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Abstract: The purpose of this study was to evaluate the effects of longitudinal drift in scanner hard-
ware, inter-scanner variability (bias), and scanner upgrade on longitudinal changes in global and
regional diffusion properties using longitudinal data obtained on two scanners of the exact same
model at one institution. A total of 224 normal subjects were scanned twice, at an interval of about 1
year, using two 3.0-T scanners of the exact same model. Both scanners were simultaneously upgraded
during the study period. The subjects were divided into four groups according to the combination of
scanners used. With use of tract-based spatial statistics, we evaluated the effects of scanner drift and
inter-scanner variability (bias) on global and regional fractional anisotropy (FA), axial diffusivity (AD),
and radial diffusivity (RD) changes of the white matter. Even with scanners of the exact same model,
inter-scanner variability (bias) significantly affected longitudinal results. FA, AD, and RD of the white
matter were relatively stable within the same scanner. We also investigated the effect of scanner
upgrade on longitudinal FA, AD, and RD changes. The scanner upgrade included only software
upgrade, not hardware upgrade; however, there was a significant effect of scanner upgrade on longitu-
dinal results. These results indicate that inter-scanner variability and scanner upgrade can significantly
affect the results of longitudinal diffusion tensor imaging studies. Hum Brain Mapp 33:466–477,
2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Diffusion tensor imaging (DTI) is a magnetic resonance
(MR) imaging technique that is sensitive to the random
thermal motions of water and can provide contrasts which
give insight about tissue architecture. DTI has been widely

used to study the integrity of white matter tracts in
healthy brains and in a variety of neurological diseases.
Longitudinal and multi-center neuroimaging studies have
more power than smaller studies to conduct sophisticated
studies of basic neuroanatomy and clinical disorders. Our
current knowledge on the effects of normal aging and
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clinical disorders on the integrity of white matter is
derived mostly from cross-sectional studies. However, the
large amount of between-subject variability that exists in
normal brains reduces the sensitivity of methods to detect
white matter integrity changes. Longitudinal studies avoid
some of the problems of secular trends and between-
subject variation, as each subject forms his or her own con-
trol. DTI may be a promising marker to follow longitudi-
nal changes in white matter tracts in normal aging and
neurodegenerative diseases. However, for longitudinal
studies to be feasible, it is imperative to establish that DTI
measurements can be made reliably on individual subjects
[Danielian et al., 2010].

The large number of subjects resulting from pooling
multi-scanner data-sets has numerous advantages. It
increases sensitivity thus allowing detection of subtle
effects. Additionally, pooling offers increased reliability
and confidence about the size of effect by averaging out
unforeseen confounds. However, one important confound
of combining images obtained from different scanners is
the potential for scanner effects to introduce systematic
error, thus making the interpretation of results difficult.
Differences in DTI measurements due to scanner-depend-
ent inaccuracies may either mimic or obscure true
changes.

Several groups have evaluated intra-scanner and/or
inter-scanner variability of DTI measurements [Bonekamp
et al., 2007; Cassol et al., 2004; Cercignani et al., 2003;
Ciccarelli et al., 2003; Danielian et al., 2010; Farrell et al.,
2007; Fushimi et al., 2007; Heiervang et al., 2006; Huisman
et al., 2006; Hunsche et al., 2001; Jansen et al., 2007; Land-
man et al., 2007; Marenco et al., 2006; Okada et al., 2006;
Pfefferbaum et al., 2003; Qin et al., 2009; Reich et al., 2006].
Most studies investigated reliability by performing
repeated scans on a few subjects acquired within the same
scan session or within short scan intervals. This approach
may underestimate the sources of variability relevant for
longitudinal studies (e.g., scanner drift) [Danielian et al.,
2010]. To our knowledge, there have been no studies that
evaluated intra-scanner or inter-scanner reliability using
longitudinal data obtained on a large number of subjects.
In addition, we are not aware of any study that has inves-
tigated whether scanner upgrade influences longitudinal
DTI results. In this study, we examined the effects of
longitudinal drift in scanner hardware, inter-scanner vari-
ability (bias), and scanner upgrade on longitudinal
changes in global and regional DTI measurements using
longitudinal (1-year) data obtained on two scanners of the
exact same model at one institution.

MATERIALS AND METHODS

Imaging Data Acquisition

A total of 224 normal subjects (63 females and 161
males, mean age ¼ 57.1 � 9.5 years, age range ¼ 40.3–83.5
years) were included in this study. None of the subjects

had a history of neuropsychiatric disorder including
serious head trauma, psychiatric disorders, or alcohol/
substance abuse or dependence. The mean mini-mental
state examination (MMSE) score was 29.6 � 0.7 (range ¼
27–30). Each subject was scanned twice, at an interval of
about 1 year (mean interval ¼ 1.0 � 0.11 years, range ¼
0.6–1.3 years). A board-certified radiologist reviewed all
scans (including T1-weighted and T2-weighted images)
and found no gross abnormalities such as infarct, hemor-
rhage, or brain tumors in any of the subjects. The Fazekas
score (range, 0–3) was 0 or 1 [Fazekas et al., 1987]. The
scale is a four-point rating scale of white matter hyperin-
tensities devised by Fazekas et al. (0 ¼ absence, 1 ¼ caps,
pencil-thin lining and/or punctuate foci). The ethical com-
mittee of the University of Tokyo Hospital approved this
study. After a complete explanation of the study to each
subject, written informed consent was obtained.

MR data were obtained on two 3.0-T Signa scanners (GE
Medical Systems, Milwaukee, WI) with an 8-channel brain
phased array coil. Both scanners were the exact same
model, and simultaneously upgraded from HDx to HDxt
during the study period. This upgrade included only soft-
ware upgrade, not hardware upgrade. Of the 224 subjects,
159 subjects underwent baseline and follow-up scans
before upgrade, and the remaining 65 subjects underwent
a baseline scan before upgrade and a follow-up scan after
upgrade. Diffusion tensor images were acquired using a
single-shot spin-echo echo-planar sequence in 50 axial
slices (repetition time ¼ 13,200 ms; echo time ¼ 62 ms;
field of view ¼ 288 mm; slice thickness ¼ 3 mm with no
gap; acquisition matrix ¼ 96 � 96; number of excitations ¼
1; image matrix ¼ 256 � 256). Diffusion weighting was
applied along 13 non-collinear directions with a b-value of
1,000 s/mm2 and a single volume was collected with no
diffusion gradients applied (b0). Parallel imaging (Array
Spatial Sensitivity Encoding Technique [ASSET]) was used
with an acceleration factor of 2.0. The acquired and recon-
structed voxel dimensions were 3.0 mm � 3.0 mm � 3.0
mm and 1.125 mm � 1.125 mm � 3.0 mm, respectively.

Image Processing

Tract-based spatial statistics

Image analysis was mainly carried out using tract-based
spatial statistics (TBSS) 1.2 [Smith et al., 2006, 2007], part
of FSL (FMRIB Software Library 4.1, http://www.fmri-
b.ox.ac.uk/fsl) [Smith et al., 2004]. First, the raw diffusion
data were corrected for eddy current distortion and head
motion using FMRIB’s Diffusion Toolbox (FDT) 2.0 [Smith
et al., 2004], and corrected for spatial distortion due to
gradient non-linearity using ‘‘grad_unwarp’’ [Jovicich
et al., 2006]. Following brain extraction using Brain Extrac-
tion Tool (BET) 2.1 [Smith, 2002], fractional anisotropy
(FA), axial diffusivity (AD), and radial diffusivity (RD)
maps were created by fitting a tensor model to the diffu-
sion data using FDT. All subjects’ FA data were then
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aligned into Montreal Neurological Institute (MNI) 152
space using FMRIB’s nonlinear registration tool (FNIRT)
1.0 [Smith et al., 2004], which uses a b-spline representa-
tion of the registration warp field. The FMRIB58_FA stand-
ard-space image was used as the target. Next, a mean FA
image was created and thinned to create a mean FA skele-
ton which represents the centers of all tracts common to
the group. The mean FA skeleton image was thresholded
at a FA value of 0.2 to prevent inclusion of non-skeleton
voxels [Smith et al., 2006]. Each subject’s aligned FA data
were then projected onto this skeleton. The AD and RD
data were also aligned into MNI 152 space and projected
onto the mean FA skeleton (using the FA data to find the
projection vectors). Then, baseline skeleton-projected FA,
AD, and RD data were subtracted from follow-up skele-
ton-projected FA, AD, and RD data, respectively. The
resulting subtraction images were then fed into voxelwise
statistical analysis.

Voxel-based analysis

Each subject’s FA, AD, and RD data aligned into MNI
152 space were resampled (2 mm � 2 mm � 2 mm), and
then baseline FA, AD, and RD data were subtracted from
follow-up FA, AD, and RD data, respectively. The result-
ing subtraction images were smoothed by an isotropic
Gaussian kernel (sigma ¼ 3 mm) and also fed into voxel-
wise statistical analysis.

Statistical Analyses

The subjects were grouped as follows: (a) baseline
images were obtained on scanner 1 and follow-up images
were obtained on scanner 1 (n ¼ 70); (b) baseline images
were obtained on scanner 1 and follow-up images were
obtained on scanner 2 (n ¼ 45); (c) baseline images were
obtained on scanner 2 and follow-up images were obtained
on scanner 1 (n ¼ 56); and (d) baseline images were
obtained on scanner 2 and follow-up images were obtained
on scanner 2 (n ¼ 53). Differences in longitudinal skeleton
average FA, AD, and RD changes were tested using analy-
sis of covariance (ANCOVA) with change in skeleton aver-
age FA, AD, or RD as the dependent variable and group,
scanner upgrade, age, sex, and age � sex as independent
variables. These statistical analyses were performed using
JMP 8.0 (SAS Institute, Cary, NC). A P value of <0.05 was
considered to indicate a statistically significant difference.

Voxelwise analyses of the subtraction images were per-
formed using permutation-based, voxelwise non-paramet-
ric testing [Nichols and Holmes, 2002] (as implemented in
the randomize tool, part of FSL). First, we identified areas
with significant differences in longitudinal changes
between the groups (a–d). Scanner upgrade, age, and sex
were included as covariates of no interest. Next, we identi-
fied areas with significant longitudinal changes in each
group (a–d). We also identified areas with common
changes in groups b and c. Finally, we identified areas

with a significant effect of scanner upgrade on longi-
tudinal changes. Significance levels for t tests (one-tailed)
and F tests were set at P < 0.025 and at P < 0.05, corrected
for multiple comparisons using the FWE rate, respectively
(voxel-level inference). We computed two t contrasts (posi-
tive, negative) for t tests. The number of permutations was
5,000.

RESULTS

Effects of Scanner on Global FA, AD, and RD

The ANCOVA for longitudinal skeleton average FA,
AD, and RD changes revealed a significant effect of group
(FA, F ¼ 32.6, P < 0.0001; AD, F ¼ 67.5, P < 0.0001; RD,
F ¼ 80.3, P < 0.0001). There was no effect of scanner
upgrade (FA, F ¼ 0.49, P ¼ 0.48; AD, F ¼ 0.15, P ¼ 0.70;
RD, F ¼ 1.11, P ¼ 0.29). There was no main effect of age
(FA, F ¼ 0.0003, P ¼ 0.99; AD, F ¼ 1.92, P ¼ 0.17; RD, F ¼
1.23, P ¼ 0.27) or sex (FA, F ¼ 3.58, P ¼ 0.060; AD, F ¼
0.97, P ¼ 0.33; RD, F ¼ 3.79, P ¼ 0.053), nor was there a
sex-by-age interaction (FA, F ¼ 0.21, P ¼ 0.64; AD, F ¼
0.008, P ¼ 0.93; RD, F ¼ 0.17, P ¼ 0.68). The results show
significant scanner bias (Fig. 1).

Effects of Scanner on Regional FA, AD, and RD

The voxelwise analyses of skeletonized (subtraction)
images revealed a number of regions with significant
differences in longitudinal changes between the groups
(Fig. 2 and Supporting Information Figs. S1,S2) (Table I).
In the groups where both baseline and follow-up images
were obtained on the same scanner (a and d), there were
no significant longitudinal changes except for a few vox-
els. In the groups where baseline and follow-up images
were obtained on different scanners (b and c), there
were a number of regions with significant longitudinal
changes. There was a tendency that the directions of the
changes were opposite in these two groups (b and c).
The voxelwise analysis showed no regions with common
changes in these two groups (b and c) except for a few
voxels (Supporting Information Fig. S3), which indicates
that the observed longitudinal changes in the two groups
were due to scanner bias. The voxelwise analysis
also showed a number of regions with a significant effect
of scanner upgrade on longitudinal changes (Fig. 3)
(Table I).

The voxel-based analyses of whole brain (subtraction)
images also revealed a number of regions with significant
differences in longitudinal changes between the groups
(Fig. 4, and Supporting Information Figs. S4,S5). In the
groups where baseline and follow-up images were
obtained on different scanners (b and c), there were a
number of regions with significant longitudinal changes.
There was a tendency that the directions of the changes
were opposite in these two groups (b and c). The
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Figure 1.

Longitudinal (1-year) skeleton average fractional anisotropy (FA), axial diffusivity (AD), and radial

diffusivity (RD) changes (means � standard deviations).
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voxelwise analysis showed no regions with common
changes in these two groups (b and c) except for small
peripheral regions (Supporting Information Fig. S6). The
voxel-based analysis (VBA) also showed a number of
regions with a significant effect of scanner upgrade on
longitudinal changes (Fig. 5).

Supporting Information Figures S7–S9 show mean
longitudinal changes in FA, AD, and RD, respectively.
Supporting Information Figures S10–S12 show standard
deviations of longitudinal changes in FA, AD, and RD,
respectively.

Histogram Analysis of Whole-Brain FA,

AD, and RD

To investigate the differences between the two scanners
in more detail, whole-brain histograms were calculated for
FA, AD, and RD maps (aligned into MNI 152 space) of
the groups where baseline and follow-up images were
obtained on different scanners (b and c). FA histogram bin
width was set to 0.01 between 0.0 and 1.0. AD and RD
histograms bin width was 0.04 � 10�3 mm2/s, between
0.0 � 10�3 mm2/s and 4.0 � 10�3 mm2/s. The mean AD

Figure 2.

Tract-based spatial statistics (TBSS) analysis of longitudinal (1-year) fractional anisotropy (FA)

changes. The first four rows indicate an analysis of each group (a-d). The fifth row indicates an

analysis of differences between groups a, b, c, and d (F test). Red and blue represent an increase

and decrease in FA, respectively.
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and RD histograms were shifted toward lower values in
scanner 2 compared with scanner 1 (see Fig. 6). This indi-
cates that AD and RD measured by scanner 1 was higher
than those measured by scanner 2 as a whole. The mean
FA histogram was shifted toward higher values in scanner
2 compared with scanner 1 (see Fig. 6). This indicates that
FA measured by scanner 1 was lower than that measured
by scanner 1 as a whole.

Differences in Head Position

Differences in changes in head position were tested
using ANCOVA with change in head position (rotation
[x, y, or z] or translation [x, y, or z]), calculated from the
transformation parameters derived from aligning each sub-
ject’s FA data into MNI 152 space, as the dependent vari-
able, and group and scanner upgrade as independent
variables. Although the changes in head position were rela-
tively small (Fig. 7), there was a significant effect of group
on changes in head position except for translation y ([rota-
tion] x, F ¼ 3.0, P ¼ 0.03; y, F ¼ 11.3, P < 0.0001; z, F ¼
5.8, P ¼ 0.0008; [translation] x, F ¼ 48.7, P < 0.0001; y, F ¼
2.2, P ¼ 0.08; z, F ¼ 5.0, P ¼ 0.002). There was no

TABLE I. The Numbers of Significant Voxels in

Tract-Based Spatial Statistics (TBSS) Analyses of

Longitudinal (1-year) Changes

FA AD RD

Differences between groups a–d
5,339 (4.5%) 2,516 (2.1%) 4,205 (3.5%)

Group a
Increase 1 (0.0%) 0 (0.0%) 1 (0.0%)
Decrease 0 (0.0%) 9 (0.0%) 3 (0.0%)

Group b
Increase 2,207 (1.8%) 10 (0.0%) 8 (0.0%)
Decrease 151 (0.1%) 835 (0.7%) 1,882 (1.6%)

Group c
Increase 291 (0.2%) 1,258 (1.0%) 1,349 (1.1%)
Decrease 2540 (2.1%) 7 (0.0%) 14 (0.0%)

Group d
Increase 0 (0.0%) 2 (0.0%) 5 (0.0%)
Decrease 0 (0.0%) 0 (0.0%) 0 (0.0%)

Effects of Scanner Upgrade
Positive 101 (0.1%) 687 (0.6%) 1,045 (0.9%)
Negative 714 (0.6%) 98 (0.1%) 288 (0.2%)

FA, indicates fractional anisotropy; AD, axial diffusivity; RD,
radial diffusivity.

Figure 3.

Tract-based spatial statistics (TBSS) analysis of the effect of scanner upgrade on

longitudinal (1-year) changes. FA indicates fractional anisotropy; AD, axial diffusivity; RD, radial

diffusivity.
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significant effect of scanner update ([rotation] x, F ¼ 0.15,
P ¼ 0.69; y, F ¼ 1.3, P ¼ 0.25; z, F ¼ 0.26, P ¼ 0.61; [transla-
tion] x, F ¼ 1.1, P ¼ 0.30; y, F ¼ 1.3, P ¼ 0.26; z, F ¼ 2.8,
P ¼ 0.10).

DISCUSSION

In this study, we examined the effects of longitudinal
drift in scanner hardware, inter-scanner variability (bias),
and scanner upgrade on global and regional FA, AD, and
RD changes using longitudinal data obtained on two scan-
ners of the exact same model at one institution. Even with

scanners of the exact same model, inter-scanner variability
(bias) significantly affected longitudinal results. The differ-
ence in skeleton average FA between the two scanners
was approximately 0.0035. This is equivalent to about
6 years of change in skeleton average FA (one-year change
estimated cross-sectionally from the baseline scans ¼
�0.00058 per year). DTI measurements were relatively sta-
ble with repeated scans obtained on the same scanner.
Reliability of DTI measurements can be affected by a num-
ber of factors, including b0 field inhomogeneities, gradient
stability, signal-to-noise level, head motion and head posi-
tioning. The mean AD and RD histograms were shifted
toward lower values in scanner 2 compared with scanner

Figure 4.

Voxel-based analysis (VBA) of longitudinal (1-year) fractional anisotropy (FA) changes. The first

four rows indicate an analysis of each group (a-d). The fifth row indicates an analysis of differen-

ces between groups a, b, c, and d (F test). Red and blue represent an increase and decrease in

FA, respectively.
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1, and the mean FA histogram was shifted toward higher
values in scanner 2 compared with scanner 1. This might
reflect differences in gradients between the two scanners.
In this study, there were significant differences in changes
in head position between the groups, although the changes
were relatively small. Differences in head position might
be one of the causes of inter-scanner variability. The scan-
ner upgrade included only software upgrade, not hard-
ware upgrade. Although it is unclear which software
components affected DTI measurements, however, there
was also a significant effect of scanner upgrade on longitu-
dinal results.

Several groups have evaluated intra-scanner and/or
inter-scanner variability of DTI measurements [Bonekamp
et al., 2007; Cassol et al., 2004; Cercignani et al., 2003;
Ciccarelli et al., 2003; Danielian et al., 2010; Farrell et al.,
2007; Fushimi et al., 2007; Heiervang et al., 2006; Huisman
et al., 2006; Hunsche et al., 2001; Jansen et al., 2007; Land-
man et al., 2007; Marenco et al., 2006; Okada et al., 2006;
Pfefferbaum et al., 2003; Qin et al., 2009; Reich et al., 2006].
Most studies investigated reliability by performing
repeated scans on a few subjects acquired within the same
scan session or within short scan intervals. Danielian et al.
assessed scan-rescan and longitudinal reliability in four
subjects who had six scans, with two sets of three scans
separated by 1 year, using deterministic fiber tracking
[Danielian et al., 2010]. They reported that FA, mean diffu-
sivity (MD) and RD were reliable with repeated scans

(intraclass correlation coefficient (ICC) > 0.8). However,
the effect of scanner drift on longitudinal results is
unclear. Pfefferbaum et al.[2003] evaluated within-scanner
and between-scanner reliability of FA and MD in 10 sub-
jects who had three scans on two different scanners. FA
and MD acquired on the same scanner were generally
more similar than across scanners. Cercignani et al.[2003]
evaluated within-scanner reliability of diffusion properties
in eight subjects who had two scans on two different scan-
ners, and between-scanner reliability of diffusion proper-
ties in four patients who had two scans on the same
scanner, using histogram analysis. Inter-scanner variability
was generally larger than intra-scanner variability. To our
knowledge, there have been no studies that investigated
whether scanner upgrade influences longitudinal DTI
results. The results of our study demonstrated that inter-
scanner variability (bias) and scanner upgrade significantly
affected longitudinal results.

In volumetric studies, several groups have analyzed the
effects of different scanners on cross-sectional or longitudi-
nal morphometric results [Briellmann et al., 2001; Dicker-
son et al., 2008; Ewers et al., 2006; Fennema-Notestine
et al., 2007; Fjell et al., 2009; Han et al., 2006; Ho et al.,
2010; Huppertz et al., 2010; Jovicich et al., 2009; Kruggel
et al., 2010; Meda et al., 2008; Moorhead et al., 2009;
Pardoe et al., 2008; Schnack et al., 2004; Stonnington et al.,
2008; Walhovd et al., 2009]. Usually, inter-scanner variabil-
ity of volumetric measures is larger than intra-scanner

Figure 5.

Voxel-based analysis (VBA) of the effect of scanner upgrade on longitudinal (1-year) changes. FA

indicates fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity.
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Figure 6.

Mean whole-brain fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) his-

tograms (solid lines, scanner 1; dotted lines, scanner 2).
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variability. Drift in scanner hardware significantly affects
longitudinal volumetric results, which is an important
potential source of error in longitudinal volumetric stud-
ies. Any changes in the voxel sizes introduced by scanner
instability may either mimic or obscure true changes. Scan-
ner drift is under-recognized and sometimes ignored in
longitudinal volumetric studies [Freeborough and Fox,
1998; Whitwell et al., 2001].

TBSS is an unbiased and automated whole-brain analy-
sis technique that compares diffusion tensor properties
between multiple subjects [Smith et al., 2006, 2007]. Unlike
conventional voxel-based analyses, TBSS does not require
perfect brain alignment or smoothing, and instead projects
brains onto an FA skeleton prior to comparison. TBSS
combines the strengths of voxel-based analyses (being able
to analyze the whole brain without predefining voxels or
tracts of interest) with the strengths of tractography-based
analyses (ideally, being confident that the estimates of FA

are truly taken from the relevant voxels) [Smith et al.,
2006]. By projecting FA values onto a subject-mean FA
tract skeleton, cross-subject FA becomes more Gaussian
and of lower variability; hence analyses become more
robust and more sensitive. TBSS has been widely used to
investigate integrity of white matter. Thus, we evaluated
the effects of scanner on DTI measurements mainly using
TBSS.

CONCLUSION

The results of our study indicate that, even with scan-
ners of the exact same model, inter-scanner variability
(bias) significantly affects longitudinal DTI results, and
that scanner upgrade can also affect longitudinal DTI
results. The results of our study indicate that DTI meas-
urements are relatively stable within the same scanner.

Figure 7.

Differences in head position (rotation and translation) between baseline and follow-up scans

(means � standard deviations).
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