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Abstract: Constrained spherical deconvolution (CSD) is a new technique that, based on high-angular
resolution diffusion imaging (HARDI) MR data, estimates the orientation of multiple intravoxel fiber
populations within regions of complex white matter architecture, thereby overcoming the limitations
of the widely used diffusion tensor imaging (DTI) technique. One of its main applications is fiber trac-
tography. The noisy nature of diffusion-weighted (DW) images, however, affects the estimated orienta-
tions and the resulting fiber trajectories will be subject to uncertainty. The impact of noise can be large,
especially for HARDI measurements, which employ relatively high b-values. To quantify the effects of
noise on fiber trajectories, probabilistic tractography was introduced, which considers multiple possible
pathways emanating from one seed point, taking into account the uncertainty of local fiber orienta-
tions. In this work, a probabilistic tractography algorithm is presented based on CSD and the residual
bootstrap. CSD, which provides accurate and precise estimates of multiple fiber orientations, is used to
extract the local fiber orientations. The residual bootstrap is used to estimate fiber tract probability
within a clinical time frame, without prior assumptions about the form of uncertainty in the data. By
means of Monte Carlo simulations, the performance of the CSD fiber pathway uncertainty estimator is
measured in terms of accuracy and precision. In addition, the performance of the proposed method is
compared to state-of-the-art DTI residual bootstrap tractography and to an existing probabilistic CSD
tractography algorithm using clinical DW data. Hum Brain Mapp 32:461–479, 2011. VC 2010 Wiley-Liss, Inc.

Keywords: MRI; high-angular resolution diffusion imaging (HARDI); spherical deconvolution;
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INTRODUCTION

Diffusion-weighted (DW) MRI is a unique and noninva-
sive method to characterize tissue microstructure, based
on the random thermal motion of water molecules [Stej-
skal and Tanner, 1965]. Within the brain white matter,
fiber orientations can be extracted from the DW signal,
opening up the possibility of investigating brain connectiv-
ity in vivo using so called fiber tracking algorithms [Mori
and van Zijl, 2002]. The ability to track the white matter
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pathways of the whole brain from a single in vivo scan
raises possibilities for clinical applications and there has
been a rapid increase in publications using fiber tractogra-
phy in clinical studies [Ciccarelli et al., 2008; Johansen-
Berg and Behrens, 2006].

Currently, diffusion tensor imaging (DTI) is most com-
monly used to extract fiber orientations from the DW signal
[Basser et al., 1994a,b]. However, in voxels containing mul-
tiple fiber orientations, this model has been shown to be
inadequate [Alexander et al., 2002; Frank, 2001, 2002; Tuch
et al., 2002]. Such voxels occur frequently throughout the
white matter due to partial volume effects between adjacent
tracts. A recent study estimated that a third of the white
matter voxels contain complex fiber architecture [Behrens
et al., 2007]. This has important implications for fiber trac-
tography, as most white matter tracts will traverse regions
with multiple fiber orientations at some point along their
path. In such regions, the orientation extracted from the dif-
fusion tensor is unreliable and may cause false negatives, in
which tracking terminates [Behrens et al., 2007], or false
positives, in which tracking switches to an unrelated adja-
cent tract [Pierpaoli et al., 2001].

To address the limitations of the DTI model, a number
of approaches have recently been proposed based on high-
angular resolution diffusion imaging (HARDI) [Anderson,
2005; Behrens et al., 2007; Dell’Acqua et al., 2007; Desco-
teaux et al., 2007; Hosey et al., 2005; Jansons and
Alexander, 2003; Ozarslan et al., 2006; Tuch et al., 2002;
Tuch, 2004]. One of these methods, constrained spherical
deconvolution (CSD), is especially promising as it can
offer a reliable reconstruction of fiber orientation distribu-
tion (FOD) functions within clinically feasible acquisition
settings [Tournier et al., 2004, 2007]. CSD is capable of esti-
mating the FOD within each voxel directly from the
HARDI data, using the concept of spherical deconvolution.
Recent studies, using both simulations and phantom data,
have shown that CSD is able to resolve narrow interfiber
angles [Tournier et al., 2007, 2008].

While HARDI techniques offer an improved estimate of
fiber orientations in the presence of partial volume effects,
DW-MRI is inherently a noisy technique, resulting in
uncertainty associated with each fiber orientation estimate.
This uncertainty is especially important in the context of
fiber tractography. Previous DTI studies have shown that
measurement uncertainty can propagate errors in stream-
lines [Lazar and Alexander, 2003]. To take this uncertainty
into account, probabilistic tractography algorithms were
proposed, which assign a probability to the reconstructed
pathways by considering multiple pathways emanating
from the same seed point. Random vector generation, for
example [Lazar and Alexander, 2002; Parker et al., 2003],
relates the probability of a tract to the number of times it
is reconstructed in a Monte Carlo random walk, where the
characteristics of the random walk are determined by the
properties of the underlying diffusion tensor. In voxels
where there is no anisotropy, the generated vector is com-
pletely random. In anisotropic regions, the orientation

probability is skewed to the axis of longest diffusion. Simi-
lar methods were developed for HARDI-based reconstruc-
tion methods where the characteristics of the random walk
are determined by the shape of the underlying orientation
distribution functions (ODFs). Some of these methods sam-
ple directly from the ODF [Campbell et al., 2005; Desco-
teaux et al., 2009; Perrin et al., 2005; Tournier et al., 2005].
Other methods first map the ODF parameters to the param-
eters of another distribution and take samples from this dis-
tribution during probabilistic tractography in an attempt to
better model the underlying anatomy [Seunarine et al.,
2007]. These approaches, however, have an important
drawback: they assume an ad hoc relationship between the
shape of the diffusion profile and the uncertainty in local
fiber orientation. A more rigorous approach computes the
local fiber orientation uncertainty given the MR data using
a Bayesian model [Behrens et al., 2003, 2007]. While this
method is theoretically sound, it still requires the uncer-
tainty to be modeled and it does not account for artifacts
such as physiological noise and system instabilities.

An alternative to the ad hoc methods is to use the boot-
strap method. This is a nonparametric statistical procedure
that enables one to estimate the uncertainty of a given sta-
tistic, by randomly selecting individual measurements,
with replacement, from a set of repeated measurements,
thus generating many bootstrap realizations of the data.
Each realization provides a random estimate of a given
statistic. By generating a sufficient number of realizations,
one obtains a measure of the uncertainty of a given statis-
tic from the data itself without requiring a priori assump-
tions about the sources of uncertainty [Efron, 1979; Pajevic
and Basser, 2003]. Bootstrapping has previously been com-
bined with DTI tractography to produce probabilistic fiber
trajectories [Lazar and Alexander, 2005; Jones and Pier-
paoli, 2005]. However, in a clinical setting, the amount of
repeated measurements to allow accurate and precise
bootstrapping can render acquisition time unacceptably
long [Jeurissen et al., 2008b; O’Gorman and Jones, 2006].

The problem of long acquisition times can be addressed
using model-based bootstrapping methods [Chung et al.,
2006; Jones, 2008; Whitcher et al., 2008]. This approach
obtains probability distributions for model parameters by
resampling residuals from a model fit (e.g., diffusion ten-
sor fit). The huge advantage of this method is that it does
not require repeated measurements, bringing acquisition
time into the clinical range. Recent work has shown that
the residual bootstrap can accurately estimate the uncer-
tainty in DTI [Chung et al., 2006] and Q-ball Imaging
(QBI) [Berman et al., 2008; Haroon et al., 2009].

In this work, a probabilistic tractography algorithm is
presented based on CSD and the residual bootstrap. Using
CSD to extract local fiber orientations, our algorithm will
overcome partial volume effects associated with DTI and
the poor angular resolution that is achieved with other
HARDI methods such as QBI [Tournier et al., 2008]. Using
the residual bootstrap, we allow fiber tract probability esti-
mation within the clinical time frame, without prior
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assumptions about the form of the uncertainty in the data.
Using Monte Carlo simulations, the accuracy and precision of
the residual bootstrap method when estimating DTI and CSD
fiber pathway uncertainty, is measured. We also apply our
algorithm to clinical DW data and compare our method to
state-of-the-art DTI residual bootstrap tractography [Chung
et al., 2006; Jones, 2008] and to an established probabilistic
multifiber CSD tractography algorithm [Tournier et al., 2005].

Early work of the proposed tractography framework in
this article has been presented at the ISMRM 2009, Hawaii,
USA [Jeurissen et al., 2009].

THEORY

Signal Modeling Using Spherical Harmonics

HARDI acquires the DW signal S in a set of ns gradient
directions {(y,f)} with a constant diffusion weighting b. This
signal can be expressed as a linear combination of the real
spherical harmonics (SH) Ym

l (y,f) of degree l and order m:

Sðh;/Þ ¼
XL

l¼0

Xl

m¼�l

cml Y
m
l ðh;/Þ; (1)

where {cml } denote the harmonic series coefficients, and L is the
maximum harmonic degree [Frank, 2002]. Since the DW signal
exhibits antipodal symmetry, only SH of even degree are con-
sidered. Equation (1) can be expressed as a linear system:

s ¼ Bcþ e; (2)

where B is the ns 3 nc matrix constructed with the real
symmetric SH basis, c is the nc 3 1 vector of even-degree
SH coefficients, s is the ns 3 1 DW signal vector and e is
the noise vector. Since only even degree coefficients are
used, nc = (L 1 1) 3 (L 1 2)/2. The coefficients c can then
be estimated using least-squares minimization:

ĉ ¼ ðBTBÞ�1BTs: (3)

Given (2) and (3), the signal ŝ predicted by the least
squares SH fit to the measured signal s is given as:

ŝ ¼ Hs; (4)

with

H ¼ BðBTBÞ�1BT; (5)

the so-called hat-matrix

Fiber Orientation Estimation Using CSD

From the SH coefficients of the DW signal, the SH coeffi-
cients of the FOD can be calculated using a technique
called spherical deconvolution [Tournier et al., 2004]. This

method assumes that the measured DW signal profile is
given by the spherical convolution of the response func-
tion (the DW signal profile for a typical fiber population)
with the FOD. The desired FOD can thus be estimated by
spherically deconvolving the measured DW signal with
the response function. In the SH framework, the spherical
deconvolution operation can simply be expressed as:

f ¼ R�1c; (6)

where f and c are the nc 3 1 SH coefficient vectors of F(y,f)
and S(y,f), respectively; R is the nc 3 nc rotational harmonic
matrix of R(y,f). The deconvolution operation, however, is
sensitive to noise. Recently, a new technique, called CSD was
proposed which introduces a constraint to minimize the
appearance of negative values in the reconstructed FOD,
which are clearly physically impossible. With this constraint,
it becomes possible to perform the spherical deconvolution
operation with drastically reduced noise sensitivity [Tournier
et al., 2007]. In brief, the method involves the following steps.
First, an initial estimate of the FOD is obtained using a low
SH order spherical deconvolution. Then, a set of directions is
identified, along which the FOD amplitude is negative. This
information is then incorporated as a Tikhonov constraint,
driving the amplitude of the FOD along those orientations to
zero. Finally, an improved estimate of the FOD is obtained
by solving the Tikhonov problem, providing a new set of
negative amplitude directions. The procedure is repeated
until convergence is achieved. A more detailed explanation
of these steps can be found in [Tournier et al., 2007].

In this work, CSD will be used to extract the FOD from
the DW signal in each voxel. The harmonic degree of the
estimated FOD coefficients L will be limited to 8 which
corresponds to the maximum degree one can estimate
directly based on 60 DW images. Moreover, the highest
degree for which significant terms can be found in in vivo
HARDI signal profiles at b 3,000 s/mm2 has been shown
to be 8 [Tournier et al., 2009].

Confidence Estimation Using the Residual

Bootstrap

The signal ŝ is estimated by the least squares SH fit to
the measured signal s as described in the ‘‘Signal Model-
ing Using Spherical Harmonics’’ section. The resulting re-
sidual vector is given as:

ê ¼ s� ŝ: (7)

Next, the raw residuals are corrected for leverage [Davison
and Hinkley, 1999]

êmi ¼ êiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii

p ; (8)

with hii the i-th diagonal entry in the hat matrix H (5).
Then, the values from êm are randomly chosen with
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replacement to form a new bootstrapped residual ê�.
Finally, the bootstrapped residual is added back to the sig-
nal fit, to create a synthetic bootstrap realization ŝ* of the
DW signal:

ŝ� ¼ ŝþ ê� (9)

We can then refit the SH model using ŝ
�
and further pro-

cess it using CSD. By repeating this procedure Nb times,
we obtain Nb estimates of the FOD and the associated
peak orientations, which can be used to estimate the repro-
ducibility of the reconstructed fiber trajectories.

MATERIALS AND METHODS

Fiber Tractography

Standard DTI streamline tractography [Basser et al.,
2000] was adapted to work for CSD. The resulting algo-
rithm can be summarized as follows. Fiber tracking is
started at a given seed point. First, the DW signal at the
current position of the trajectory is obtained using trilinear
interpolation. Next, the FOD is estimated using CSD as
detailed in the ‘‘Fiber Orientation Estimation Using CSD’’
section. Then, the FOD peak direction that is closest to the
previous stepping direction is extracted (Newton optimiza-
tion on the sphere). Finally, the trajectory is advanced by a
fixed step size along the obtained direction. Tracking is
ended when the FOD peak intensities are beneath a fixed
threshold, a maximum angle is exceeded, or the tract
leaves a specified brain mask. As an informative example,
Figure 1 displays deterministic CSD trajectories at the
crossing of commissural (the corpus callosum, CC), associ-
ation (the superior longitudinal fasciculus, SLF) and pro-
jection fibers (the corticospinal tract, CST) along with the
associated diffusion tensor ellipsoids and CSD FODs.

Note that we choose to interpolate on the raw DW sig-
nal rather than on the SH coefficients of the FOD. Since
CSD is a nonlinear operator, in theory, interpolating line-
arly is only justified in the signal domain (raw DW signal)
and not in the frequency domain (SH coefficients). In prac-
tice, however, the SH coefficients of the FOD are almost
linearly related to the signal, so similar results could be
obtained by interpolating on the SH coefficients of the
FOD.

Using the bootstrap method detailed in the ‘‘Confidence
Estimation Using the Residual Bootstrap’’ section, this
algorithm can be extended into a probabilistic one. First,
Nb bootstrap realizations are generated from the measured
DW dataset. Then, the above deterministic algorithm is
run separately on each generated dataset, producing Nb

tracts emanating from the same seed point. This algorithm
will be referred to as ‘‘CSD residual bootstrap
tractography.’’

Finally, visitation maps can be generated by assigning to
each voxel the number of bootstrapped trajectories that
pass through it [Jones and Pierpaoli, 2005].

Note, that by extracting the peaks with a bootstrap proce-
dure, we are implicitly estimating a new, sharper FOD,
with the underlying assumption that the fiber orientations
are discrete (i.e., delta functions), as in [Behrens et al., 2007;
Hosey et al., 2005]. In fact, we are estimating a new FOD
that accounts for uncertainty in the data and has the under-
lying assumption of ‘‘sparsity’’ of the fiber orientations.

Unless specified, the following tractography parameters
were used in this work: a step size of 1 mm, a minimum
FOD peak intensity of 0.1 and a maximum angle between
two consecutive steps of 30�. The 0.1 FOD threshold was a
trade-off between sensitivity and specificity. Increasing the
threshold reduced the likeliness of false positives, but at
the cost of missing small fiber populations. Decreasing the
threshold facilitated tracking through regions with small
fiber populations, but at the cost of many spurious fibers.

We compared our method with two other tractography
algorithms: The first one, which will be referred to as ‘‘DTI
residual bootstrap tractography,’’ is very similar to our
method, but uses the diffusion tensor model to estimate
the local fiber orientations and to perform the residual
bootstrap [Chung et al., 2006; Jones, 2008]. The FA thresh-
old used in this method was 0.1.

The second one, which will be referred to as ‘‘CSD FOD
sampling tractography,’’ generates probabilistic fiber orien-
tations by taking samples directly from the FODs using a
rejection sampling scheme [Tournier et al., 2005, http://
www.nitrc.org/projects/mrtrix/]. The same parameters as
for the CSD residual bootstrap tractography were used.
Note that, in contrast to the CSD residual bootstrap algo-
rithm, this method does not assume that the fiber orienta-
tions are discrete, but instead tries to account for
uncertainty due to the FOD shape itself, which is assumed
to represent the underlying anatomical dispersion.

Simulations

In a previous study we showed, using numerical simu-
lations, that the residual bootstrap realizations of local
CSD fiber orientation (at the voxel level) accurately repre-
sent the true uncertainty in fiber orientation [Jeurissen
et al., 2008a]. We also showed that the residual approach
does not introduce a bias in the residual bootstrap realiza-
tions of CSD fiber orientations. In this work, the uncer-
tainty of global fiber trajectories (at the dataset level) was
estimated by means of probabilistic tractography based on
the residual bootstrap. Using a numerical phantom [Lee-
mans et al., 2005], the accuracy and precision of the resid-
ual bootstrap for both DTI and CSD probabilistic
tractography was measured.

Two properties of the probabilistic tracts were studied:
fiber dispersion and success rate. Fiber dispersion of a set
of probabilistic trajectories was defined as described in
[Lazar and Alexander, 2005]. This method takes regular
steps along the true noiseless trajectory and computes
planes that are perpendicular to the tangent vector. The
spatial locations of the intersection of each trajectory with
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the plane are determined and the distribution of these
locations is characterized using principal component anal-
ysis. This yields two dispersion measures, k1 and k2, indi-
cating the amount of fiber spread along the principal axes
of dispersion in this transverse plane. Success rate was
defined as the number of trajectories that successfully

reached each plane. Using Monte Carlo simulations, dis-
persion and success rate of gold standard CSD, gold
standard DTI, CSD residual bootstrap and DTI residual
bootstrap trajectories were compared. For comparison, we
also studied the dispersion and success rate of the CSD
FOD sampling method.

Figure 1.

Example of a crossing fiber region. (a) Deterministic CSD tractography of corpus callosum (red),

superior longitudinal fasciculus (yellow), and corticospinal tract (blue); (b) detail of (a); (c) DTI

ellipsoids; (d) CSD FODs. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Gold standard

A noiseless DW dataset was simulated as in [Leemans
et al., 2005]. In this framework, diffusion tensor profiles
with different orientations are combined to simulate the
noiseless DW signal for a multifiber voxel:

SðuÞ ¼
XN

i¼1

fiS0e
�buDiu

T

with
XN

i¼1

fi ¼ 1: (10)

The fractions fi (i 1, : : : ,N) represent the relative contri-
bution of the i-th fiber orientation along unit direction u.
The non-DW signal, S0, was set to 1 without loss of gener-
ality. Individual diffusion tensors Di (i 1, : : : ,N) had a
fractional anisotropy (FA) of 0.8 and a mean apparent dif-
fusion coefficient (ADC) of 4 � 10�4 mm2/s (average value
measured at the corpus callosum in the real HARDI data-
set below). The diffusion weighting b was set to 3000 s/
mm2. Sixty diffusion encoding gradient directions were

used, distributed evenly on the half sphere [Jones et al.,
1999]. Voxel size was 2.4 � 2.4 � 2.4 mm3. This setup cor-
responds to a realistic and clinically feasible HARDI acqui-
sition. The simulated data set contained three fiber
bundles with a crossing arrangement as shown in Figure
2a. Figure 2b–e shows the corresponding DTI ellipsoids
and CSD FODs that can be found in the phantom. Rician
noise was added to the noiseless dataset to generate 10,000
noisy datasets. The SNR in the individual datasets was 30
within the b 0 s/mm2 images, which is clinically feasible.
Note that all subsequent SNR values are defined on the
images without diffusion weighting, since SNR in the DW
images depends on the amount of diffusion and its orien-
tation. In the DW images, the average SNR is approxi-
mately 5. To show how the tracts behave at different noise
levels, we repeated our simulation experiment for lower
SNR values: 25, 20, and 15. For each dataset, CSD tractog-
raphy was started from a fixed seed point (red dot), result-
ing in 10,000 gold standard probabilistic tracts (Fig. 3b).

Figure 2.

Simulation of DW data. (a) Simulated fiber arrangement; (b) noiseless DTI ellipsoids; (c) noise-

less CSD FODs; (d) noiseless DTI ellipsoids at crossing; (e) noiseless CSD FODs at crossing.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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For reference, 10,000 DTI tractography runs were also per-
formed (Fig. 3a).

Residual bootstrap

Starting from a single noisy simulated dataset, Nb 1000
trajectories were calculated using the probabilistic tractog-
raphy method as detailed in the ‘‘Fiber Tractography’’ sub-
section (Fig. 3d). For reference, Nb 1000 DTI residual
bootstrap tractography runs were also generated (Fig. 3c).
The above procedure was repeated 50 times to calculate the
mean and the standard deviation of the dispersion values.

FOD sampling

Starting from a single noisy simulated dataset, Ns 1000
trajectories were sampled from the CSD FODs as detailed
in the ‘‘Fiber Tractography’’ section (Fig. 4d). The above
procedure was repeated 50 times to calculate the mean
and the standard deviation of the dispersion values.

Real Data

Whole-brain HARDI data were acquired from a healthy
adult volunteer on a General Electric 3T HDx Signa sys-
tem. An eight-channel head coil with parallel imaging fac-
tor of 2 was used to acquire twice-refocused spin echo
echoplanar images with TE 109 ms and 2.4 � 2.4 � 2.4
mm3 voxel size (FOV 23 � 23 cm2, 96 � 96 acquisition ma-
trix, NEX 1, partial Fourier encoding with 16 overscans
before the center of k, 60 slices with 2.4-mm thickness
with no gap). Diffusion gradients were applied in 60 direc-
tions uniformly distributed on a sphere through electro-
static repulsion [Jones et al., 1999] with b 3000 s/mm2. Six
images with b 0 s/mm2 were also acquired. Cardiac gating

was applied using a peripheral pulse oximeter with an
effective TR 20 R-R intervals. Total scan time was approxi-
mately 20 min. Motion distortion correction was applied
taking into account the B-matrix rotation [Leemans and
Jones, 2009] and the tensor model was fitted to the data
using a weighted (anisotropic covariance matrix) linear
regression method [Basser et al., 1994a]. These processing
steps were performed with the diffusion MR toolbox
ExploreDTI (http://www.ExploreDTI.com) [Leemans et al.,
2009]. SNR within the b 0 s/mm2 images was approxi-
mately 30, calculated using the difference method to com-
pensate for geometric noise variations in parallel images
[Dietrich et al., 2007]. The subject gave written informed
consent to participate in this study under a protocol
approved by the Cardiff University Ethics Committee.

Using the guidelines in [Catani and Thiebaut de Schot-
ten, 2008], seed points (shown as red dots) were selected
at the core of three well known fiber tracts for which DTI
is assumed to perform well (i.e., no fiber crossings): the
corpus callosum, the cingulum and the fornix (Fig. 5a–i).
Next, all three tractography methods were started in the
predefined seed points. Fiber dispersion was calculated as
explained in the ‘‘Simulations’’ subsection, using the deter-
ministic DTI trajectory as reference trajectory. Fiber disper-
sion was only calculated in the segment of the reference
trajectory where both DTI and CSD reported 75% success
rate to avoid too much artificial drop in fiber dispersion
due to spurious fibers terminating early.

Next, seed points were placed close to the crossing of
the CC, the SLF and the CST1 and all three tractography

Figure 3.

Simulations of probabilistic tractography at SNR 30: trajectories from a single seed point (red

dot). (a) Gold standard DTI; (b) gold standard CSD; (c) DTI residual bootstrap; (d) CSD resid-

ual bootstrap; (e) CSD FOD sampling. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

1Here, we refer to CST as the collection of fiber pathways that travel
between the cerebral cortex and the spinal cord. Note that only a part
of the CSTwas reconstructed, as we used only one seed voxel.
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methods were started from those seed points. In these
regions, dispersion values could no longer be measured
objectively as explained in the ‘‘Simulations’’ subsection,

since both algorithms are now expected to follow different
paths as suggested by the plot of the DTI ellipsoids in Fig-
ure 1c. Instead, visitation maps were generated by

Figure 4.

Simulations of probabilistic tractography at SNR 30: fiber disper-

sion and success rate versus arc length from seed point. k1 is

the dispersion along the major axis of dispersion; k2 is the dis-

persion along the minor axis of dispersion. (a–c) Gold standard

DTI versus CSD; (d–f) gold standard DTI versus residual boot-

strap; (g–i) gold standard CSD versus residual bootstrap; (j–l)

CSD residual bootstrap versus CSD FOD sampling. The shaded

area represents the 95% confidence interval of the mean. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 5.

Probabilistic tractography in corpus callosum (first column), cing-

ulum (second column), and fornix (third column). (a–c) DTI re-

sidual bootstrap trajectories; (d–f) CSD residual bootstrap

trajectories; (g–i) CSD FOD sampling trajectories; emanating

from a single seed point (red dot); (j–l) fiber dispersion along

major axis of dispersion; (m–o) fiber dispersion along minor axis

of dispersion. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Figure 6.

Probabilistic tractography of the superior (first three rows) and

lateral projections (last three rows) of the corpus callosum: trajec-

tories emanating from a single seed point (red dot) (first column)

and maximum intensity projections of their associated visitation

maps (last three columns). (a–d, m–p) DTI residual bootstrap;

(e–h, q–t) CSD residual bootstrap; (i–l, u–x) CSD FOD sampling.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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assigning to each voxel the number of trajectories that
pass through it [Jones and Pierpaoli, 2005] and the maps
were qualitatively compared (Figs. 6–8).

RESULTS

Simulated Data

Figure 3a shows 1000 gold standard DTI fiber tracts
emanating from the same seed point (red dot), superim-
posed on an FA map. When the tracts enter regions of
crossing fibers (low FA), there is considerable increase in
tract dispersion due to partial volume effects. At the sec-
ond fiber crossing, these tracts even disperse into the
crossing tract. Figure 3b shows the corresponding CSD
tracts, having no bifurcations and much smaller tract dis-
persion. Figure 3c displays Nb 1000 tracts generated by
DTI residual bootstrap tractography (starting from a single
noisy measurement), showing an additional tract disper-
sion in the event of partial volume effects. Figure 3d

shows the corresponding CSD residual bootstrap tracts,
which are in close agreement with the gold standard ones
from Figure 3b. Figure 3e displays Ns 1000 tracts gener-
ated by CSD FOD sampling tractography (starting from a
single noisy measurement), showing a very large overall
dispersion, even in regions without partial volume effects.
At the fiber crossings, some tracts disperse into the cross-
ing tracts.

To explore this in more detail, Figure 4, plots fiber dis-
persion values k1 and k2 and the success rate as a function
of arc length along the trajectory, for gold standard DTI
(blue line), gold standard CSD (green line), the mean re-
sidual bootstrap approximation (red line), and the CSD
FOD sampling tractography. The shaded red area repre-
sents a 95% confidence interval for the mean.

From Figure 4a, it is clear that gold standard DTI trajec-
tories undergo heavy k1 dispersion in case of partial volu-
ming (around 30 and 60 mm from the seed point). This is
due to the disc shaped diffusion tensors which have no
well defined largest eigenvector. Gold standard CSD

Figure 7.

Probabilistic tractography of the superior longitudinal fasciculus: trajectories emanating from a

single seed point (red dot) (first column) and maximum intensity projections of their associated

visitation maps (last three columns). (a–d) DTI residual bootstrap; (e–h) CSD residual boot-

strap; (i–l) CSD FOD sampling. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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Figure 8.

Probabilistic tractography of the corticospinal tract: trajectories emanating from a single seed

point (red dot) (first column) and maximum intensity projections of their associated visitation

maps (last three columns). (a–d, m–p) DTI residual bootstrap; (e–h, q–t) CSD residual boot-

strap; (i–l, u–x) CSD FOD sampling. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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trajectories on the other hand are much less sensitive to k1
dispersion in the event of partial voluming. For k2, both
gold standard DTI and CSD trajectories, show similar dis-
persion, though dispersion for gold standard CSD is
slightly lower (Fig. 4b). This can be explained by the fact
that while the disc shaped diffusion tensors have high
uncertainty associated with the largest eigenvector, the
disc shape does not allow them to disperse out of the
plane. Finally, gold standard CSD achieves 100% success
rate along the entire phantom, whereas gold standard DTI
success rate drops significantly at each fiber crossing (Fig.
4c).

Figure 4d,e shows that the DTI residual bootstrap trac-
tography algorithm accurately estimates gold standard
DTI fiber dispersion, as long as the tensor model holds
(before 30 mm). In the event of partial volume effects,
however, there is a large positive bias in the fiber disper-
sion estimated by DTI residual bootstrap. Figure 4g,h, on
the other hand, shows that the bootstrap estimates of CSD
fiber dispersion (both k1 and k2) are very close to the gold
standard, even in the event of partial voluming. Figure 4i
reports 100% success rate for the CSD residual bootstrap,
whereas DTI residual bootstrap tractography results in
additional fiber termination, due to dispersing tracts (Fig.
4f).

Figure 4j,k shows that the CSD FOD sampling fiber dis-
persion measures (both k1 and k2) are rapidly increasing
even in perfectly aligned fiber structures. Because of this
large degree of dispersion, more trajectories are stopping
as the tracts move further away from the seed point (Fig.
4l).

Additional simulations at other SNR levels (see Fig. 9),
show that the uncertainty estimates of the CSD residual
bootstrap are very close to the gold standard uncertainty
for a wide range of SNR levels (Fig. 9g–i). The plots also
show that the residual bootstrap dispersion increases with
decreasing SNR, indicating less confidence in the trajecto-
ries (Fig. 9g–i). Dispersion of the CSD FOD sampling trac-
tography, however, remains almost constant for different
SNR levels and is much higher than for the residual boot-
strap (Fig. 9j–l).

Real Data

Figure 5 shows probabilistic fiber trajectories and their
associated dispersion for DTI residual bootstrap (blue),
CSD residual bootstrap (green), and CSD FOD sampling
tractography (magenta), for three well-defined fiber bun-
dles. While both DTI and CSD residual bootstrap pro-
duced very similar reconstructions of all three tracts (Fig.
5a–f), higher fiber dispersion values were observed for
DTI residual bootstrap tractography in all three tracts (Fig.
5j–o). Looking at the CSD FOD sampling tractography
results, there is generally a much higher degree of disper-
sion, resulting in spurious fibers as we move further away
from the seed point (Fig. 5g–i). Even close to the seed
point, where the FODs are very sharp and aligned, very

high dispersion is measured (Fig. 5j–o). Also notice that a
very high dispersion rate was recorded at the base of the
corpus callosum (Fig. 5j,m), which is the region with the
most sharp and well-aligned FODs in the brain.

Figures 6–8 show individual probabilistic fiber trajecto-
ries and maximum intensity projections of the visitation
maps in the region with complex fiber architecture.

Figure 6a–h shows both DTI and CSD residual bootstrap
tractography are able to reconstruct the superior projec-
tions of the CC, when placing the seed point high in the
CC at the midsagittal plane. DTI trajectories, however,
show much more dispersion in the cortical region. Figure
6m–t shows that CSD residual bootstrap tractography is
able to reconstruct the lateral projections of the CC, when
placing the seed point low in the CC at the midsagittal
plane. DTI residual bootstrap tractography on the other
hand is not able to find these lateral projections (false neg-
atives) and instead switches to the superior projections
and to the tail of caudate nucleus (false positives). Looking
at the FOD sampling tractography results (Fig. 6i–l,u–x),
there is generally a much higher degree of dispersion,
especially as the tracts move further away from the seed
point. Placing the seed point high in the CC, most of the
trajectories follow the superior projections, and some tra-
jectories also follow the lateral projections (Fig. 6i–l). Plac-
ing the seed point low in the CC, the trajectories follow
both the superior and lateral projections (Fig. 6u–x) but
some trajectories switch to the CST and the SLF (false
positives).

Figure 7 shows CSD residual bootstrap tractography is
able to reconstruct a well defined path through the SLF
(Fig. 7e–h). DTI residual bootstrap tractography on the
other hand shows a mixture between the true SLF, the
CST and the external capsule (Fig. 7a–d). CSD FOD sam-
pling tractography shows a mixture between the true SLF,
the CST, and the external capsule (false positives) and
there is generally a much higher degree of dispersion (Fig.
7i–l).

Figure 8a–h shows that CSD residual bootstrap tractog-
raphy is able to reconstruct the CST running all the way
from the cortex to the spine. DTI residual bootstrap trac-
tography results are very similar, even in the region of
crossing fibers. However, placing the seed point on a dif-
ferent location in the CST caused DTI residual bootstrap to
switch to the CC and track into the opposite hemisphere,
whereas CSD residual bootstrap was still able to recon-
struct the CST without false positives (Fig. 8m–t). Looking
at the CSD FOD sampling tractography results (Fig. 8i–l,u–
x), there is generally a much higher degree of dispersion,
especially as the tracts move further away from the seed
point. In both cases, CSD FOD sampling tractography is
able to reconstruct the CST running all the way from the
cortex to the spine. However, the trajectories also switch
to other structures: fibers projecting from the region of the
thalamus to the frontal cortex (Fig. 8k), CC (Fig. 8v) and
fibers projecting to the cerebellum (Fig. 8k,w) (false
positives).
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Figure 9.

Simulations of probabilistic tractography at SNR 25 (first col-

umn), 20 (second column), and 15 (third column): fiber disper-

sion k1 along major axis of dispersion versus arc length from

seed point (k2 and success rate similar but not shown). (a–c)

Gold standard DTI versus CSD; (d–f) gold standard DTI versus

residual bootstrap; (g–i) gold standard CSD versus residual

bootstrap; (j–l) CSD residual bootstrap versus CSD FOD sam-

pling. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Figure 10 shows plots of the DTI ellipsoids (transparent)
and the corresponding principle orientations (white lines)
along with the CSD FODs in the regions where probabilis-
tic DTI tractography suffers from partial volume effects.
The transparent blue arrow represents the most likely DTI
trajectory, while the green arrow represents the most likely
CSD trajectory.

Notice that when the seed point is placed high enough
in the CC, CSD, and DTI will produce similar trajectories,
i.e., the superior projections of the CC (Fig. 10a). If the
seed point is placed lower in the CC, CSD will produce
the lateral projections of the CC, but DTI will produce
false positives (Fig. 10b).

For the SLF, the dominant fiber orientations of the CST
force the DTI trajectories to curve downwards, while the
CSD trajectories are allowed to follow a much straighter
pathway (Fig. 10c).

In regions where the CST is the dominant fiber orienta-
tion, the fiber trajectories are the same for both DTI and
CSD (Fig. 10d). However, in some regions, dominant
crossing fibers skew the principle diffusion orientations
towards adjacent tracts such as the CC (Fig. 10e).

DISCUSSION

In this work, a new probabilistic tractography algorithm
was proposed, based on CSD and the residual bootstrap.
By using CSD, multiple intravoxel fiber populations could
be resolved, allowing our method to confidently track
through regions of complex fiber architecture. The residual
bootstrap allowed us to estimate local fiber uncertainty to
derive global probabilistic tracts.

The use of CSD over other popular HARDI methods
such as Q-ball imaging (QBI) was motivated by a recent
study showing that CSD is able to estimate multiple intra-
voxel fiber orientations more accurately than QBI [Tour-
nier et al., 2008]. The study showed a bias in the fiber
orientations obtained with QBI, for crossing angles smaller
than 90�, which may have adverse effects on fiber-tracking
results derived using this method [Berman et al., 2008;
Haroon et al., 2009]. Also angular resolution was shown to
be higher for CSD, which allows resolving smaller inter-
fiber angles.

The residual bootstrap allowed us to estimate fiber ori-
entation uncertainty without prior assumptions about the
form of uncertainty in the data, overcoming the limitations
of ad hoc-methods, which assume an ad hoc relationship
between the shape of FOD and the uncertainty in fiber ori-
entation [Campbell et al., 2005; Descoteaux et al., 2009; Per-
rin et al., 2005; Tournier et al., 2005]. The huge advantage
over methods employing the classic bootstrap is that it does
not require the collection of extra data, bringing acquisition
time into the clinical realm. Since our bootstrap approach
uses a SH fit of the DW signal itself, the results are com-
pletely general and applicable to other HARDI methods
than spherical deconvolution [Tournier et al., 2009].

Numerical simulations of complex fiber architecture
showed that our probabilistic algorithm accurately esti-
mates CSD fiber trajectory uncertainty (Fig. 4g–i) and that
it is superior to DTI residual bootstrap tractography in
terms of false positives (fiber dispersion) and false nega-
tives (fibers stopping) (Fig. 4d–f). The improvement by
moving from DTI to CSD is two-fold. First, CSD allows a
more accurate estimation of the local fiber orientations in
regions of complex fiber architecture. Second, our method
allows more accurate estimation of the uncertainty associ-
ated with these orientations. Indeed, in regions where the
DTI model does not hold, DTI does not only suffer from
errors in the estimation of fiber orientations (Fig. 4a–c), it
also results in erroneous residual bootstrapping (Fig. 4d–
f), since the residuals from the diffusion tensor fit no lon-
ger match the true noise characteristics of the data.

An important remark is that the residual bootstrap dis-
persion measures reported in this study are not to be con-
fused with anatomical dispersion values. Instead, the
residual bootstrap is measuring dispersion due to noise.
Bootstrap dispersion should be viewed as a measure of
robustness for the tractography algorithm (e.g., CSD
streamline tractography) and a measure for data quality.
While data with higher SNR or a more robust tractogra-
phy algorithm will reduce fiber dispersion, it will certainly
not change the actual anatomical dispersion present in the
brain. This is in contrast with the CSD FOD sampling dis-
persion. Here, the sampling procedure tries to account for
uncertainty in the FOD itself. While this approach allows
tracts to fan out more, possibly allowing a better result in
structures with extensive fanning (such as the CST), this
approach has some limitations. To begin with, it is very
difficult to relate the shape of the FOD to the underlying
anatomical dispersion. For example: a noiseless delta peak
FOD will already have an intrinsic width related to its SH
order (see Fig. 11). Sampling from this FOD will result in
dispersion that is not anatomically meaningful. So while
this method will allow tracts to fan out more, it does so in
great part regardless of their actual anatomical dispersion.
This can be appreciated from our simulation experiments
(Fig. 4j–k), where perfectly aligned high amplitude FOD’s
produce very dispersed trajectories. A practical example of
this deficiency is that some of the highest FOD sampling
dispersion measures were recorded at the base of the cor-
pus callosum (Fig. 5j,m), which paradoxically is the region
with the most sharp and well-aligned FODs in the brain.
The reason is that the high FOD amplitudes and the large
extent of the CC allow the FOD sampling method to dis-
perse ‘‘freely.’’ Second, because this method allows the tra-
jectories to disperse more, it is more susceptible to false
positives and thus less specific.

Judging from the tractography results on the experimen-
tal data, the problem of DTI in regions of fiber crossings is
obvious. DTI residual bootstrap was unable to identify the
lateral projections of the corpus callosum (false negatives)
and instead reported the superior projections and portions
of the nearby caudate nucleus (false positives) (see Fig. 6).

r Probabilistic Fiber Tracking with CSD r

r 475 r



Figure 10.

Partial volume effects of DTI in more detail: FA maps with DTI ellipsoids (transparent), first

eigenvectors (white lines) and CSD FODs for the trajectories in Figures 6–8. The arrows are a

schematic representation of the probabilistic DTI (blue) and probabilistic CSD (green) trajectories.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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It was also unable to reconstruct the correct path for the
superior longitudinal fasciculus and switched to the corti-
cospinal tract and external capsule instead (see Fig. 7).
These errors are all caused by partial volume effects, as
can be appreciated from the DTI ellipsoids and CSD FODs
in Figure 10. These results show that residual bootstrap
tractography in itself does not solve the crossing fibers
issue and that a HARDI approach is required. DTI resid-
ual bootstrap tractography of the corticospinal tract, how-
ever, produced an anatomically plausible trajectory from
the first seed point, even in the region of crossing fibers
(Fig. 8a–h). The reason DTI did not fail here, is that the
corticospinal tract is the dominant fiber population in this
region, causing the principal axes of the diffusion tensors
to be skewed towards its orientation. Since the orientation
of the CST is nearly perpendicular to the orientation of the
crossing structures, the orientation of the first eigenvector
is almost perfectly aligned with the true fiber orientation
(Fig. 10d). Starting from another seed point, however, does
result in false negatives and false positives (Fig. 8m–t),
again due to partial volume effects (Fig. 10e).

The CSD residual bootstrap tractography results are
promising: the method was able to consistently reconstruct
the lateral projections of the corpus callosum (see Fig. 6),

the superior longitudinal fasciculus (see Fig. 7), and the
corticospinal tracts (see Fig. 8) and was less prone to dis-
persion in low FA regions than its DTI counterpart.

In regions where DTI and CSD produced similar trajec-
tories (i.e., regions without too much partial volume
effects), dispersion measures were consistently lower for
CSD residual bootstrap than for its DTI counterpart (see
Fig. 5). This may be counterintuitive, since CSD estimates
far more parameters than DTI (45 instead of 6) and one
might expect higher dispersion when using CSD. How-
ever, CSD is using a nonnegativity constraint, effectively
reducing the noise in the FODs, making it more reproduci-
ble than the unconstrained diffusion tensor fit. Addition-
ally, even in relatively homogenous fiber structures, small
partial volume effects will introduce small errors in the DTI
fit, causing the residual bootstrap to overestimate trajectory
dispersion. Although these effects are small, they will be
important during tractography due to propagation of errors.
Not only does the diffusion tensor model result in false
positives and false negatives in regions of crossing fibers, it
is also generally more prone to dispersion than CSD.

One limitation of our method is that it does not explic-
itly handle fanning fiber configurations. The fanning
problem is a deficiency of tracking algorithms in general,

Figure 11.

Simulation of a delta function FOD without noise (first column), with low noise (second column)

and with high noise (third column): 2D polar histogram of the FOD samples (top row) and the

bootstrap samples (bottom row) for different noise levels. Note that the bootstrap histogram

uses a different scaling of the axes than the FOD sampling histogram. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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since the FOD itself cannot differentiate between fanning,
bending, or acute fiber crossing angles, even in the ideal
case without noise. Usually, this is handled with addi-
tional explicit (somewhat ad hoc) processing methods,
typically by using shape characteristics of the FOD [Seu-
narine et al., 2007] or by including local neighborhood in-
formation [Savadjiev et al., 2008]. We do not address this
deficiency in our CSD residual bootstrap algorithm,
although we acknowledge that it is an outstanding problem.

CONCLUSION

We have presented a new probabilistic tracking algo-
rithm based on CSD and the residual bootstrap that accu-
rately estimates fiber trajectory uncertainty in regions of
complex fiber architecture, without prior assumptions
about the form of uncertainty in the data and using only a
single acquisition, making the technique clinically feasible.
By performing simulations and presenting real data exam-
ples, we have clearly demonstrated the advantages of CSD
residual bootstrap over DTI residual bootstrap probabilis-
tic tractography: in regions of multiple fiber orientations,
CSD is much less prone to fiber dispersion, false positives,
and false negatives. We have also shown the advantages
of our method over CSD FOD sampling tractography: in
regions of well ordered and sharp peak orientations, our
method does not suffer from unrealistically high disper-
sion and our method has a higher specificity in general.
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