esti-
mated voxel-wise, pattern classifiers such as Gaussian
process classifiers take the multivariate pattern of brain
responses into account. Therefore, pattern classifiers are
supposed to be more sensitive for discriminating informa-
tion than activity at a single location because areas that are
of particular importance for the classification process do not
have to reflect necessarily a selective hemodynamic increase
or decrease. Rather, they represent a multivariate pattern
that leads, in conjunction with other areas, to high predict-
ability. This multivariate nature of machine learning
approaches leads to increased sensitivity over univariate
methods and allows single-subject classification rather than
group-wise comparisons [O'Toole et al., 2007]. Although
the potential for single-subject classification has been recog-
nized to be of particular value in biomarker research, pat-
tern classification approaches have already been used to
differentiate between experimental conditions. Such studies
commonly use a brain activation patterns to infer a subject’s
cognitive state [Cox and Savoy, 2003; Carlson et al., 2003;
Haynes and Rees, 2005; Davatzikos et al., 2005, Mourdo-
Miranda et al., 2005; Kriegeskorte et al., 2006; Haynes and
Rees, 2006; Marquand et al., 2010]. Although the univariate
analysis in the present study reveals areas that are affected
by the preceding task type, the multivariate approach is
used to provide a quantitative measure for the overall
impact of the working memory task on subsequent rest.

METHODS
Subjects

A total of 94 healthy subjects (66 men; mean age 23
years, s.d. +3) were included in the study. All subjects
were right-handed, as assessed by the Edinburgh Inven-
tory [Oldfield, 1971], and had no psychiatric, neurological
or other medical disorders. After a complete description of
the experimental procedure subjects provided written
informed consent to participate in the study. The protocol

was approved by the local ethics committee according to
the declaration of Helsinki.

The data was originally collected as part of an ongoing
study investigating the genetic basis of schizophrenia and
bipolar disorder [see, e.g., Jansen et al., 2009]. Subjects
were recruited through advertisements in local newspa-
pers and postings at the campus of the University of
Aachen. Inclusion criteria were age (18-55 years), right-
handedness (as assessed by the Edinburgh Inventory), no
psychiatric disorders according to ICD-10, no family his-
tory of schizophrenia or bipolar disorder, and Western- or
Middle European descent. Of note, the sample was ran-
domly drawn from a healthy population without any pre-
selection on genetic features.

fMRI task

Participants performed a working memory task during
fMRI data collection. The working memory task was a let-
ter variant of the n-back task [e.g., Krug et al., 2008; Jansen
et al., 2009; Markov et al., 2010] with three different condi-
tions: letter fixation as a high level baseline, 0-back, and 2-
back, respectively. During the 0-back condition, subjects
were instructed to respond every time the letter “X”
appeared. During the 2-back condition, they were
instructed to respond when the letter presented was iden-
tical to the second last letter. Responses were made with
the right index finger on a response button (LUMI-
touchTM Lightwave Technologies, Richmond, BC, Can-
ada). In each block and condition (including baseline), 19
red letters were presented on a black background in a
pseudo-randomized order using the Presentation software
package (Neurobehavioral Systems Inc., San Francisco,
CA). During each nonbaseline block seven targets required
a response (target rate = 0.37). Each letter presentation
trial consisted of a blank screen which was presented for
500 ms, followed by the letter presentation of 500 ms and
a blank screen of 400 ms duration. In all conditions the
blocks lasted for 30.5 s including an instruction screen that
lasted for 3.5 s. The onset of the instruction was synchron-
ized to the scanner pulse. Four 0-back blocks (selective
attentionlow working memory demands) were alternated
with four 2-back blocks (high working memory demands)
with eight baseline blocks (letter fixation) in between the
conditions. The whole fMRI task took 8 min and 8 s. As
the experimental session ended with 2-back without a sub-
sequent baseline phase, we decided to omit the last 0-back
and 2-back blocks for data analysis in order to have an
equal number of 0-back, 2-back blocks and subsequent
baseline blocks. Therefore, three 0-back, 2-back and their
corresponding baseline blocks were included in this study.

fMRI Data Acquisition

All MRI data were acquired on a 3-T TIM-Trio MR scan-
ner (Siemens Medical Systems) at the Forschungszentrum
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Jiillich. Functional images were collected with a T3-
weighted echo planar imaging (EPI) sequence sensitive to
BOLD contrast (64 X 64 matrix, FOV 200 mm, in plane re-
solution 3.13 mm, 36 slices, slice thickness 3 mm, TR 2.25
s, TE 30 ms, flip angle 900). Slices covered the whole
brain and were positioned transaxially parallel to the ante-
rior—posterior commissural line (AC-PC). The initial three
images were excluded from analysis in order to remove
the influence of T saturation effects.

Data Analyses

The data were analyzed by two different approaches:
first by a univariate GLM approach and second by a pat-
tern classification approach.

Univariate analysis

SPM5 (www. filion.ucl.ac.uk/spm) standard routines
and templates were used for the preprocessing of the
fMRI data. Functional images were realigned, normalized
(resulting voxel size 2 x 2 x 2 mm3), smoothed with an 8-
mm Gaussian kernel and high-pass filtered using a cut off
period of 256 s. As a previous study indicates that DMN
areas show the greatest activity in baseline periods after 2-
back (> baseline after 0-back > 0-back > 2-back) [Pyka
et al.,, 2009], we declared 2-back as (unmodeled) control
condition and included the letter fixation baseline condi-
tion after 2-back, the letter fixation baseline condition after
0-back and the 0-back condition as regressors of interest
and the instruction as regressor of no interest into the gen-
eral linear model. On the second level, contrast images for
the main effects BO-back and B2-back (the regressor of in-
terest is weighted with one, the others with zero) were
compared using a paired two-sample t-test with test spe-
cifically for activation activity differences between both
conditions. All results are reported at P < 0.05, corrected
for multiple comparisons using the family-wise error
(FWE) implementation in SPM5. Only clusters with a clus-
ter size greater than 20 voxels are reported.

Exploration of potential confounds. The measured hemo-
dynamic response can last over 15 s beyond stimulus pre-
sentation. One might therefore argue that the baseline
block is contaminated by undershoot or overshoot effects
of the previous hemodynamic response. To verify that ac-
tivity differences between the two baseline periods are not
simply associated to differences between the 2-back and 0-
back condition, we performed post-hoc two further
analyses.

Analysis 1: To exclude the possibility that the B2-back
regressor explains variance of the unmodeled 2-back block,
subject-wise time-series of the clusters showing activity
differences between B2-back and BO-back were reanalyzed
by GLMs including 2-back as regressor. The time series
were extracted from a 6-mm ROI centered at the peak
coordinate of the cluster and were corrected, using the

appropriate F-contrast, for movement parameters and low
frequency drifts (<0.01 Hz). To avoid over-specification of
the GLM, the instruction regressor was omitted. Beta-val-
ues of BO-back and B2-back were compared by a paired
two-sample t-test.

Analysis 2: Overshoot effects of preceding task condi-
tions would be expected predominantly at the beginning
of the baseline periods. In the second analysis, we there-
fore divided each baseline-block in two parts lasting about
15 s each and tested whether activity differences between
B2-back and BO-back were also present in the comparison
of the second part of the baseline blocks, that is, in a time-
window that lays 15 s after the preceding n-back task. If
so, this would support the interpretation that activity dif-
ferences between B2-back and BO-back are associated with
neural differences between the baseline blocks and not
simply with overshoot effects of the preceding task
conditions.

Classification analyses

Classification by beta-values. We conducted several types
of classification. First, we performed goodness-of-fit analy-
ses on the beta-values of the precuneus to test the subject-
wise discriminative power between both baseline condi-
tions. Goodness-of-fit analyses were performed in the fol-
lowing way. The coordinates of the precuneus were a
priori defined as [-5, —54, 32] in the MNI space. These
coordinates represent averaged values from previous find-
ings in the precuneus region [Greicius et al., 2003; De Luca
et al., 2006; Fransson, 2006; Yan et al., 2009] and were
recently computed for another study [Pyka et al., in press].
To fully account for the subject-wise difference between
B0-back and B2-back beta-values, we report how many
beta-values for the B2-back regressors are greater than the
corresponding beta-value of the BO-back regressor. This is
the simplest measure to determine for each subject
whether baseline activity followed 0-back or 2-back
performance.

We also computed the accuracy for recognizing B0-back
and B2-back for any possible cut-off between all beta-val-
ues without incorporating subject wise dependencies. In
this type of classification, a high accuracy indicates similar
relative signal changes from 2-back to BO-back and B2-
back across subjects. We report the threshold that leads to
the best classification of both conditions as well as a re-
ceiver-operating characteristic (ROC) curve depicting the
general quality of this measure.

Classification through Gaussian process classifiers. Sec-
ondly, we used Gaussian Process Classifier (GPC) [Mar-
quand et al., 2010] to find patterns in the data that
discriminate between BO-back and B2-back. Classifiers
such as GPC or Support Vector Machines (SVM) are
trained by providing examples of the form (x,c) where x
represents a spatial pattern and c is the class label (e.g., c
= 41 for O-back and ¢ = —1 for 2-back). Each spatial
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pattern (e.g., averaged functional images) corresponds to a
point in the input space and each voxel in the brain image
represents one dimension of this space. During the train-
ing phase, the pattern recognition algorithm finds a deci-
sion function that separates the examples in the input
space according to the class label. Once the decision func-
tion is determined from the training data, it can be used to
recognize the class label of a new unseen test sample. The
aim of this process is to find a decision function that not
only classifies the training data correctly but also does the
same for the test data, that is, classifies new samples into
the correct categories. As a recent study has shown that
GPCs perform at least as good as the more commonly
used SVM [Marquand et al., 2010], Gaussian process clas-
sification was performed using a customized version of
the Gaussian processes for machine learning (GPML) tool-
box for Matlab (http://www.gaussianprocess.org/gpml).

For each subject, training/test data for the pattern classi-
fier was generated by averaging the preprocessed images
acquired during B0-back and B2-back [similar to Fu et al,,
2008; Marquand et al., 2010]. To assure that the averaged
images do not include hemodynamic increases or decreases
that are related to changes of the experimental condition
nor signal changes related to the instruction at the begin-
ning of each condition, we included only the last seven
scans acquired during the baseline (corresponding to 15.75
s of the baseline block). In the hemodynamic model, the
selected images are situated in the middle of the experi-
mental block convolved with the hemodynamic response
function (HRF; Fig. 1). In sum, for each subject we created
two images describing the mean activity during B0-back
and B2-back, respectively, resulting in 94 x 2 = 188 sam-
ples of mean activity for the baseline block after task
performance.

To assure that a high accuracy of classification is not
evoked by signal changes at the cortex surface or in ven-
tricles due to movements, we created a conservative EPI-
headmask that was applied on all samples. The EPI-head
mask was built by thresholding the EPI-template of SPM5
at a manually chosen signal value of >0.1460 to exclude
voxel at the border between cortex and skull. Furthermore,
ventricles were excluded from the mask through subtract-
ing the ventricle mask (with a dilatation of 1 voxel) pro-
vided by the WFU PickAtlas (http://fmri.wfubmc.edu/
software/PickAtlas) from the EPI-head mask. All averaged
images that served as samples for the classifier were multi-
plied with the given EPI mask. For GPC, we used a linear
covariance function and estimated hyperparameters con-
trolling bias and regularization using an empirical Bayes-
ian approach (further details can be found in Marquand
et al., [2010]). As cross-validation methods we chose leave-
one-out cross-validation, which has become one of the
standard methods for training pattern classifiers [Kohavi,
1995; Fu et al., 2008; Pereira et al., 2009; Marquand et al.,
2010]. In each leave-one-out run, data from all but one
sample per group (S-1 of S subjects) were used to train the
classifier. Subsequently, the classifiers estimated for the

remaining (and so far unseen) samples their class member-
ship. This procedure was repeated S times, each time leav-
ing out a different pair of samples, yielding to S prediction
classifications for each condition. Thus, we obtained the
sensitivity and specificity’ of the classifier to assign new
samples to the correct class.

Additionally, we applied GPC on the beta-maps for BO-
back and for B2-back obtained from the GLM analysis of
the univariate analysis (see above).

RESULTS
Univariate Analysis

A paired two-sample t-test for BO-back and B2-back
revealed brain areas which are significantly more activated
during baseline after 2-back compared with baseline after
0-back (Fig. 2). These areas comprise the precuneus/PCC,
the medial prefrontal cortex or anterior cingulate cortex
(both areas belong to the DMN) and clusters in the puta-
men, thalamus, postcentral gyrus/supplementary motor
areas (Table I). The opposite contrast, B0-back > B2-back,
revealed no significant voxels that survived our correction
method and significance level. An explorative depiction of
the same contrast (P < 0.001, uncorrected) showed a clus-
ter (k = 82) in the inferior temporal sulcus.

In order to understand how the differential activity in
the reported clusters came off, we plotted the parameter
estimates for the B0-back, the B2-back, and the 0-back con-
dition (Fig. 3). The plots reveal, as hypothesized, higher
activity in DMN areas such as the precuneus/PCC and
the medial prefrontal cortex or anterior cingulate cortex.
Areas in the thalamus and putamen, however, showed a
significant decrease in BO-back but only little decrease dur-
ing B2-back. As these contrast estimates originate from 2-
back as baseline condition, activity is maintained after 2-
back on a similar level while during 0-back those regions
showed less activity. Clusters in the left and right postcen-
tral gyrus or supplementary motor area were also stronger
in B2-back compared with BO-back. The activity profile
appears to be much more coherent with the precuneus/
PCC and medial prefrontal cortex than the cluster found
in the thalamus and putamen.

Exploration of potential confounds

As Dbaseline activity is modulated by the preceding
working memory condition, the hemodynamic changes of
the previous task might have a confounding influence on
the subsequent baseline block. In order to exclude these
confounds as potential explanation, we performed post-
hoc two analyses.

Analysis 1: We extracted for each subject the time course
of each cluster showing differences between B2-back and

lSensitivity = TP/(TP+EN), Specificity = TN/(TN+FP), TP: true
positives, FP: false positives, TN: true negatives, FN: false negatives
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rest after 2-back
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0-back 2-back -~  O-back 2-back 0-back 2-back
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EPIs included in EPIs included in
mean image for rest after 0-back mean image for rest after 2-back

Figure 1.
The experimental sequence included three alternating 0-back and 2-back blocks separated by
baseline periods. Input data for the classifier were generated by averaging all functional images
that belong to the same experimental condition. To account for the hemodynamic delay, only
seven images that are clearly located behind an experimental block were taken. Red bars sym-
bolize functional image acquired during baseline. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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_30 _20 orbitofrontal _10 putamen 0 ant. cingulum 10

mid. cingulum

20 precuneus 30 40 50 60 70

Figure 2.
B2-back versus BO-back. Areas of increased activity during baseline after 2-back (B2-back) com-
pared with baseline after 0-back (BO-back; P < 0.05, FWE-corrected). Numbers above the slices
denote the MNI z-coordinate. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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TABLE I. Clusters showing significant more activity during rest after 2-back compared
with rest after 0-back

Area X (mm) Y (mm) z (mm) k Tescore
Precuneus and PCC -6 —50 22 1922 7.67
Postcentral and SMA 24 —36 66 754 6.13
Medial prefrontal cortex —6 34 4 945 6.35
Thalamus 0 -12 6 75 5.78
Paracentral lobule -14 —24 64 51 5.52
Putamen -20 16 4 71 5.46
Orbitoinferior gyrus —34 38 14 22 513

PCC, posterior cingulate cortex; SMA, supplementary motor area.

B0-back and calculated a GLM in which the instruction
served as baseline, and 2-back, 0-back, B0-back and B2-
back as regressors of interest. Paired t-tests for the beta-
values of B0-back and B2-back for each subject yielded
again significant differences towards the direction,
depicted in Figure 3 (Table II). This speaks against the
argument that activity differences between B2-back and

. right SMA

precuneus / PCC

1
M
]

7

contant st -4 58 24
5 L2 2
e

0-back RO-back R2-back

B0-back are purely an artifact of the GLM analysis strategy
used.

Analysis 2: In the second analysis, we divided the base-
line-regressors B0-back and B2-back in two parts which
allowed us to test for baseline activation differences 15 s
after task performance. Post hoc GLMs for the time
courses of the reported clusters showed that even in a

left SMA
e |
e |
f ool I
i I |

medial prefrontal cortex

ot eviate 12,504
o
e

0-back R2-back

1
| |
O-back ‘Ri-back R2-back putamen
thalamus
Figure 3.

Parameter estimates for areas significantly more activated in the baseline period after 2-back
(B2-back) compared with the baseline period after 0-back (BO-back). Gray bars represent aver-
age parameter estimate for the given regressor, red lines depict 90% confidence interval. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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TABLE Il. Estimated differences between baseline after
2-back (B2) and baseline after 0-back (B0) for a general
linear model with regressors for 0-back, 2-back,
B0-back, and B2-back

Area B2-BO P

<0.0001*
<0.0001*

Precuneus and PCC
Postcentral and SMA

0.1775 (£0.0454)
0.0892 (+0.0173)

Medial prefrontal cortex 0.1183 (+0.0181) <0.0001*
Thalamus 0.1350 (+0.0489) <0.0001*
Paracentral lobule 0.0694 (4+0.0139) <0.0001*
Putamen 0.0568 (£+0.0135) <0.0001*
Orbitoinferior gyrus -0.0834 (+0.0215) <0.0001*

The instruction phase served as unmodeled control condition. All
estimated differences reached a significance level of P < 0.05 cor-
rected for multiple testing (P < 0.00714).

time frame of 15-30 s after the task signal increases after
2-back performance were still present, supporting the
interpretation that activity differences between B2-back
and BO-back are associated with neural differences
between the baseline blocks, not simply with overshoot
effects of the preceding task conditions (Fig. 4 and Table III)
(for a whole-brain analysis of the contrasts see the Support-
ing Information)

A third potential confound, the influence of the after-
shoot effect of the HRF on the subsequent baseline phase,
was investigated but could also be excluded (see Support-
ing Information). Numerous studies reported stronger
deactivation of default mode areas with increasing work-
ing memory demands [e.g., Shulman et al. 1997; Mazoyer
et al. 2001; McKiernan et al., 2006; Pyka et al., 2009]. In an
additional analysis, we confirmed that task-dependent
deactivation can be observed in our study using a conven-
tional analysis, which just includes 0-back, 2-back and
baseline as unmodeled condition (see Supporting
Information).

Classification Analyses

Given the assumption that a classifier is not able to rec-
ognize the correct class (real accuracy = 50%), in the pres-
ent study the probability for a measured accuracy of more
than 56% is P < 0.05. Thus, we regard everything beyond
56% as significant.”

On a pairwise inspection, beta-values of the precuneus
obtained from the B2-back regressors of the 94 subjects
were in 70.2% of the cases greater than the corresponding
beta-values of the BO-back regressors. Relative increases of
the precuneus during B0-back and B2-back in relation to
2-back were also consistent enough to discriminate
between both baseline conditions. The best cut-off value

’The value was obtained by estimating k, that the probability P(X >
k) < 0.05, where X is a random variable with a binomial distribution
for 2 x 94 = 188 trials and a dichotomic probability of 0.5 (two class)
(Pereira et al., 2009).

that distinguishes BO-back beta-maps from B2-back beta-
maps was 0.4977, yielding an accuracy of 67.6% (sensitiv-
ity: 57.5%, specificity: 77.7%, area under the curve (AUC):
0.71, P < 0.0001) (Fig. 5). Note that this type of classifica-
tion takes not into account the pairwise difference between
beta-values. Differences in scaling and variance were not
corrected here.

Classification of whole brain beta-images from B0-back
and B2-back using Gaussian processes revealed a specific-
ity of 64.9% and a sensitivity of 80.9%. Overall, the classi-
fier is able to recognize preceding task condition with an
accuracy of 72.8%. From averaged preprocessed baseline
data, the preceding task condition can be detected with a
sensitivity of 67.0% and a specificity of 73.4%, leading to
an accuracy of 70.2% (Table IV). The w-maps obtained
from the classification do not indicate that this prediction
rate comes off by artefacts, such as motion (see Supporting
Information).

DISCUSSION

Numerous fMRI studies investigated the direct relation
between experimental setups and increases and decreases
of the hemodynamic response in specific brain areas.
However, the extent to which cognitive tasks influence
subsequent baseline activity remains unexplored so far. In
this study, we investigated the influence of cognitive load
in a working memory task on a subsequent low-level base-
line, using both univariate and multivariate analyses. As
hypothesized, default mode areas, such as the precuneus

0.25
I first baseline period
[1second baseline period
0.2
0.15
01
i H H I
SMA

Precuneus MPFC  Thalamus Paracentral Putamen oIG

Figure 4.

Parameter estimates for the first and second part of the baseline
periods. Bar plots depict the increase of activity for the denoted
regions from baseline after 0-back to baseline after 2-back. The
first baseline period comprises the time window of 2—15 s of
the baseline condition, the second baseline period comprises
the time window of 16-28 s. All differential contrasts were sig-
nificant except activity increases in the thalamus in the second
baseline period (see Table IlI).
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TABLE Ill. Time-series of the reported cluster were re-analyzed by dividing the baseline regressors into two parts

Area B21-B01 P B22-B02 P

Precuneus and PCC 0.237 (+0.082) <0.0001* 0.088 (+0.078) 0.0014*
Postcentral and SMA 0.117 (+0.036) <0.0001* 0.052 (+0.038) 0.0056*
Medial prefrontal cortex 0.143 (+0.039) <0.0001* 0.053 (+0.036) 0.0039*
Thalamus 0.200 (£0.106) <0.0001* 0.065 (+0.104) 0.0281
Paracentral lobule 0.095 (+0.027) <0.0001* 0.041(£0.019) 0.0022*
Putamen 0.061 (+0.031) 0.0005* 0.079 (+0.029) <0.0001*
Orbitoinferior gyrus 0.079 (£0.055) 0.0006* 0.057 (£+0.036) 0.0021*

B21-B01: averaged increase and variance from baseline after 0-back to baseline after 2-back for the first 15 s after task performance. B22-
B02: averaged increase and variance from baseline after 0-back to baseline after 2-back for the second part of the baseline period. The
increase is given in differences of beta-values. P-values denote the probability of a significant difference for P < 0.05 corrected for multi-

ple testing.

and medial prefrontal cortex, were significantly more acti-
vated in the baseline period after 2-back compared with
baseline after 0-back. The inversed GLM used in this study
revealed additionally activity differences between both
baseline conditions in smaller clusters in the thalamus,
putamen and postcentral gyrus. No significant decreases
in activity were found in the opposite contrast. The multi-

variate analysis revealed that the averaged fMRI images
acquired during baseline after task performance discrimi-
nated with an accuracy of more than 70% whether subject
performed a 0-back or a 2-back task in the preceding task
block. The results indicate that baseline activity includes
traits that are highly specific for the experimental condi-
tion of the immediate past and were, in a univariate sense,
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Figure 5.

(a) Distribution of beta-values for BO-back and B2-back for the precuneus at [-5, —54, 32]. (b)
Receiver-operating characteristic (ROC) curve for any cut-off point between the minimum and
maximum value. The yellow dot indicates the optimum cut-off value for discriminating between
BO-back and B2-back. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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TABLE IV. Accuracy values for all types of classification
conducted in this study

Specificity ~ Sensitivity

(%) (%) Accuracy
Beta-maps
Goodness-of-fit: 70.2 70.2 70.2% (P < 0.0001)
paired
Goodness-of-fit: 57.5 77.7 67.6% (P = 0.0003)
unpaired
GPC 64.9 80.9 72.8% (P < 0.0001)
Averaged data
GPC 67.0 734 70.2% (P < 0.0001)

Goodness-of-fit analyses have been used on beta-values at [-5,
—54, 32]. GPC, Gaussian process classifier.

specific for certain brain regions. As this study included a
low-level baseline with letters occurring during rest, visual
alterations can be excluded as potential confounds.

Only two studies indicated so far that both cognitive
load [Pyka et al., 2009] as well as the degree of self-relat-
edness of the presented stimuli [Schneider et al., 2008]
might be modulating factors of DMN activity in subse-
quent short-term rest. Long-term rest (15 min) before and
after a language task revealed on the group level only
slight changes, possibly due to heterogeneous differences
on the subject-level [Waites et al., 2005]. The clusters in the
precuneus and medial prefrontal cortex, that are stronger
activated after 2-back, are in good accordance with results
from our previous study [Pyka et al., 2009]. Particularly,
the precuneus has been denoted as the key region of the
DMN as connectivity analyses of this region unfold the
DMN best [Greicius et al., 2003; Waites et al., 2005]. In our
study, this region had the highest z-score and the largest
cluster in the contrast B2-back > B0-back. Parameter esti-
mates of the precuneus and the medial prefrontal cortex
clearly support our previous finding that resting state ac-
tivity in DMN areas parametrically increases from 2-back
over 0-back and BO-back to B2-back. Interestingly, the con-
trast B2-back versus BO0-back revealed further clusters,
which are not typically seen as part of the DMN. Areas in
the thalamus and putamen appear to be on a similar activ-
ity level during 2-back, 0-back, and B2-back and showed
only significantly less activity during B0O-back. Thus, both
areas behave differently from the DMN but are also
greatly affected in baseline periods by the preceding task
condition. Furthermore, a cluster comprising the dorsal
posterior cingulate cortex, the right postcentral gyrus and
supplementary motor area was significantly more acti-
vated during B2-back compared with B0O-back. The latter
cluster touches also the representation level of the left
index finger in the primary motor cortex (subjects
responded with the right index finger). However, the clus-
ter in the dorsal part of the brain is quite diffuse which
makes it difficult to determine a local source for the hemo-
dynamic increase in this area and therefore to distinguish

between physiological effects induced by neural activity
and offshoots of this source. For example, the cluster in
the right SMA shows only increased activity during B2-
back, while activity during 2-back, 0-back, and B0-back is
approximately on the same level. The differential activity
between B0-back and B2-back in this cluster could repre-
sent a sagging coupling effect with the contralateral homo-
logue region, which shows a great activity increase after 2-
back. Similar analyses in independent samples would help
here to determine the significance and the functional
meaning of activity differences in these areas.

The strength of the task-rest interaction is underlined by
classification analyses in which we demonstrated that
baseline activity can discriminate between preceding task
conditions. Depending on the modality, classification accu-
racies between 67 and 72% have been reached. As
expected, the precuneus itself showed enough reactivity
during baseline to recognize preceding working memory
load. The coordinates we chose to extract the beta-values
have been computed for a previous study [Pyka et al., in
press] and were therefore not biased by the results of this
study. However, they were also part of the cluster that
showed significant more activity during B2-back compared
with B0-back. Without incorporating pairwise dependen-
cies, beta-values of this region could be assigned to BO-
back and B2-back with a significant accuracy of 67.6%.
High values in this type of test indicate, that besides sub-
ject wise effects, relative signal changes in the precuneus
(the parameter estimates, respectively) were stable enough
across subjects to differentiate between both states. Gaus-
sian process classifiers were able to predict classify BO-
back and B2-back as well, based on beta-maps (72.8%) and
even on the averaged fMRI data (70.2%). Originally, we
had expected that the classification based on GPCs would
yield even better results than the classification based on
beta-values of the precuneus. One explanation for this rel-
atively low performance of the GPCs would be that the
input data simply does not contain more generalizable in-
formation. Another, more likely explanation is that the
high dimensionality of the input data leads to overfitting in
the learning stage which weakens the accuracy in the cross-
validation stage. If this holds true, the given accuracy rates
of the GPCs would just represent a lower bound.

Given the strong influence that the 2-back task exerts on
the whole brain, one might suspect that the reported task-
rest-interaction could be contaminated by the preceding
task type itself. For the following reasons we believe that
this is not the case: (1) In two post-hoc analyses, we found
that the observed increase of DMN activity after task per-
formance cannot be explained by any aftereffects of the he-
modynamic model and is also present 15 s after the task.
(2) The observed changes have been found in specific
brain areas implicated also in resting state processes, repli-
cating previous findings [Pyka et al., 2009]. (3) Any pure
vascular effects reflecting signal changes induced by 2-
back should also affect regions involved in working mem-
ory performance.
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It is important to keep in mind, that subjects had no
specific instruction for the intermediate baseline blocks
except passively looking at the screen and waiting for the
next instruction. Therefore, we hypothesize that task spe-
cific activity during subsequent interruptions originates
from subconscious or at least automatic processes occur-
ring after conscious task performance. Following this idea,
we assume that these processes are possibly more trig-
gered by the 2-back task than by the 0-back task. Although
this study cannot clarify which activation level represents
a natural, unstimulated baseline as the experimental
design lacks of a somehow neutral baseline, we would
favor the theory that baseline activity after 2-back is
increased compared with a “normal” baseline state. Previ-
ous studies have implicated DMN activity in self-referen-
tial processing and episodic memory retrieval [Gusnard
and Raichle, 2001; Buckner et al., 2008]. Recent results
studies have focused on both processes and suggest that
both domains activate overlapping but also separate
regions [Cavanna and Trimble, 2006; Sajonz et al., 2010].
Self-referential processes caused more pronounced activity
in the anterior part of the precuneus for example, while
memory processes lead to increased activity in the poste-
rior and inferior part of the precuneus. According to these
findings, peak activation coordinates of the clusters we
found appear to be closer to those areas that have been
associated with self-referential processes. However, these
areas are relatively large and comprise different anatomi-
cal areas in the medial frontal and parietal areas, making a
location dependent interpretation of the data difficult. Fur-
thermore, the differential effects observed in the DMN,
putamen, thalamus and postcentral gyrus raise the ques-
tion whether activity in these areas contribute to one spe-
cific kind of subsequent processing or whether we
observed activity serving distinct processes that work par-
allel and independent from each other.

The different methodological approaches used in Pyka
et al. [2009] and the present study have different implica-
tions in the interpretation of the results and should there-
fore be delineated from each other. In Pyka et al. [2009],
we used ICA to decompose the brain voxels into statisti-
cally independent spatio-temporal components and ana-
lyzed the component with the highest accordance to a
DMN template. Thus, we selected the component accord-
ing to a priori knowledge of its spatial distribution and
reported the time course we found. In the present analysis,
we had a priori assumptions about the time course and
reported the brain areas which are correlated with it. The
high overlap in medial posterior and frontal regions,
which have higher activity after 2-back, underlines the
strong influence that cognitive load exerts on well-known
default mode areas. However, the critical question is: how
to judge the meaning of regions that are either part of an
independent component and/or significant in a GLM anal-
ysis? In ICA, the measured brain activity is assumed to be
the sum of statistically independent networks. The result
of an ICA represents therefore an optimal decomposition

into statistically independent components where the
explained variance is maximal. As one single brain area
can be part of several independent components, the inter-
pretation of the temporal dimension of an independent
component can only be related to the whole spatial distri-
bution of the component but not to an intrinsic property
of a single anatomical brain area. In this regard, our previ-
ous analysis demonstrated that an optimal decomposition
of the fMRI data contains an independent component that
reveals lower activity in B2-back than in BO-back. The uni-
variate analysis of this study relates differences between
B2-back and BO0-back activity directly to certain brain
areas. In contrast to ICA, we disregard the assumption
that lower activity of certain areas could be compensated
by higher activity of overlapping functional networks but
evaluate the observable modulatory effect of task on sub-
sequent rest.

Some methodological considerations have to be noted.
At first glance, it might appear counterintuitive to declare
2-back as baseline condition and 0-back, B0-back, and B2-
back as experimental conditions in the GLM. However,
besides the fact that it accounts, as demonstrated, pretty
well for variability in baseline conditions, it might be a
useful setup for other reasons. As noted by others [Waites
et al., 2005; McKiernan et al., 2006], rest passive states are
a much more heterogeneous state across subjects com-
pared with periods in which attention has to be directed
on a specific task. Therefore, 2-back represents possibly a
baseline condition which is much more stable compared
with a low-level baseline due to the specific task the sub-
jects are asked to perform. Contrasts that are usually of in-
terest, such as 2-back versus 0-back, can be displayed by
weighting the 0-back regressor with —1.

LIMITATIONS

The present study has some limitations. First, it is con-
ceivable that after the less-demanding O-back task subjects
continued doing the task in the subsequent baseline phase
while after 2-back performance recovery processes would
cause a more pronounced resting phase. In this case,
DMN activity would be more diminished after 0-back due
to the additional attentional demands for the detection
task. Second, the study is limited by the fact that cognitive
meaningful patterns cannot be delineated from vascular
effects. For example, local increases in the brain could
cause the so-called “vascular steal” effect [Buckner et al.,
2008; Shmuel et al., 2001] of adjacent areas which would
lead to a local decrease of hemodynamic activity in neigh-
boring regions, and therefore, generating valuable infor-
mation for the classifier. As the vascular reserve can
accommodate changes in blood flow induced by cognitive
functions [Heistad and Kontos, 1983] it has been argued
that this effect is possibly of little relevance in functional
neuroimaging [Gusnard and Raichle, 2001; McKiernan
et al, 2003]. However, as breathing and cardiac rhythm
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were not measured during fMRI acquisition, they cannot
be excluded as confounding factor for hemodynamic activ-
ity induced by task type, which remains a general concern
for any working memory study.

Third, we used a fixed order of 2-back and 0-back con-
ditions. The activation differences between the two base-
line conditions (B2 and BO, respectively) could therefore be
driven both by the preceding task conditions as well as by
the anticipation of the next condition. However, we think
that there are several reasons to favor our interpretation
that the activation differences between the two baseline
periods are mainly driven by the preceding task condition.
First, the subjects did not know the task order of the
experiment. The experimental design included only three
0-back and three 2-back blocks. The detection of a regular
sequence of 0-back and 2-back blocks could therefore only
be detected in later parts of the experiment. This should
have significantly weakened the influence of anticipation
effects. Second, we investigated the first and the second
half of the rest sequence separately. Although we found in
both parts of the rest block differential activity between B0
and B2, the effects were less pronounced in the second
part of the resting phase. If resting state activity is primar-
ily driven by the anticipation of the next task bock, we
would have expected that the second part of the resting
phase shows stronger differences than the resting phase
immediately following the task. In sum, we cannot exclude
the possibility that activation differences between B0 and
B2 are also driven by anticipation effects. Future studies
investigating task-rest interactions should therefore use a
task design in which task conditions are randomly pre-
sented. Our data however strongly suggest that the influ-
ence of the preceding task condition on brain activity in
the resting phases is stronger than anticipation effects.

CONCLUSION

In conclusion, this study demonstrated that working
memory demands exert a strong influence on subsequent
baseline periods in specific brain regions. These areas com-
prise the precuneus or posterior cingulate cortex and the
medial prefrontal cortex, which represent the key areas of
the DMN, as well as the thalamus, putamen and dorsal
cingulate cortex or postcentral gyrus. Furthermore, the
multivariate analysis demonstrated that the preceding task
condition can be recognized from subsequent baseline
periods lasting as long as 30 s with an accuracy of at least
70%. Overall, these results suggest treating low-level base-
line periods, depending on the preceding task type, as sep-
arate experimental conditions. The differential activity in
some areas between baseline after 0-back and baseline af-
ter 2-back raise the question whether functional correlates
of the task in subsequent rest depend on the redistribution
of attention resources or on specific self-reflective or mem-
ory processes induced by working memory load. When
analyzing the resting state in fMRI studies with a cognitive

task it is important to keep in mind that resting state pat-
terns are possibly a direct result of preceding task per-
formance. Analyses of baseline states after different
cognitive tasks could be a mean to resolve the modulating
factors of these after effects.
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