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Abstract: This work presents a novel method of mapping the brain’s response to single stimuli in
space and time without prior knowledge of the paradigm timing: paradigm free mapping (PFM). This
method is based on deconvolution of the hemodynamic response from the voxel time series assuming
a linear response and using a ridge-regression algorithm. Statistical inference is performed by defining
a spatio-temporal t-statistic and by controlling for multiple comparisons using the false discovery rate
procedure. The methodology was validated on five subjects who performed self-paced and visually
cued finger tapping at 7 Tesla, with moderate (TR ¼ 2 s) and high (TR ¼ 0.4 s) temporal resolution.
The results demonstrate that detection of single-trial BOLD events is feasible without a priori informa-
tion on the stimulus paradigm. The proposed method opens up the possibility of designing temporally
unconstrained paradigms to study the cortical response to unpredictable mental events. Hum Brain
Mapp 32:1400–1418, 2011. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

Mapping the cortical response to a single mental event
in both space and time is essential to improve our under-
standing of the basis of human perception and cognition.
fMRI paradigms typically use event-related (ER) designs
[Humberstone et al., 1997] to study individual cognitive
events and to analyze the cortical response to isolated tri-
als. The traditional approach in ER-fMRI analysis is to av-
erage across several single trial responses to improve
estimation of the hemodynamic response parameters [Bell-
gowan et al., 2003], but this assumes that the hemody-
namic response amplitude and shape is constant across
trials [Buckner et al., 1996]. It is generally assumed that
this improvement is proportional to the square root of the
number of trials averaged. However, there is intrinsic vari-
ability in the observed hemodynamic response function
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(HRF) between successive trials (inter-trial variability) and
across subjects (inter-subject variability) [Aguirre et al.,
1998; Duann et al., 2002; Handwerker et al., 2004], which
may arise not only from physiological effects, motion, and
systematic confounds such as magnetic field inhomogene-
ities but also from uncontrolled changes in the subject’s
attention or performance. Although averaging responses
across trials improves sensitivity to the basic response to a
task, it removes sensitivity to the variability in the
response to a task, which may be important for under-
standing finer aspects of mental processing, such as learn-
ing or adaptation, or in pharmacological studies [Bingel
et al., 2002; Gonzalo et al., 2000]. Furthermore, in many
studies, an exact temporal model of the expected BOLD
signal change cannot be predicted in advance and in this
case paradigm-free methods may be helpful, for example,
in studies of hallucinations in schizophrenia or interictal
discharges in epilepsy, or cognitive paradigms which
involve switching in the subject’s perception such as visual
priming or binocular rivalry, and where the subject’s be-
havioral response is difficult to be recorded accurately. In
addition, unpredicted activation may provide novel infor-
mation about task-unrelated brain activity during resting
periods. Therefore, there is a critical need for alternative
approaches to fMRI analysis which do not require the
onsets of cortical responses to be specified, and which
allow the use of more unconstrained experimental para-
digms [Faisan et al., 2007; Hutchinson et al., 2009; Lind-
quist et al., 2007].

Ultrahigh field fMRI provides sufficient BOLD contrast
to noise ratio to allow the detection of the response to sin-
gle trials in fMRI paradigms [Pfeuffer et al., 2002; Ugurbil
et al., 1999]. Single trial fMRI was initially used to describe
the sequence of activations related to single motor [Richter
et al., 1997a], mental rotation [Richter et al., 1997b, 2000],
and visual tasks [Menon et al., 1998], but has been
extended to study more complex cognitive tasks, such as
the observation of one’s own and other’s actions [Cun-
nington et al., 2006] or pain processing [Bingel et al., 2002].
Nevertheless, these studies have used prior knowledge of
the stimulus or paradigm timing.

If there is no information on when the activation occurs
or the shape of the HRF, data-driven analysis approaches
such as clustering [Fadili et al., 2000; Goutte et al., 1999;
Richter et al., 2000], principal component analysis (PCA)
[Andersen et al., 1999; Baumgarter et al., 2000], independ-
ent component analysis (ICA) [Beckmann and Smith, 2004;
Calhoun and Adali, 2006; McKeown et al., 1998], and Tem-
poral Clustering Analysis (TCA) [Liu et al., 2000; Morgan
et al., 2008] can be used. However, these analysis techni-
ques require the researcher to estimate a priori the number
of components or clusters, and then to select and interpret
the relevant components or clusters. These methods can be
useful in the search for voxels showing consistent spatial
or temporal patterns or when decomposing the data into
components to be used as regressors in a general linear
model analysis. Nevertheless, in searching for cortical

responses, these methods couple voxels together based on
some feature (e.g., based on the time of their first activa-
tion in TCA), and so this approach would not be useful if
the same regions were activated in response to two differ-
ent stimuli [Morgan et al., 2008].

Model-based approaches have also previously been
developed to analyze data with no timing constraints.
Probabilistic frameworks based on Hidden Markov modes
[Faisan et al., 2007; Hutchinson et al., 2009] have enabled
spatio-temporal mapping of the response but have not
been used for single trial analysis. Alternatively, change
point theory methods have been proposed to estimate the
onsets and durations of activations by modeling the voxel
time series as a mixture of two Gaussian distributions
(baseline and activation) [Lindquist et al., 2007]. Before fit-
ting the Gaussian mixture model, Lindquist et al. [2007]
suggested first temporally smoothing the voxel time series
with an Exponentially Weighted Moving Average
(EWMA) filter and then testing for significant changes in
the filtered time series by using a Hotelling T2-test com-
paring to a baseline state. However, change point theory
methods have only been used to detect activation associ-
ated with single-epoch paradigms with prolonged
activations.

Here, we present a novel method, Paradigm Free Map-
ping (PFM), which aims to detect and characterize the
cortical response to single-trial events or actions with no
prior information about the timing or location of the
events. This method is based on the mathematical decon-
volution of the HRF from the voxel time series by means
of ridge-regression estimation [Hastie et al., 2001; Hoerl
and Kennard, 1970], the definition of temporal t-statistics
to detect points of significant change [Lindquist et al.,
2007] in the deconvolved signal, and multiple hypothesis
correction by the false discovery rate (FDR) procedure
[Benjamini and Hochberg, 1995; Genovese et al., 2002]. The
output of the proposed method is a temporal sequence of
t-maps, which depict the spatial and temporal extent of
brain activity associated with single trial events in a sim-
ple and exploratory manner, without any knowledge of
the paradigm timing.

THEORY

The proposed method is a two-stage approach. The first
stage is based on the voxel-wise deconvolution of the HRF
from the time series by means of the ridge regression esti-
mator, assuming linearity [Boyton et al., 1996; Gitelman
et al., 2003]. Statistical noise characterization is performed
voxel-wise and is based on an autoregressive model whose
parameters are estimated using Levinson-Durbin recursion
prior to deconvolution of the HRF. The second stage
involves calculating a temporal t-statistic from the decon-
volved signal at each voxel, similar to Lindquist et al.
[2007], and then statistically assessing the significance of
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activations using an FDR procedure to account for multi-
ple hypothesis testing [Genovese et al., 2002].

Ridge Regression Deconvolution

In the absence of noise and assuming a linear, time-
invariant model, the measured BOLD fMRI time series,
y(t), can be modeled as the convolution of an input signal,
s(t), and the HRF, h(t),

y tð Þ ¼ h tð Þ � s tð Þ ¼
XL�1

s¼0

h sð Þ s t� sð Þ (1)

where L is the discrete-time length of the HRF. This
discrete time model can be rewritten in matrix formulation
as

y ¼ Hs; (2)

where y and s are column vectors of length N (N being the
number of time points of the fMRI time series), and H is
the convolution (Toeplitz) matrix of dimension N 3 N
defined from the HRF. In this work we used the canonical
HRF from Statistical Parametric Mapping (SPM), which is
based on two gamma variate functions [Friston et al.,
1998]. The goal is to compute an estimate of the input
signal, s.

In practice, however, the fMRI signal also includes phys-
iological and other fluctuations which can be incorporated
in the signal model as an additive, global noise term, e,

y ¼ Hsþ e: (3)

Here, the noise is assumed to be a stationary, stochastic,
normal process with zero mean, variance r2 and temporal
covariance matrix R, that is, e � N(0, r2 R), and this covar-
iance matrix is assumed to be voxel dependent to take
account of variations in the noise characteristics observed
across regions and tissues [Woolrich et al., 2001].

Assuming normally distributed noise with a fixed gen-
eral covariance matrix R, the generalized least squares
(GLS) estimator yields the maximum likelihood estimator
of s. However, since the columns of the convolution ma-
trix, H, are highly correlated, the GLS estimates can
become poorly determined and exhibit high variance
[Gitelman et al., 2003; Hastie et al., 2001]. In addition, GLS
estimators can fail to calculate accurate estimates when
there is error in the model formulation, such as a mis-
match between the canonical HRF used in the model and
the true HRF of the data. One solution to these problems
is to impose a regularization term on (penalization of) the
coefficient estimates [Hastie et al., 2001]. The ridge regres-
sion (RR) algorithm [Hoerl and Kennard, 1970], also
known as regularized least squares, computes an estimate
of s (sRR) by simultaneously minimizing the variance of

the residuals and the power (i.e., L2-norm) of the resulting
estimate of the input signal s:

ŝRR ¼ min
s

y�Hsð ÞTR�1 y�Hsð Þ þ ksTs; (4)

where k is the regularization parameter which controls the
trade off between both terms. The RR estimate is then
given by

ŝRR ¼ HTR�1H þ kI
� ��1

HTR�1y: (5)

When k ¼ 0, the RR estimator reduces to the GLS estima-
tor (we denote the solution with k ¼ 0 as ŝGLS). The choice
of k is important to ensure that the RR algorithm com-
putes reasonable estimates. Here, we used the following
expression for the regularization parameter [Selén et al.,
2008],

k ¼ Nr̂2

ŝTGLSH
TR�1HŝGLS

(6)

where r̂2 ¼ y�HŝGLSj jj j2� N � rank Hð Þð Þ is the variance of
the residuals after fitting the GLS estimate, ŝGLS (note that
the rank of H is N�1 and therefore the denominator is
equal to 1). Thus the regularization parameter was the
quotient of estimates of the variances of the noise and the
input signal. Alternative selection criteria for the regulari-
zation parameter could be considered such as L-curve
[Hansen and O’Leary, 1993], cross-validation methods
[Hastie et al., 2001], or Empirical Bayes algorithms [Gitel-
man et al., 2003].

Noise Autocorrelation Estimation

To improve robustness of the temporal covariance esti-
mation, the noise, e, was modeled as an auto-regressive,
stochastic process of order p, AR(p) [Stoica and Moses,
2005; Woolrich et al., 2001]. The noise covariance matrix
was estimated from a set of baseline volumes, B, acquired
at the start of the time series while the subjects
were instructed to remain at rest (see Fig. 1a). Voxelwise
estimation of the autocorrelation coefficients, r(i), was per-
formed before deconvolution of the hemodynamic
response, considering a set of K neighboring voxels, so
that spatial information about the noise is incorporated
into the model:

r ið Þ ¼ 1

K

XK
k¼1

1

B� i

XB�i

t¼1

yk tð Þyk tþ ið Þ; (7)

where yk is the vector of baseline observations for the kth
voxel. From those coefficients, the AR model parameters
for each candidate order p (ai, i ¼ 1,. . ., p) were computed
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Figure 1.

Data for subject A and dataset of TR 2 s (a) pre-processed and

normalized fMRI time series of a voxel located in the contralateral

primary motor cortex. The figure illustrates the initial baseline

volumes B used to estimate the noise covariance matrix and to

compute the statistics and the VCT and SPT events; (b) time

course of t-maps of the second VCTand SPT trials, as indicated by

the red arrows in Figure 1a. The times shown on the left are rela-

tive to the movement onset as recorded by the EMG signals. Ac-

tivity is detected (P value < 0.05, FDR-corrected) in SMA,

bilateral PM, M1 and S1, inferior and superior parietal cortex and

visual cortex; (c) fMRI ATS showing the number of voxels exceed-

ing threshold (P value < 0.05, FDR-corrected) per time point.

Note that all finger tapping events are detected. In addition, the

subject performed an additional finger-tapping of approximately 2

s close to the end of the scanning period, contrary to given

instructions, which was confirmed by questioning post-scanning.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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recursively using the Levinson-Durbin (LD) algorithm [Sto-
ica and Moses, 2005]. The final choice of the model order,
p̂, was based on the finite sample Minimum Description
Length (MDL) criterion [De Ridder et al., 2005]:

p̂ ¼ min
p

ln r̂2
w pð Þ� �þ ln B pþ 1ð Þ

B� p� 2
; (8)

where r̂2
w pð Þ is the residual variance estimated by the LD

algorithm for order p. The covariance matrix R was then
calculated from the AR parameters corresponding to the
optimal model order, p̂ [Stoica and Moses, 2005].

Statistical Inference

To test for the presence of activation statistically, a t-sta-
tistic time course was defined from the RR estimates given
in Eq. (5), comparing the signal at each time point to the
mean of the corresponding baseline for each voxel [Lind-
quist et al., 2007]. Significant deviation from the mean esti-
mated during the baselines would cause the null
hypothesis of non-activation to be rejected for this voxel
and time point. For each time point i after the baseline pe-
riod, the t-statistic time series was computed over the L
nearest neighboring voxels as

t ið Þ ¼ ŝkL ið Þ � l̂L

r̂L

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

B

q ; i > B; (9)

where ŝkL(i) was the spatial mean of the ridge regression
estimates at voxel k at time i, and l̂L and r̂L are the mean
and variability of the baseline period (1 � i � B) taking
into account the correlation of the deconvolved time se-
ries, all calculated over the neighboring L voxels. Note
that the t-statistics are not independent in time. Each tem-
poral t-statistic has a marginal Student’s t distribution
with B�1 degrees of freedom assuming the observations
in the baseline are independent of that at time point i (i >
B) (see Appendix for full details). Then, P values were
computed from the t-statistics at each voxel and at each
time point.

The total number of tests was equal to the number of
voxels being tested, multiplied by the number of time
points, and was much greater than conventional statistical
parametric approaches where a single statistic is computed
per voxel. Because of the large amount of spatial and tem-
poral correlation of the P values, correcting in both space
and time would considerably reduce the sensitivity of the
method. Therefore, to deal with multiple hypothesis test-
ing, the P values were corrected in space for each time
point individually by means of the FDR procedure [Benja-
mini and Hochberg, 1995; Genovese et al., 2002]. Given an
FDR rate, a time series was computed with the t-threshold
for each time point.

METHODS

Experiments were conducted with approval from the
University of Nottingham ethics committee and informed
consent was obtained from all participants.

Experimental Paradigm

Six subjects (five male and one female, age 24–32 years,
five right-handed and one left-handed) were scanned.
Experiments were performed with BOLD acquisition at
repetition times (TR) of 2 s and 0.4 s. Each scan started
with an initial baseline (rest) period of 140 s. This resulted
in B ¼ 70 baseline time points for TR 2 s and B ¼ 345
baseline time points for TR 0.4 s. After this initial baseline,
the subjects were visually cued to perform two trials of
finger tapping (VCT) at 140 s and 180 s, each finger tap-
ping trial being 4 s in duration. After 384 s, a message
(‘‘TAP at will’’) was projected onto the screen indicating
the start of the second period during which subjects were
asked to carry out freely two trials of self-paced finger tap-
ping (SPT) of similar duration to the VCT task. Through-
out the scan duration, subjects were instructed to fixate on
a cross projected onto the screen when no other instruction
was presented. Subjects were instructed about the para-
digm prior to the scanning session. The visual instructions
were projected from an LCD projector onto a screen
located inside the scanner room, which subjects viewed
through prism glasses with angle mirrors. The total scan
duration was 684 s (342 scans for TR 2 s, after five scans
discarded to achieve steady-state magnetization, and 1710
scans for TR 0.4 s, after 30 scans discarded).

MR Data Acquisition

MR images were acquired on a Philips 7T Achieva scan-
ner (Best, Netherlands) using a 16-channel head coil (Nova
Medical, MA). Subjects’ heads were secured in place using
foam pads to minimize head motion. Cardiac and respira-
tory data were recorded throughout the fMRI acquisition
using a respiratory belt and a pulse oximeter to allow
physiological noise correction of the data. Datasets were
acquired using single-shot, gradient echo EPI (TE 30 ms,
in-plane resolution 2 � 2 mm2, slice thickness 2 mm,
SENSE factor 1.5) with 20 slices for the TR 2 s and six sli-
ces for TR 0.4 s. The flip angle was set to 80� or 40�, which
approximated the Ernst angle for each TR, respectively. At
TR 2 s, the imaging slices were positioned at approxi-
mately þ15� to the canto-meatal line above the corpus cal-
losum, to cover the supplementary motor area (SMA),
premotor (PM) and primary motor (M1) cortices, parietal
cortex, and the calcarine fissure. At TR 0.4 s, a more tilted
angle and 1 mm gap between slices was used to cover
approximately the same brain regions in fewer slices. Fol-
lowing the fMRI acquisition, high-resolution 1 mm iso-
tropic resolution 3D anatomical T1-weighted (MPRAGE
sequence) and T2*-weighted (spoiled-FLASH sequence)
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images were acquired to aid the localization of brain
regions.

Surface Electromyography Recording

and Analysis

Surface electromyography (EMG) was used to monitor
the muscle activity in both hands during the fMRI experi-
ment. Active electrode pairs were positioned on the left
extensor (LE), right extensor (RE), and right flexor (RF)
digitorum with paired electrode wires twisted to minimize
the differential effect of the magnetic field on the EMG
leads [van Rootselaar et al., 2007]. Ground and reference
electrodes were positioned on bony parts of the wrist.
Although subjects were instructed to perform finger tap-
ping with their dominant hand (five right-hand subjects
and one left-hand subject), EMG signals from both hands
were recorded. EMG recording was performed using a
Brain Vision recorder and a MR compatible BrainAmp am-
plifier (Brain Products, Munich, Germany). The amplifier
was placed at the foot of the scanner bed on foam to mini-
mize the effects of vibration. EMG signals were transmit-
ted via an optical cable and recorded on a PC outside the
scanner room. Data were sampled at 5000 Hz/channel and
EMG analysis performed using Brain Vision Analyzer soft-
ware. The quality of the EMG signals was checked visually
prior to scanning and during the fMRI acquisition. EMG
data were corrected for scanner artifacts using the average
artefact subtraction method [Allen et al., 2000]. The differ-
ential signal between each active electrode pair was then
calculated, a high pass filter with a 10 Hz cut-off fre-
quency applied and EMG signals rectified [Francis et al.,
2009; van Rootselaar et al., 2007].

fMRI Data Analysis

fMRI datasets were motion corrected and the realign-
ment parameters were visually assessed for task-related
movements, particularly at the times of the finger tapping
events. This resulted in two datasets from one subject
(left-handed) being discarded due to significant motion
during the self-paced finger tapping period. The remaining
five subjects’ 10 datasets were corrected for physiological
noise using RETROICOR [Glover et al., 2000]. In-brain,
non-CSF voxels were then masked for further analysis.
Detrending was performed by deconvolving the voxel
time series with up to 4th-order Legendre polynomials,
and the sine and cosine signals with one cycle over the
scan duration. These steps were performed using AFNI
[NIMH/NIH, Cox, 1996]. Each voxel time series was then
normalized to the mean value of its baseline volumes to
compute the percentage signal change.

Each dataset was then analyzed using the PFM method
described in the Theory section, implemented using in-
house software written in Matlab (The Mathworks, Natick,
MA). The autocorrelation matrix was estimated from the

baseline volumes (see Fig. 1a). In contrast to other
approaches that assume a constant autocorrelation matrix
across the whole brain, here we computed it on a voxel-
wise basis, and then averaged it over the three-dimen-
sional nearest neighbors (K ¼ 27), although smaller kernels
were used at mask boundaries (minimum K ¼ 6). In the
subsequent voxel-wise calculation of the AR coefficients,
candidate orders in the range 0–3rd were considered since
it was observed that for the finite-sample minimum
description length (MDL) criterion selection [De Ridder
et al., 2005] voxels with model order higher than 3 were
mainly located on large veins and CSF regions. Ridge
regression (RR) deconvolution was performed using a two
gamma-variate HRF with standard SPM (FIL/UCL) pa-
rameters [Friston et al., 1998] sampled at the correspond-
ing TR. To increase the speed of the algorithm, the
deconvolution based on the RR algorithm was performed
in blocks of 50 scans (TR 2 s) and 150 scans (TR 0.4 s) with
the regularization parameter computed from the first
block. To validate this procedure, the analysis was
repeated for several block lengths, and block length was
found to have negligible effect on the results provided
that the duration of the block was longer than the HRF.
Following the RR deconvolution, t-statistics were com-
puted using the five closest in-plane voxels (L ¼ 5) and t-
maps were then thresholded at a P value of 0.05 (FDR-cor-
rected). Finally, spatial clustering was applied to the
thresholded maps with a minimum 3D cluster size of 5
voxels. The resulting t-maps were then overlaid on the T1-
weighted and T2*-weighted anatomical images which
were resampled to EPI space using a 12-parameter affine
spatial transformation.

A problem with paradigm-free fMRI analysis is that the
whole data set must be explored to determine when interest-
ing cortical events occur; two methods were developed to
address this. First, an activation movie was created from the
time series of thresholded t-maps to allow qualitative visual-
ization of when coordinated activation occurred across the
cortex. Second, an activation time series (ATS) was created
to compress this 4D data set (the movie) into a 1D plot that
highlighted periods when coordinated activation occurred
across the cortex (see Fig. 1c). This diagram contains two
lines to separate positive and negative BOLD events: the
positive going line (black) plots the number of voxels
exceeding the t-threshold with positive signal amplitude at
each time point, whereas the negative going line (red) simi-
larly plots voxels with negative signal amplitude.

Two further statistical maps were generated for each acti-
vation event: a ‘‘Statistical Map’’ and a ‘‘Delay Map.’’ All
activation events involving more than 100 voxels on the
ATS were investigated, including events associated with a
finger tap and events detected during apparent periods of
rest. The Statistical Map showed the statistical significance
of the activation in each event and was created by condens-
ing the t-map time course relevant to each event into one
volume, where the value for each voxel was the maximum
of the time course of t-maps’ at that activation event. The
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number of t-maps included in each activation event was
determined according to the width of the corresponding
peak in the ATS. The Delay Map displayed the time when
the maximum statistically significant activation occurred for
each activation event, relative to the movement onset
recorded by the EMG. In addition, for those voxels declared
active in each trial, the time series of percent BOLD signal
changes were measured from 5 s before to 25 s after move-
ment onset, and filtered with a low pass FIR filter (Ham-
ming window) with cut-off frequency of 0.3 Hz, to denoise
the hemodynamic response estimate.

Finally, to summarize and combine the results for all
subjects, the number of times a functionally interesting
ROI exceeded threshold at an expected event for each TR
and each type of trial (cued and self-paced) was found, to
calculate its frequency of activation. For the paradigms
used here, functionally interesting ROIs were identified
following relevant publications [Cunnington et al., 2002;
Witt et al., 2008] and included the supplementary motor
area [medial region of the Brodmann Area (BA) 6], bilat-
eral lateral premotor cortex (lateral BA 6), bilateral pri-
mary motor cortex (BA 4), bilateral primary
somatosensory cortex (BA 1, 2, and 3), superior parietal
cortex (BA 5 and 7), inferior parietal cortex (BA 39 and
40), secondary and primary visual cortex.

Evaluation of PFM Method

Three methods were used to evaluate the proposed PFM
method: (i) the EMG time-series of the hand movements
were compared to the onset of activated regions by means
of a nonparametric test of the correlation between the ATS
and the EMG signals, (ii) the spatial extent of activated
regions was compared qualitatively to statistical maps gen-
erated using the traditional GLM analysis approach, using
the timing information from the EMG signals as the stimu-
lus onsets of the model, and (iii) the spatial extent of acti-
vated regions was compared qualitatively to the results of
the Probabilistic Independent Component Analysis algo-
rithm [Beckmann and Smith, 2004] included in FSL.

(i) EMG-activation time series

The Spearman’s rank correlation coefficient between the
EMG amplitude time series of the LE, RE, and RF and the
fMRI ATS (positive and negative lines summed) were cal-
culated using the Matlab Statistical Toolbox (The Math-
works, Natick, MA), along with the corresponding
P values for the non-correlation hypothesis. The EMG sig-
nals were first decimated to have the same number of
time points as the ATS and then thresholded at an ampli-
tude z-score of 4, that is, four times the standard deviation
from the EMG time course mean. The decimation was
performed using the decimate function in the Matlab Sig-
nal Processing Toolbox (The Mathworks, Natick, MA).
This function applies a Chebyshev Type I filter with nor-
malized cut-off frequency 0.8/r, where r is the decimation

factor, and 0.05 dB of passband ripple. The correlation
coefficients were computed to assess the accuracy of PFM
in detecting significant movements (outliers) recorded in
the EMG. Note that in case of no movement in the deci-
mated time series, the Spearman’s rank correlation cannot
be defined.

(ii) Traditional GLM analysis

A GLM-based model was formed with the regressors in
the design matrix calculated from the convolution of the
stimulus time series for both tasks modeled as delta func-
tions at the times of onset of tapping as detected by EMG,
with the SPM-canonical HRF and its first temporal deriva-
tive [Friston et al., 1998]. GLM-based analysis was done
using the 3dREMLfit function in AFNI, and the corre-
sponding statistics (F-test) were FDR corrected and thresh-
olded at P value < 0.05 and minimum cluster size of 5
voxels. GLM-based statistical maps were also computed
for any activation events detected during periods of rest,
but in this case using the onset times estimated from the
ATS to define a single event in the time series.

To examine agreement between the GLM and PFM
maps, we calculated the number of overlapping voxels in
both maps for each of the tapping events (PFM \ GLM),
and the percentage of overlapping voxels relative to the
number of detected voxels with PFM (% PFM in GLM ¼
PFM \ GLM/PFM).

(ii) Independent component analysis

The datasets were analyzed with the Probabilistic ICA
[Beckmann and Smith, 2004] algorithm available in the
FSL software (MELODIC, www.fmrib.ox.ac.uk/fsl). First
PCA was performed, and then a model selection crite-
rion, based on a Laplace approximation to the posterior
distribution of the model evidence (LAP), was used for
dimensionality reduction. The spatial independent com-
ponents, or sources, were then computed with the Fas-
tICA algorithm [Hyvärinen, 1999], which maximizes the
non-Gaussianity of the spatial sources. Finally, the spa-
tial maps were transformed into Z-score maps by divid-
ing by the voxelwise estimated standard error of the
residual noise [Beckmann and Smith, 2004]. To identify
relevant components, we computed the Pearson correla-
tion coefficients between the time course of each spatial
component and a reference time course, which was gen-
erated by the convolution of the decimated right-flexor
EMG signal with the canonical HRF from SPM (EMG
regressor). Spatial components with correlation coefficient
larger than 0.3 were labeled as relevant independent
components. For illustration, the Z-score maps were
thresholded at Z > 3.0 and minimum cluster size of 5
voxels.
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RESULTS

Figure 1a illustrates the pre-processed (i.e., corrected for
motion, linear and quadratic trends, and physiological
fluctuations), normalized BOLD signal time course of a
voxel located in the contralateral primary motor cortex for
a representative subject at TR 2 s. Figure 1b shows the cor-
responding sequence of t-maps (P value < 0.05, FDR-cor-
rected) for the first visually cued tapping (VCT) and the
second self-paced tapping (SPT) produced using the PFM
method. These are shown for three different slices, for
three consecutive time points (TR 2 s) labeled relative to
the onset of movement as recorded by the EMG signals.
Figure 1c shows the corresponding fMRI ATS that summa-
rizes the significant activation detected across the whole
brain at each time point. In this plot, positive activations
are shown as positive peaks (black) and negative activa-
tions are shown as negative peaks (red). The complete
movie of t-maps for this experiment, illustrating the evolu-
tion of brain activity throughout the scan is available as
Supporting Information.

The single-trial detection sensitivity of the PFM method
was assessed by comparing the fMRI ATS to the LE and
RF EMG signals (the RF and RE EMG signals were simi-
lar). Figure 2 plots the EMG and fMRI ATS of the same
subject as Figure 1 at each repetition time (TR 2 s and 0.4
s). It can be seen that temporal clusters of activation
detected as peaks in the ATS (without any knowledge of
the EMG data in the fMRI analysis) are in synchrony with

the finger-tapping events detected from the EMG signals
or precede them by a maximum of 1 time point for the TR
2 s data and 4 time points for the TR 0.4 s data. Earlier
activations were observed in the SMA (see Fig. 3), an area
involved in the initiation of movement along with primary
sensorimotor regions (pre- and post-central sulcus). These
peaks in the ATS were used to generate the Statistical
Maps based on a number of t-maps that depended on the
length of the response and the TR of the dataset. The plots
with the EMG and ATS corresponding to the rest of sub-
jects are available as Supporting Information. Although
subjects were instructed to perform finger tapping only
with the dominant hand, EMG activity was recorded in
the left extensor in synchrony with the right hand finger
tapping in all but one subject (subject F, see Table I and
Supporting Information figure). In addition, two subjects
did not exactly follow the instructions: Subject A per-
formed an additional finger-tapping of 2 s at the end of
the scanning period in the TR 2 s dataset (top left of
Fig. 2), which was confirmed by post-scanning questioning
and by EMG, whilst subject B performed four SPT trials
rather than the instructed two trials for both TR 2 s and
0.4 s datasets (see Supporting Information figure). These
additional responses were detected with the PFM
approach. The PFM method was able to detect 7 out of 10
(7/10) VCT events at TR 2 s, 11/13 SPT at TR 2 s. All fin-
ger tapping events were detected with PFM at TR 0.4 s
(see Supporting Information for the EMG and ATS plots).
For trials where activations were not detected there was

Figure 2.

EMG-fMRI plots for subject A for both datasets of TR 2 s (left)

and 0.4 s (right). Each plot shows the fMRI ATS (P value < 0.05,

FDR-corrected) (bottom) and the EMG time series correspond-

ing to the left extensor (LE) (top) and right flexor (middle) to

capture upper limb movements. To facilitate the interpretation of

the result, the ATS differentiates between positive activations

(black, positive y-axis) and negative activations (red, negative y-

axis). The dark box indicates the baseline period. ATS were used

to detect periods of significant brain activation. As illustrated, all

main finger tapping events are detected at the times recorded by

the EMG. In addition, sporadic clusters of activation were

detected during periods at rest which may correspond to small

body movements or mental tasks. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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always large variability in the baseline period. Along with
the visually cued and self paced events, all EMG measure-
ments showed sporadic spikes of muscle activity in both
hands at times correlated with peaks in the fMRI ATS.
Furthermore the ATS also showed task-unrelated events,
that is, sporadic, spatio-temporal clusters of cortical activa-
tion occurring during the rest periods.

The Spearman’s rank correlation coefficients between
the fMRI ATS and the EMG signals are shown in Table I
for TRs 2 s and 0.4 s. At both TRs, the fMRI ATS and
EMG time courses were significantly correlated (P < 0.001)
at 23 of the 30 possible combinations (EMG-dataset). The
causes for no correlation between the fMRI signal and the
EMG were: no detection of events in the ATS (RE and RF
of subject C at TR 2 s); artifactual EMG acquisition (LE of
subject B at TR 2 s); and reduced or no significant move-
ment recorded by the EMG (LE of subject C at TR 0.4 s,
LE of subject F at TR 2 s, LE and RE of subject F at TR
0.4 s).

Figure 3 illustrates the time courses of t-maps (P value
< 0.05, FDR-corrected) during the first visually cued trial
and the first self paced trial for one slice of subject A (TR
0.4 s), overlaid onto the corresponding T2*-weighted ana-
tomical image. The statistical map created by condensing
the time course of t-maps is also shown and labeled PFM.
The time shown in the t-maps is relative to the onset of
movement execution as recorded by the EMG signals.
Since the t-maps are generated following deconvolution of
the canonical HRF from the signal time course, the timing
of events in the t-map time series does not directly reflect
the delay of the hemodynamic response. A movie of the
t-maps for the complete scan of this dataset is available as
Supporting Information. For comparison, the statistical
map (F-test, P value < 0.05, FDR-corrected) using the tra-
ditional GLM approach is also depicted in a box at the
bottom right of each time sequence of t-maps in Figure 3.
It can be observed that both PFM and GLM depict activa-
tions in overlapping regions. Averaging across all finger

Figure 3.

Time courses of t-maps (P value < 0.05, FDR-corrected) show-

ing the activation for the first VCT (top) and first SPT (bottom)

for subject A at TR 0.4 s. In addition, the corresponding statisti-

cal parametric maps (F-test, P value < 0.05, FDR-corrected) af-

ter fitting a GLM model with the canonical HRF and the first

derivative are shown at the right bottom of each slice sequence

(white box). The times are relative to the onset of the tapping

as recorded by the EMG signals. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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tapping events and all subjects (except the first VCT of
Subject C at TR 2 s where no activated voxels were shown
in both maps), we observed that 70% of the voxels identi-
fied as active in the PFM maps were also present in the
GLM maps, with higher rate at TR 0.4 s (75%) than at TR
2 s (64%). The average value of %PFM in GLM at TR 2 s
increased to 83% if the five events not detected with PFM
at TR 2 s were discarded.

Figure 4 illustrates the six spatial probabilistic ICA maps
selected as relevant (i.e., correlation coefficient with EMG-
reference function > 0.3) and their associated time series
for the same dataset as Figure 3. Probabilistic ICA is also
able to map the cortical activation in areas of the primary
sensorimotor cortex, although the temporal information
provided directly by PFM was spread across several spa-
tial ICA components and associated time courses. In addi-
tion, some areas are simultaneously active in several
components, for example, voxels of the contralateral post-
central gyrus in components 2 and 3. The total number of
components identified from probabilistic ICA using the
LAP criterion, the percentage of the variability of the data-
set described by these components, and the number of rel-
evant components (i.e., those whose correlation coefficient
with EMG-reference function > 0.3) are shown in Table II.
It can be seen that a large number of components were
extracted from the probabilistic ICA analysis for the data-
sets acquired with high temporal resolution (TR 0.4 s).

There was considerable variability between subjects in the
number of components identified as relevant. For the com-
ponents shown in Figure 4, the ICA responses were more
unilateral than the responses detected with either PFM or
GLM, and the EMG indicated that there was actually
movement of both hands (except for one subject). In fact,
ICA also detected bilateral activation in the motor cortex
as illustrated in components IC2 and IC3. However Figure
4 only plots those components that are highly correlated
with the EMG-regressor (correlation coefficient > 0.3), sug-
gesting that the correlation between the components corre-
sponding to the bilateral activation were not highly
correlated with the EMG.

The t-maps in Figures 1 and 3 illustrate that activation
for the finger tapping trials was found in areas of sensori-
motor execution and processing of motor movements as
expected. The relative timing of the different cortical
responses was generally quite variable between events.
However, for the visually cued tap shown in Figure 3, ini-
tial activity occurred in regions close to the contralateral
central sulcus extending into the contralateral primary
motor and primary somatosensory cortices, cingulate
gyrus, ipsilateral postcentral sulcus, ipsilateral supramargi-
nal gyrus and bilaterally in the lateral occipital gyrus and
intraparietal sulcus. Later, activation extended into a larger
network of areas including the cingulate gyrus and poste-
rior SMA (paracentral lobule), bilateral primary sensorimo-
tor (M1 and S1) cortices, superior frontal gyrus and
superior parietal lobule. Posteriorly, activation was also
seen in the ipsilateral primary motor and bilateral premo-
tor cortices, along with draining veins. Activation was
found in similar regions for the self-paced tap shown in
Figure 3, although ipsilateral premotor areas showed ear-
lier activation in the self-paced tap than for the visually
cued tap. Interestingly, BOLD responses were seen in
areas of the occipital lobe not only in the visually cued
task but also in the self paced trial (no visual cue). Nota-
bly, for this particular dataset, no independent component
with correlation with the EMG regressor larger than 0.3
accounted for the activation found in the visual cortex and
superior parietal lobule in the PFM and GLM maps.

Figure 5a shows the PFM delay maps for voxels exceeding
the threshold (P value < 0.05, FDR-corrected), and illustrates
the variability in the timing of the response across voxels
both within and between functional areas. Figure 5b illus-
trates the single trial hemodynamic response without tempo-
ral or spatial averaging of individual voxels located in the
posterior part of the contralateral M1 (contM1), contralateral
SMA and anterior part of ipsilateral M1 (ipsM1) (location
shown in Fig. 5a), chosen to avoid any veins (detected by
low signal in the underlying T2* weighted image).

Both statistical and delay maps (Figs. 1, 3, and 5a) dem-
onstrate variability in the spatial extent and delay of acti-
vation across individual trials. Variability was also
observed between subjects. Table III lists the frequency of
detection of events across subjects and trials, for both VCT
and SPT tasks at both TRs. Datasets showed consistent

TABLE I. Spearman’s rank correlation coefficients

between the decimated and thresholded EMG signals

and the activation time series for datasets of

TR 2 s with 342 time points (a) and TR 0.4 s with 1710

time points (b)

Spearman’s
correlation (ATS-EMG)

Left
extensor

Right
extensor

Right
flexor

(a) TR 2 s
Subject A 0.342* 0.483* 0.417*
Subject B 0.110 0.444* 0.262*
Subject C 0.242* 0.100 0.101
Subject D 0.620* 0.645* 0.444*
Subject F �0.002 0.273* 0.446*

(b) TR 0.4 s
Subject A 0.175* 0.326* 0.269*
Subject B 0.138* 0.251* 0.377*
Subject C �0.011 0.103* 0.342*
Subject D 0.341* 0.427* 0.382*
Subject F NaN NaN 0.133*

The asterisks indicate that the correlation coefficient is statistically
significant (non-parametric P value < 0.001). Note that all correla-
tion coefficients are significant except for the right-hand extensor
(RE) and flexor (RF) of subject C at TR 2 s (both VCTs unde-
tected); left-hand extensor (LE) of subject B at TR 2 s (second
VCT, second SPT and third SPT undetected and artifactual EMG
signal); and the LE of subject C at TR 0.4 s, LE of subject F at TR
2 s, and for both the LE and RE of subject F at TR 0.4 s (EMG sig-
nals showed reduced or no significant movements at all).
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activations (frequency of activation > 0.70) across subjects
and tapping tasks in the SMA, bilateral M1 and bilateral
S1 regions. It was also observed that contralateral M1 and
S1 areas showed the most repeatable patterns of activation
across trials (i.e., same voxels consistently activated), fol-
lowed by ipsilateral S1 and M1. It should be noted that
coverage of the lateral PM in both hemispheres was lim-
ited by the tilt of the slices, especially for the datasets of

TR 0.4 s, which had fewer slices. In addition, the primary
visual cortex was not covered in subject B for both TRs,
and in subject C for TR 0.4 s.

Figure 6 illustrates the PFM Statistical Maps (P value <
0.05, FDR-corrected) for two task-unrelated activations (at
points RSA and RSB in Fig. 2) detected during the periods
of rest for the dataset of subject A at TR 0.4 s. For compari-
son, the corresponding statistical maps obtained with the

Figure 4.

Spatial probabilistic ICA maps and associated time courses of the relevant components (i.e., those

whose correlation coefficient with EMG regressor is > 0.3) for the dataset of subject A at TR 0.4

s (same as Figures 3 and 5). All maps represent Z-scores (thresholded at Z > 3.0) after normaliza-

tion of the spatial components with the voxelwise estimated standard error of the residual noise.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

r Gaudes et al. r

r 1410 r



Figure 5.

(a) Delay maps of voxels exceeding threshold (P value < 0.05,

FDR-corrected) for each trial for the same slices as shown in

Figure 3. The delay is computed as the time when the maxi-

mum statistically significant activation occurred, defined relative

to the movement onset recorded by the EMG signals; (b) He-

modynamic responses for three voxels in SMA (red), contralat-

eral M1 (contM1, blue), and ipsilateral M1 (ipsM1, black), with

location indicated in Figure 5a for the first VCT; and (c) for

the first SPT for subject A and dataset of TR 0.4 s, both shown

in Figure 3. The red arrows at time 0 s are at the movement

onsets as recorded by the EMG signals. The thick lines corre-

spond to the smoothed version of the voxel time series (thin

lines) by filtering with a Hamming low pass filter with cut-off

frequency 0.3 Hz. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

TABLE II. Total number of ICs identified with probabilistic ICA using the criterion which maximizes the

Laplace approximation of the posterior distribution of the model evidence (LAP), the percentage of the

variability of the data retained with these components, and the number of relevant ICs (correlation

coefficient with EMG regressor > 0.3)

TR 2 s TR 0.4 s

# ICs (% variability) # Relevant ICs # ICs (% variability) # Relevant ICs

Subject A 134 (82.0) 11 431 (72.3) 6
Subject B 119 (79.9) 2 298 (63.7) 6
Subject C 124 (82.8) 12 556 (78.3) 33
Subject D 125 (82.6) 11 549 (77.0) 16
Subject F 113 (78.2) 2 561 (75.6) 4
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GLM analysis (F-test, P value < 0.05, FDR-corrected) are
also displayed at the bottom of each map. These GLM sta-
tistical maps were computed using the time of the peak in
the ATS to define the onset time for these task-unrelated
events. There was excellent agreement between the GLM
statistical parameteric maps and the PFM Statistical Maps.
These task-unrelated activations did not show a specific
recurring pattern or a consistent spatio-temporal pattern
between subjects. For instance, Statistical Map RSA shows
cortical activity in the posterior cingulate cortex, precuneus,
and lateral inferior parietal cortex, whereas Statistical Map
RSB shows activation in both primary sensorimotor areas
(PM, M1 and S1, anterior cingulate cortex and SMA) and
visual areas, and is related to task-independent hand
movement (confirmed by the EMG).

DISCUSSION

We have described a new Paradigm Free Mapping
method for the analysis of fMRI data and shown that using
this method it is possible to detect individual (single-trial)
BOLD responses to motor activity at high field without any
prior knowledge of the paradigm timing. Other fMRI analy-
sis methods have previously been proposed to study sin-
gle-trial responses [Kruggel and Von Crammon, 1999;
Richter et al., 1997a, 1997b, 2000; Svensen et al., 2000], but
these approaches assumed prior knowledge of the onset
times of the evoked stimuli. Using the method presented
here, it was possible to observe the temporal processing of
single trial events in a simple and unsupervised manner
with no knowledge of the stimulus timing. The output of
the PFM analysis method is a time course of t-maps. Brain
activation movies have previously been used to display the
cortical response to stimulus processing [Windischberger
et al., 2008], but based on a finite impulse response (FIR)

model approach where the onsets of the stimuli were
known a priori. Furthermore, we have also introduced the
ATS as a method of reducing the dimensionality of the
data to make the results easier to interpret.

The PFM method is based on voxelwise deconvolution
of the HRF under a linear model using the ridge regres-
sion algorithm and autoregressive noise characterization
assuming that the hemodynamic response conforms to a
two-gamma variates with the standard SPM parameters,
to include a post stimulus undershoot [Friston et al., 1998].
Despite the variability in the shape of the HRF [Aguirre
et al., 1998; Duann et al., 2002; Handwerker et al., 2004],
the ridge regression estimation has previously demon-
strated high robustness against model mismatches [Selén
et al., 2008] due to the L2-norm regularization term. It
should be noted that the Ridge Regression deconvolution
is equivalent to a Bayesian deconvolution assuming Gaus-
sian priors for the noise and the signal coefficients, and
Gitelman et al. [2003] proposed estimation of the regulari-
zation parameter via an empirical Bayes approach using
the Restricted Maximum Likelihood (ReML) and expecta-
tion maximization (EM) algorithms. Here, generalized least
square (GLS) estimates of the noise and coefficient varian-
ces were used to compute the regularization parameter,
which increases computational speed with a negligible
decrease in robustness against model mismatch [Selén
et al., 2008]. Notably, the use of Gaussian priors has been
previously proposed but using a Finite Impulse Response
(FIR) model which, in contrast to PFM, aims to deconvolve
or estimate the HRF shape assuming a predetermined par-
adigm [Goutte et al., 2000; Marralec et al., 2003]. Alterna-
tively, to increase the accuracy of the estimation with less
penalty on the active responses, deconvolution models

TABLE III. Frequency of activation in regions of interest

TR 2 s TR 0.4 s

VCT SPT VCT SPT

SMA 0.7 0.7 0.9 1
Contralateral PM 0.7 0.35 0.8 0.66
Contralateral M1 0.7 0.7 0.9 1
Contralateral S1 0.7 0.7 0.9 1
Cont. Inf. Parietal 0.7 0.4 0.9 1
Cont. Sup. Parietal 0.56 0.53 0.72 0.75
Ipsilateral PM 0.56 0.43 0.75 0.7
Ipsilateral M1 0.7 0.6 0.9 1
Ipsilateral S1 0.63 0.53 0.9 1
Ips. Inf. Parietal 0.56 0.53 0.9 1
Ips. Sup. Parietal 0.5 0.47 0.8 0.75
Primary Visual 0.45 0.53 0.75 0.83
Secondary Visual 0.56 0.4 0.8 0.5

This value is defined as the number of events the ROI was found
active divided by the number of times (tasks and subjects) for
which this area was scanned.

Figure 6.

Statistical maps obtained with PFM (P value < 0.05, FDR corrected)

(top) and GLM (F-test, P value < 0.05, FDR-corrected) (bottom)

corresponding to the time points of activations shown at the ATS

of subject A at TR 0.4 in Figure 2. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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based on sparse estimation techniques, such as the LASSO
or the Dantzig Selector, might be used assuming that corti-
cal activity is localized sparsely in time [Caballero-Gaudes
et al., 2009]. Our current formulation performs the decon-
volution on a voxel-by-voxel basis, but there is certainly
correlation in the response between neighboring voxels.
The PFM approach could be extended to use a spatio-tem-
poral deconvolution [Harrison et al., 2007] to improve the
detection of single-trial responses and to characterize the
variability in the HRF between neighboring voxels.

An AR model was adopted for the statistical characteri-
zation of the noise because the numerical algorithms used
to estimate the model parameters, such as the LD algo-
rithm, exhibit higher robustness than those for ARMA or
MA models [Stoica and Moses, 2005]. In addition, isotropic
spatial smoothing was used to reduce the variance of the
autocorrelation estimates, but non-isotropic spatial filters
could be employed to further improve this estimate across
brain-air and tissue boundaries [Woolrich et al., 2001].

The datasets were corrected for motion and physiologi-
cal fluctuations with RETROICOR [Glover et al., 2000].
Alternative methods to reduce physiological noise compo-
nents could also be used, such as regressing out the con-
volution of measured respiratory and cardiac variations
with empirical, pre-determined response functions [Birn
et al., 2008; Chang et al., 2009] and ultimately, the PFM
approach could also be extended to incorporate a non-sta-
tionary noise characterization [Fadili and Bullmore, 2005;
Long et al., 2005].

The statistical significance of the activations was eval-
uated after FDR thresholding of the temporal t-statistic.
Similar to Lindquist et al. [2007], the t-statistics were com-
puted as the deviance of the estimated signal time series
for each voxel from its estimated baseline signal. However,
in PFM the test statistics are based on filtering the fMRI
time series with a filter based on the deconvolution of the
HRF, whereas Lindquist et al. [2007] used an exponentially
weighted moving averaged (EWMA) filter. Consequently,
there is a noticeable difference between the interpretation
of the EWMA statistics and PFM since the latter is directly
related to the signal which drives the fMRI BOLD
response. Setting baseline periods involves making the
assumption that no hemodynamic event of neural origin
occurred in those periods and our own results have illus-
trated the presence of significant and coherent activations
during periods of rest different from the initial baseline. In
a few datasets this might have lead to loss of sensitivity to
some responses. This could be overcome by eliminating
baseline periods with obvious neural-related signal
changes.

The baseline period needs to include a sufficient number
of time points (B) to be able to allow the mean amplitude
and variance of the baseline state to be estimated. In addi-
tion, the degrees of freedom will reduce with fewer base-
line time points. In our experiments, we used large values
of B, but in practice we could use fewer number since the
Student’s t-distribution does not change considerably pro-

viding B is large enough (�>30). The baseline period also
needs to be of sufficient length (�>60 s) to include several
cycles of baseline fluctuations. However, we are currently
working on an alternative formulation of the PFM which
removes the need of a baseline period for which the statis-
tical inference is performed by formulating multiple gener-
ative models with different number of events and then
choosing the one with largest evidence according to model
selection criteria, such as AIC or BIC.

We used the traditional BH [Benjamini and Hochberg,
1995] approach to control the false discovery rate for each
of the time points separately. No temporal correction was
performed because the spatial and temporal correlation of
the statistics led to a significant reduction in the spatial
(but not temporal) sensitivity of PFM to the main events.
Future work will address the investigation of spatio-tem-
poral cluster inference methods in a PFM formulation, for
example, based in adaptive FDR procedures [Schwartzman
et al., 2009] or current cluster thresholding methods
[Chumbley et al., 2010; Smith and Nichols, 2009] to
account for the spatial and temporal smoothness of the
PFM statistics and increase the sensitivity of the technique
in a four-dimensional correction.

The performance of the PFM method was evaluated
using a paradigm where subjects performed dominant-
hand finger-tapping, visually cued or self paced. Nonpara-
metric P values based on the Spearman’s rank correlation
coefficient demonstrated significant correlation between
the EMG signal time course and fMRI ATS, confirming the
feasibility of paradigm free detection of single trial motor
movements. We observed a higher probability in the
detection of the events at TR 0.4 s (22 out of 22 events)
than at TR 2 s (18 out of 23 events), which results from the
higher sampling rate of the HRF, despite lower contrast-
to-noise ratio existing at TR 0.4 s. In some cases, the onset
and peak of the ATS preceded the EMG onset by up to
one time point for data with TR 2 s or four time points for
the TR 0.4 s data. This earlier onset may have arisen due
to cortical activity associated with preparation and plan-
ning, or may indicate a mismatch between the canonical
HRF and the actual HRF. Once the activations have been
detected with PFM, a posteriori fitting of the HRF parame-
ters could be helpful to understand the origins of any dif-
ference [Lindquist et al., 2009].

The PFM technique consistently detected significant acti-
vation in brain regions known to be involved in the initia-
tion and processing of a motor task [Witt et al., 2008],
including SMA [Cunnington et al., 2002, 2003], bilateral
PM [Halsband et al., 1993; Harrington et al., 2000; Passing-
ham, 1985], bilateral M1 [Cunnington et al., 2002; Richter
et al., 1997a], bilateral S1 [Porro et al., 1996; Rao et al.,
1993], bilateral inferior parietal (supramarginal gyrus)
[Harrington et al., 2000], superior posterior parietal areas
[Gordon et al., 1998; Schubert et al., 1998]. In addition,
activation was also observed in the intraparietal sulcus
and superior frontal areas in some subjects (see Fig. 3),
areas shown to be involved in the processing of visuo-
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motor tasks and spatial attention [Corbetta and Shulman,
2002]. Primary and secondary visual cortex (V1 and V2)
activity was observed for VCT and interestingly, activation
in V1 was also observed during the SPT trials (Table III),
possibly due to the mental visualization of the visual cue
associated with the previous finger tapping events [Pasc-
ual-Leone et al., 2005]. Table III shows that primary senso-
rimotor areas (SMA, M1, and S1) were the most
consistently active areas within and across subjects,
whereas sensory association areas not primarily implicated
in the task demonstrated a larger variability [Duann et al.,
2002; Richter et al., 1997]. Note that due to the tilt of the
slices only the superior part of the premotor cortex was
scanned and much of the PM area was missed for some
subjects.

Ipsilateral activation in the PM and M1 cortices was
detected for all subjects (Table III). The EMG signals indi-
cated that all subjects, except subject F, had significant
movement of the non-dominant hand during the uni-man-
ual finger tapping task. However, even in the case of this
subject where no activity in the non-dominant hand was
recorded by the EMG, activity in ipsilateral sensorimotor
areas was detected, supporting indications that the ipsilat-
eral hemisphere also plays an important role in the plan-
ning, execution and control of unimanual motor tasks
[Kawashima et al., 1994; Porro et al., 2000].

For validation of PFM, we compared the results
obtained with GLM and Probabilistic ICA [Beckmann and
Smith, 2004]. As illustrated in Figure 3, the PFM activa-
tion maps showed large correspondence with the GLM
maps, especially at the main clusters of activation. In gen-
eral, the PFM areas were smaller than the GLM areas but
lay within the GLM areas with a high degree of overlap
(%PFM area in GLM area: 75.5% for TR 0.4 s and 64.2%
for TR 2 s) suggesting that PFM maps had a higher speci-
ficity (i.e., were more stringently thresholded) than the
GLM maps. On the other hand, both PFM and ICA suc-
cessfully detected time points and areas of activation
associated to the finger tapping responses without prior
knowledge of the paradigm, but there are several differ-
ences between both approaches. PFM is based on the
deconvolution of an assumed model of the HRF, whereas
ICA is a completely model-free approach. The component
decomposition obtained with some ICA algorithms, such
as Fast-ICA or Infomax, is sensitive to their initialization
[Himberg et al., 2004], whereas this is not a problem for
PFM. In addition, an important consideration is that ICA
requires the number of components to be extracted from
the data to be determined, either manually or by using
selection criteria (LAP, MDL, or AIC). One of the most
compelling aspects of PFM is the observation of spatio-
temporally coordinated activation in the activation movie.
In comparison each ICA component describes the behav-
ior of a number of voxels acting in synchrony, and so
voxels with slightly different time courses end up in dif-
ferent components which need to be appropriately com-
bined to recover the temporal information that is

immediately available from PFM. For a long dataset, such
as our datasets acquired at TR 0.4 s, ICA requires a large
number of components to describe the variability in the
data (see Table II) and functionally significant information
is spread across several components (e.g., see areas of the
postcentral gyrus which are included in the components
IC2 and IC3 of Fig. 4). In this study, we selected the rele-
vant independent components based on the correlation
between the ICA component timecourse and the EMG
signal. This allowed us to identify spatial components
including the SMA and bilateral primary somatosensory
areas, but there were some areas, such as the visual cor-
tex and superior parietal lobule, which were not detected
in the components selected by correlation with the EMG,
but which were significantly active with both PFM and
GLM (compare Figs. 3 and 4). This does not imply that
there are no components to account for these responses,
but finding them may be very difficult in a real paradigm
free mapping scenario and would involve cross-valida-
tion, or visualization and clustering of the components
[Himberg et al., 2004] which would be computationally
intensive for long datasets. In fact, the PFM activation
time course might prove a useful signature with which to
identify relevant components. It is worth noting that PFM
only detects discrete, temporally sparse events, and there-
fore would not be able to characterize slow-frequency
oscillations, for example, as described in resting state
data, which can be detected with other techniques, such
as ICA, PCA, or seed-voxel correlation [Damoiseaux
et al., 2006].

This work was performed at 7T to take advantage of the
improved BOLD contrast to noise ratio (CNR) at 7T which
makes routine single trial fMRI feasible [Pfeuffer et al.,
2002]. The TR ¼ 0.4 and TR ¼ 2.0 s data were both
acquired at the same TE and the ratio of the measured
tSNR was �1.3, but the technique was still able to detect
activation at the shorter TR (see Fig. 2), suggesting PFM
would also be applicable for less robust responses and
data acquired at lower field strengths [Triantafyllou et al.,
2005], but further work is required to determine the ulti-
mate limit to sensitivity.

Once a response had been detected with the PFM
method, the high CNR available from 7T data allowed the
amplitude and timing of the HRF to be studied on a trial-
by-trial and voxel-by-voxel basis (see Fig. 5) with no tem-
poral averaging. Amplitudes and delays were shown to
vary considerably not only between voxels of different
sensory areas but also within the same area as shown pre-
viously [Duann et al., 2002; Pfeuffer et al., 2002]. This vari-
ability could be due to variations in task performance,
coherent spontaneous activity [Fox et al., 2007] or underly-
ing baseline trends which were not completely removed
with temporal detrending in the preprocessing [Tanabe
et al., 2002]. The spatio-temporal mapping provided by
the PFM will enable the source of this variability to be
investigated by studying the relationship between HRF
duration and relative delay, physiological measures (e.g.,
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phase of the cardiac cycle) and amplitude of activation, on
a trial by trial basis, across brain regions and between
subjects.

This novel Paradigm Free Mapping technique may pro-
vide the possibility of designing a new class of neuroi-
maging paradigms which make use of single trial fMRI,
including the study of learning and adaptation [Bingel
et al., 2002; Gonzalo et al., 2000], or other paradigms
where timing information of the brain response cannot be
hypothesized in advance [Faisan et al., 2007; Hutchinson
et al., 2009]. Beyond this, the block-by-block deconvolution
used to increase the speed of the algorithm opens the
door to a real-time implementation of PFM which would
allow experiments to be designed where the paradigm is
modified in the light of cortical response [deCharms,
2008].

Interestingly, PFM enabled the unsupervised detection
of significant transient, task-unrelated spatio-temporal
patterns of brain activity across the cortex during periods
of apparent rest (Figs. 2 and 6). These activation events
could be related to unconstrained behavior in the scanner,
such as small body movements, or may relate to other
mental tasks such as changes in attention [Corbetta et al.,
2002] or somatic perception [Felician and Romaiguère,
2008]. Using the ATS, the temporal locations of these
events were determined, and these events could subse-
quently be detected and further assessed using GLM
analysis (Fig. 6). PFM could be used to identify spurious
extreme fluctuations that would affect other statistical
analyses. Information about the task-unrelated events
extracted using PFM will complement the information
obtained with other analysis techniques of resting-state
BOLD fMRI. Future work will focus on assessing the
functional significance of these activations and studying
the factors giving rise to these task-unrelated or spontane-
ous events and their effects on cortical networks [Petridou
et al., 2009].
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APPENDIX

Let sk(i) be the observation (ridge regression estimate) at
voxel k at time i, and write

skL ið Þ ¼ 1

L

XL
l2N kð Þ

sl ið Þ; (A1)

for the arithmetic mean at time i over the neighborhood
N(k) of voxel k which consists of L voxels (i ¼1,. . ., N; k ¼
1, : : : , L). Hereinafter we do not consider the superscript
index k to simplify the notation. Consider the model
where sL are jointly multivariate normal with marginal dis-
tributions during the baseline period given by

sL ið Þ � N l0;r
2
L

� �
; 1 � i � B (A2)

and the correlation matrix during the baseline period is
the B 3 B matrix RL. In addition, after the baseline period
the marginal distribution at time i is

sL ið Þ � N l1; r
2
L

� �
; i > B (A3)

which is independent of the values in the baseline period.
We wish to test

H0 : l0 ¼ l1 versus H1 : l0 6¼ l1: (A4)

Let

l̂L ¼ 1

B

XB

i¼1
sL ið Þ and

r̂2
L ¼ 1

B� 1
sBL � l̂L1B
� �T

R�1
L sBL � l̂L1B
� �

;

be the baseline mean and variance estimates respectively,
where sBL ¼ (sL(1), : : : , sL(B))

T is the B-vector of the spa-
tially averaged deconvolved time series for the baseline
and 1B is the B-vector of ones. The correlation matrix RL is
estimated by standardizing the spatial average of the co-
variance matrices of the ridge regression estimates for
each baseline, that is, we estimate the correlation matrix
RL by standardizing (to unit diagonal elements)

1

L

X
l2N kð Þ

HTR�1H þ klI
� ��1

; (A5)

and kl is the regularization parameter for voxel l.
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Under H0 we have, for i > B,

1þ 1

B

� ��1=2

sL ið Þ � l̂Lð Þ � N 0;r2
L

� �
(A6)

and independently

r̂2L � r2L
B� 1

v2B�1; (A7)

treating RL as known (Hogg and Craig, 1995). Hence, it
can be written that

t ið Þ ¼ 1þ 1

B

� ��1=2

sL ið Þ � l̂Lð Þ
�

r̂L � tB�1; (A8)

if H0 is true, where tv is the Student’s t distribution with v
degrees of freedom. Here, we used the definition of the t-
statistic such that if two random variables X and Y are inde-
pendently distributed as N(0,1) and v2v , then X

ffiffiffi
v

p � ffiffiffiffi
Y

p � tv.
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