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Abstract: Objective: Synchronization between distributed rhythms in the brain is commonly assessed
by estimating the synchronization strength from simultaneous measurements. This approach, however,
does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical
model is required. Based on the assumption that the recorded rhythms can be described as weakly
coupled oscillators, we propose a method for characterizing their phase-interaction dynamics. Methods:
We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscilla-
tors. Based on this model, the phase interactions between simultaneously recorded signals are charac-
terized by estimating the modulation in instantaneous frequency as a function of their phase
difference. Furthermore, we mathematically derive the effect of volume conduction on the model and
show how indices for strength and direction of coupling can be derived. Results: The methodology is
tested using simulations and is applied to ongoing occipital–frontal MEG oscillations of healthy sub-
jects in the alpha and beta bands during rest. The simulations show that the model is robust against
the presence of noise, short observation times, and model violations. The application to MEG data
shows that the model can reconstruct the observed occipital–frontal phase difference distributions. Fur-
thermore, it suggests that phase locking in the alpha and beta band is established by qualitatively dif-
ferent mechanisms. Conclusion: When the recorded rhythms are assumed to be weakly coupled
oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to
reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation
for observed phase locking. Hum Brain Mapp 32:1161–1178, 2011. VC 2011 Wiley-Liss, Inc.
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INTRODUCTION

Throughout the mammalian nervous system, a wide va-
riety of electrical rhythms can be recorded on different
spatial and temporal scales. These rhythms and their inter-
actions are known to be involved in a wide variety of cog-
nitive and behavioral tasks [Buzsaki, 2006]. In spite of
many studies aiming to relate neuronal oscillations to
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cognitive and behavioral parameters, there is still no con-
sensus on how neuronal oscillations encode information
and how they fulfill their functional roles. An important
task in this context is to characterize the phase-interaction
dynamics of spatially separated neuronal rhythms.

Current research on this issue is mainly conducted along
two lines: the analysis of computational models [Deco
et al., 2008] and the analysis of experimental data [Le Van
Quyen and Bragin, 2007]. In the present study, we com-
bine these two approaches by modeling ongoing cortical
rhythms as weakly coupled self-sustained oscillators.
Under this assumption, a phase-interaction model can be
fitted to experimental observations [Rosenblum and Pikov-
ski, 2001; Rosenblum et al., 2006]. These models have been
applied successfully to physiological data, for example, to
elucidate the dynamical mechanisms behind cardiorespira-
tory coupling [Rosenblum et al., 2002]. In this study, we
apply them to ongoing cerebral oscillations as measured
with MEG.

In this study, a specific version of the general phase-
interaction model [Rosenblum et al., 2006] is used for
spontaneous MEG data, and an estimation method for this
model is proposed. The performance of the method is
tested using numerical simulations and the effects of
model violations are explored. We formally describe the
effect of volume conduction on the fitted models. The
method is applied to human MEG recordings to study
the phase-interaction dynamics between ongoing occipital
and frontal oscillations in the alpha and beta bands of
healthy human subjects during an eyes-closed resting state.

MATERIALS AND METHODS

Modeling Phase Interactions

Data model

To investigate whether the electrical activity between
two brain regions is synchronized, it is customary to com-
pute indices from simultaneously recorded signals that
quantify to what extent the signals are coordinated
[Lachaux et al., 1999]. In particular, coordination between
the phases of the recorded signals is measured by quanti-
fying the extent to which the distribution of instantaneous
phase differences deviates from a flat distribution [Pereda
et al., 2005; Tass, 1998]. In this study, we aim at a data-
driven model for the instantaneous phases of the recorded
signals that can explain the observed distribution of phase
differences.

To describe the model, we need some terminology. The
instantaneous phase of an oscillatory signal x(n) (n ¼
1, : : : ,N) is a signal ux(n), such that x(n) ¼ Ax(n)cosux(n)
for a constant or slowly varying signal Ax(n), the instanta-
neous amplitude of the signal. The relative phase w(n)
between x(n) and y(n) is defined as the difference between
their instantaneous phases: w(n) ¼ ux(n) � uy(n) [Pikovski

et al., 2001]. The instantaneous frequency of x(n) in Hertz is
defined as the scaled time difference

Dux

Dt
ðnÞ ¼ uxðnþ 1Þ � uxðnÞ

2pDt
; (1)

and similarly for y(n), where Dt is the sampling period in
seconds. We model the dynamics of the instantaneous
phases by the following two coupled equations:

Dux

Dt
ðnÞ ¼ MxðwðnÞÞ þ nxðnÞ; (2)

Duy

Dt
ðnÞ ¼ MyðwðnÞÞ þ nyðnÞ: (3)

In these equations, Mx and My are the modulation func-
tions, which are 2p periodic, and the terms nx(n) and ny(n)
are the zero-mean noise processes. The modulation func-
tions describe how the relative phase modulates the in-
stantaneous frequencies of both signals. Although there
exist more general phase-interaction models [Rosenblum
et al., 2006], in Appendix A we show that the earlier
model is general enough for applications to spontaneous
MEG oscillations.

Synchronization behavior

A system satisfying Eqs. (2) and (3) can display three
different kinds of dynamical behavior [Pikovski, 2001]: (i)
When the oscillators are uncoupled, that is, when Mx and
My are constant, both systems oscillate at their intrinsic
frequencies and their relative phase rotates with constant
speed. As a consequence, the distribution of the relative
phase is flat. (ii) When the oscillators are strongly coupled,
they lock their phases and oscillate at a common fre-
quency, and the relative phase is constant. As a conse-
quence, the distribution of the relative phase concentrates
in one point. (iii) When the coupling strength is intermedi-
ate, the oscillators influence each other but do not lock
their phases entirely. The natural frequencies of the oscilla-
tors are modulated by their relative phase. As a conse-
quence, the distribution of the relative phase is peaked,
but the peak is smeared out over the interval [0,2p]. Situa-
tion (iii) is called intermittent and occurs when the oscilla-
tors are on the edge of synchrony. The modulation
functions Mx and My can only be estimated when the sys-
tem is intermittent.

Distribution of phase differences

Coupled oscillations can interact in different ways and still
give rise to the same distribution of relative phases. To illus-
trate this, we consider Eqs. (2) and (3) with Mx(w) ¼ 10.2 �
cx sin(w) and My(w) ¼ 9.8 þ cy sin(w) for four different pairs
of coupling strengths (cx, cy): (a): (0.2, 0); (b): (0, 0.2); (c): (0.1,
0.1); and (d): (0.15, 0.05). Figure 1a–d show the correspond-
ing modulation functions. In each case, the oscillators display
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intermittent behavior, but they are coupled in different ways.
In (a) the coupling is unidirectional, where the instantaneous
frequency of x is decelerated by y, in (b) the coupling is also
unidirectional, but now the instantaneous frequency of y is
accelerated by x, in (c) the coupling is bidirectional and sym-
metrical, and in (d) the coupling is bidirectional but asym-
metrical. However, the distribution of relative phases is
identical in the four cases (Fig. 1e). Therefore, different inter-
action mechanisms can generate the same relative phase dis-
tribution, and as a consequence, no synchronization index
that is derived from this distribution can uncover the differ-
ent underlying mechanisms, rendering an analysis of the
temporal fluctuations in the instantaneous frequencies of the
recorded rhythms necessary.

Estimation and Use of the Model

Fitting the modulation functions to data

Given discrete time signals x(n) and y(n) sampled with a
period of Dt seconds, we extract their instantaneous phases
by using the discrete Hilbert transformation [Pereda et al.,

2005] and compute the instantaneous frequencies Dux

Dt ðnÞ
and

Duy

Dt ðnÞ for n ¼ 1; : : : ; N according to Eq. (1). We esti-
mate the modulation functions Mx and My in a nonpara-
metric way by averaging Dux

Dt and
Duy

Dt conditional on w. We
divide the interval [0,2p] into B bins of equal size. The
value of Mx at the center cj of the jth bin is estimated by

M̂xðcjÞ ¼
1

#Sj;x

X
n2S

j;x

Dux

Dt
ðnÞ; (4)

where Sj;x ¼ fnjcj � p=B � wðnÞ < cj þ p=Bg and #Sj,x is the
number of samples in Sj,x. This means that Mx(w) is esti-
mated for w in a given bin by averaging the instantaneous
frequencies of x over those samples for which w falls into
this bin. By replacing x by y we obtain M̂y. To reduce noise
in the estimates, a least-squares smoothing filter of order k
and frame size f is applied to the estimated modulation
functions. This smoothing procedure is also referred to
as a Savitsky–Golay filter [Savitsky and Golay, 1964]. It
smoothes a discrete function in every sample by locally

Figure 1.

Synchronization mechanisms. Shown are four different pairs of sinusoidal modulation functions:

(a) unidirectional decelerating coupling, (b) unidirectional accelerating coupling, (c) symmetrical

coupling, and (d) asymmetrical coupling. These four different mechanisms, however, generate the

same distribution of phase differences (e). [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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fitting a kth order polynomial through the f � 1 neighboring
samples and replaces the sample by the corresponding
value of the fitted polynomial. In the smoothing procedure,
the boundaries are treated by extending them periodically.
Our method of estimation is nonparametric in that it does
not assume a particular form of the modulation functions.
In Appendix B, this method is compared with a parametric
estimation method. While both methods have theoretical
advantages and disadvantages, they give comparable
results when applied to ongoing MEG recordings.

Reconstruction of the distribution of

the relative phase

The quality of the estimated modulation functions can
be assessed by comparing the observed distribution of rel-
ative phases with the distribution that is generated by the
estimated equations

Dux

Dt
ðnÞ ¼ M̂xðwðnÞÞ; (5)

Duy

Dt
ðnÞ ¼ M̂yðwðnÞÞ: (6)

We integrate this model with time step Dt and observa-
tion time equal to the recording time of x and y to obtain
simulated relative phases wsim(n) for n ¼ 1, : : : , N, from
which we compute the simulated histogram by binning
them into B bins. To assess the appropriateness of the esti-
mated model, the histograms of the observed and simu-
lated relative phases are compared.

Measuring strength and direction in coupling

Besides providing a characterization of the phase inter-
action, modulation functions have the advantage that the
strength and direction in coupling can be computed from
them. We define the coupling strength jx by

j2x ¼
1

2p

Z2p

0

ðMxðwÞ � fxÞ2dw; (7)

where fx ¼ 1
2p

R2p
0

MxðwÞdw is the mean instantaneous fre-

quency of x. This index measures the coupling from y to x
in Hertz and is estimated by

ĵ2x ¼
1

B

XB
j¼1

ðM̂xðcjÞ � f̂xÞ2; (8)

where f̂x is the mean frequency of x over all time samples.
Following Rosenblum and Pikosvki [2001], we define a

directionality index d by

d ¼ jy � jx
jy þ jx

: (9)

This index equals �1 for unidirectional coupling from y
to x, 1 for unidirectional coupling from x to y, and

assumes intermediate values for bidirectional coupling. In
particular, d equals zero for symmetrical coupling.

Surrogate data

We test for statistical significance of the coupling
strength indices using Fourier randomized data [Pereda
et al., 2005]. In this way, spurious detection of coupling
due to bandpass filtering can be excluded. For two band-
pass filtered signals x and y, we calculate their Fourier
spectra Sx(x) and Sy(x), randomly shuffled the phases by
adding for every frequency x a random number between
0 and 2p, and apply the inverse Fourier transform to yield
surrogate signals ~x and ~y. The coupling indices ~jx and ~jy
computed from these signals can be used as surrogate val-
ues for jx and jy, since there is no phase coupling between
~x and ~y. In this way, we generate 99 surrogate values ~jx
for jx and similarly for jy. The p value for an observed jx
value is based on its position i in the ordered array of 100
p values, consisting of the 99 surrogate ~jx values and the
observed jx value:

p ¼ 101� i

100
: (10)

When we observe that the jx value exceeds all surrogate
values, we have p ¼ 0.01. p values for jy are obtained in a
similar way. When the p values for both jx and jy do not
exceed 0.05, we repeat the surrogate procedure for the
direction index d.

RESULTS

Numerical Simulations

Performance of the estimation method

To test the estimation method, we simulated two noisy
limit-cycle oscillators x and y that are weakly coupled
through sinusoidal coupling functions:

Dux

Dt
ðnÞ ¼ fx � cx sinðwðnÞÞ þ nxðnÞ; (11)

Duy

Dt
ðnÞ ¼ fy þ cy sinðwðnÞÞ þ nyðnÞ: (12)

We fixed fx ¼ 10 Hz, fy ¼ 9 Hz, and Dt ¼ 0.005. The set-
tings of the method were fixed at B ¼ 32, f ¼ 17, and k ¼
3. In the first simulation, we assessed the performance of
the method to reconstruct the modulation function Mx(w)
¼ fx � cx sin(w) as a function of observation time T and
noise variance r2. We chose cx ¼ 0.3 and cy ¼ 0, for which
the system is intermittent. We simulated the system 1,000
times with random initial conditions for (i) fixed T ¼ 5 s
and r2 running from 0 to 2 in steps of 0.05 and (ii) for
fixed r2 ¼ 0.5 and T running from 2 to 20 in steps of 2.
For each simulation, we computed the estimate M̂x and
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the sum of squared errors (SSE) over the points where M̂x

was estimated [see Eq. (4)].
The results are summarized in Figure 2. Figure 2a shows

that the mean and standard deviation of the SSE gradually
increase with increasing noise variance. Figure 2b shows
that both the mean and standard deviation of the SSE can
be reduced by increasing the observation time.

In a third simulation, we tested the performance of the
indices to estimate the strength and direction in coupling.

We chose cy ¼ 0.25 and let cx run from 0 to 0.5 in steps of
0.05. For every value of cx, the estimated coupling strength
ĵx and coupling direction d̂ were computed for 1,000 real-
izations with observation time T ¼ 5 s, noise variance r2

¼ 0.1, and random initial conditions. The results are sum-
marized in Figure 3. Figure 3a demonstrates that ĵx is
unbiased over the entire range of cx, except when cx is
almost zero, in which case the coupling strength is slightly
overestimated. Moreover, the standard variation of ĵx is

Figure 3.

Estimation of strength and direction in coupling. (a) True and estimated coupling strength as

function of cx. (b) True and estimated coupling direction as function of cx. In (a) and (b), the

solid lines denote the true values of coupling strength and direction, respectively, the dashed

lines denote the estimated values, and the dotted lines denote one standard deviation above and

below the estimated values (based on 1,000 simulations).

Figure 2.

Estimation of the modulation functions. (a) Shown is the square root of the sum of squared

errors (SSE) as a function of noise variance. (b) Shown is the square root of the (SSE) as a func-

tion of observation time. The curves give the mean of the square roots of the SSEs over 1,000

simulations and the vertical bars denote one standard deviation.
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constant over the entire range of cx. Figure 3b shows that d̂
is also unbiased over the entire range of cx, except for one-
directional coupling, and the standard deviation is con-
stant over the range of cx. This is to be expected, given the
definition of d̂ in terms of ĵx and ĵy [Eq. (9)].

Volume conduction effects

Mixing of signals from different neuronal sources due to
volume conduction is a well-known problem when inter-
preting EEG or MEG data. To test how volume conduction
affects the modulation functions of the presented model,
we simulated uncoupled (cx ¼ cy ¼ 0) oscillatory source
signals s1 and s2 from Eqs. (11) and (12), respectively, with
f1 ¼ 10 Hz and f2 ¼ 9 Hz and mixed them to obtain
observed signals m1 and m2:

m1

m2

� �
¼ a1

a3

�
a2
a4

�
s1
s2

� �
; (13)

where a1, a2, a3, and a4 are real coefficients. The coeffi-
cients a1 and a2 quantify the strength with which s1 and s2,
respectively, are recorded in m1 and a3 and a4 quantify the
magnitude with which s1 and s2, respectively, are recorded
in m2. In EEG and MEG recordings, the coefficients can be
both positive and negative, depending on the orientation
of the sources. We fixed a1 ¼ 0.9 and a4 ¼ 0.7 and selected
four different pairs of mixing coefficients, leading to the
following mixing matrices:

0:9 0
0 0:7

� �
;

0:9 0:1
0:3 0:7

� �
;

0:9 �0:1
�0:3 0:7

� �
;

0:9 0:1
�0:3 0:7

� �

We applied the method described in ‘‘Fitting the Modula-
tion Functions to Data’’ section to estimate the modulation
functions between the mixed sources, i.e., between m1 and
m2. We set T ¼ 30 s and Dt ¼ 0.005. In the first case (Fig.
4a), s1 and s2 are not mixed and M̂1 and M̂2 indeed show
that m1 and m2 are uncoupled. As Figure 4b–d show, mixing
of sources gives rise to nonconstant modulation functions.
Irrespective of the signs of the mixing coefficients, however,
the modulation functions always are symmetrical around p
(and hence around 0). Moreover, the signs of the mixing
coefficients determine how the instantaneous frequencies of
the mixed sources are modulated: when s2 is positively
mixed into m1, the instantaneous frequency of m1 is attracted
toward the natural frequency of s1 around 0 and is repelled
from the natural frequency of s1 around p (Fig. 4b–d). As a
consequence, when both mixing coefficients are positive as
in the second case (Fig. 4b), the instantaneous frequencies of
m1 and m2 are attracted toward each other around 0 and the
phase difference clusters around 0. When both mixing coef-
ficients are negative, as in the third case (Fig. 4c), the instan-
taneous frequencies of m1 and m2 are attracted toward each
other around p, and, hence, the phase difference clusters
around p. When the mixing coefficients have different signs

as in the fourth case (Fig. 4d), a simultaneous attraction and
repulsion occurs both around 0 and p. Whether the phase
difference clusters around 0 or p depends on the relative
strength of the mixing coefficients.

From these simulations, we draw the conclusion that the
modulation functions between mixed, uncoupled sources
are symmetrical. A mathematical proof for this statement
is provided in Appendix C. We also experimented with
mixed, coupled sources and found that the resulting mod-
ulation functions are superpositions of the true modulation
functions and the modulation functions as just described
for the uncoupled case. To conclude, asymmetrical modu-
lation functions imply coupling of the underlying sources.

Sources with time-varying frequencies

The instantaneous frequencies of cortical rhythms as
measured with MEG are unlikely to be constant over time.
In the phase model [Eqs. (2) and (3)], the instantaneous
frequencies of the sources are allowed to be noisy, since
this kind of variation is incorporated into the noise terms.
Ongoing cortical oscillations, however, also display slow
and correlated fluctuations in their instantaneous frequen-
cies, which are reflected in a broad power spectrum.
Therefore, for applications to real MEG data, it is neces-
sary that the method does not spuriously detect coupling
due to time-varying frequencies of the sources. To test
this, we simulated the following system:

Dux

Dt
ðnÞ ¼ fxðnÞ þ nxðnÞ; (14)

Duy

Dt
ðnÞ ¼ fyðnÞ þ nyðnÞ; (15)

where the instantaneous frequencies fx(n) and fy(n) vary
slowly over time. Equations (14) and (15) describe
uncoupled and noisy sources with time-varying intrinsic fre-
quencies. We tested whether the estimation method spuri-
ously detects coupling due to the fluctuations in fx and fy.

To simulate time-varying frequencies fx(n) and fx(n), we
proceeded as follows. We simulated two uniformly ran-
dom processes and lowpass filtered them at 1 Hz. By add-
ing constants 9.8 and 10.2 to the respective filtered signals,
we obtained time-varying frequencies fx(n) and fx(n) with
means 10.2 Hz and 9.8 Hz, respectively. The observation
time was set to 30 s. We simulated 20 pairs of nonstation-
ary time series. For each pair, we computed the modula-
tion index ĵx and computed its p value using surrogate
data. None of the 20 p values dropped below 0.05 as is to
be expected in the absence of coupling. We repeated the
analysis using coupled sources rather than uncoupled
sources and found that coupling can still be detected in
the presence of time-varying frequencies. Thus, the meth-
od’s ability to discriminate coupled from uncoupled sour-
ces is not impaired when the sources display time-varying
instantaneous frequencies.
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Application to Spontaneous MEG Recordings

Recordings and preprocessing

We used data recorded with a 151-MEG system
with axial gradiometers (VSM Medtech-CTF Systems, Van-
couver, Canada). The data were part of a data set from

Figure 4.

Volume-conduction effects. Shown are the modulation functions of uncoupled oscillatory sources

for (a) no mixing, (b) positive mixing, (c) negative mixing, and (d) combined positive and nega-

tive mixing. In each of the four cases, the modulation functions are symmetric around 0 and p.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5.

Mean frequencies of spontaneous alpha oscillations. Shown is

the mean instantaneous frequency in the alpha band (7–13 Hz)

per channel and averaged over the 2-min recording time and

over all subjects. The color bar ranges from 9.2 to 11.0 Hz. The

four white dots represent bad channels and were excluded from

the analysis. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Integrated Cognition Project Grant 051-04-010 and was
funded by the Netherlands Organization of Scientific
Research (NWO), The Hague, and consisted of 2-min
recordings from nine healthy subjects in an eyes-closed
resting condition. Artifacts were removed semiautomati-
cally using independent component analysis [Hyvarinen
et al., 2001].

We applied the method to assess frontal-occipital cou-
pling in both the alpha and beta band. The data were fil-
tered offline in the alpha (7–13 Hz) and beta bands (17–23
Hz) using an eighth-order zero-phase Butterworth band-
pass filter. After filtering, instantaneous phases were esti-
mated via the discrete Hilbert transformation. The
parameter settings for the estimation method were set to B
¼ 16, f ¼ 11, and k ¼ 2.

Extraction of oscillatory activity

For an accurate estimation of the modulation functions,
reliable estimates of the instantaneous phases are required.
However, instantaneous phases are poorly estimated for
low signal strengths [Hurtado et al., 2004]. Moreover,
spontaneous MEG oscillations typically occur in bursts.
Therefore, in the estimation of the modulation functions,
only those instantaneous phases were used for which the
amplitude of both signals exceeded some threshold. Given
ongoing oscillatory signals x and y, we computed their in-
stantaneous amplitudes ax and ay as the absolute values of
their discrete Hilbert transformations and selected the in-
stantaneous phases only at those samples for which both
ax and ay exceeded the 2.5-th percentile of the set of instan-
taneous amplitudes of x and y, respectively.

Channel selection

Since in the coupled oscillator model [Eqs. (2) and (3)]
synchronization is a result of the compromise between
slightly different natural frequencies of the oscillators and
coupling, we fitted the model to channel pairs with differ-
ent frequencies. Figure 5 shows the mean instantaneous
frequencies over the oscillatory periods in the alpha band,
averaged over all subjects. The largest difference in fre-
quency appears to exist in the anterior–posterior direction.
This can also be observed for the beta band (Fig. 6). These
observations also hold for individual subjects. Therefore,
for the analysis, we selected occipital–frontal channel pairs.
To minimize volume-conduction effects, we chose a fixed
pair of channels for which the intersensor distance is large
(MZF02 and MZO01, which both lie on the lateral axis).

Although the observed differences in the mean instanta-
neous frequencies are only in the order of tenths of Hertz,
they are not an artifact of the frequency extraction method
(which depends on the amplitude variations in the sig-
nals). We checked this by multiplying the amplitude enve-
lopes of all MEG channels from one of the subjects with
an oscillatory signal with a constant frequency of 10 Hz.

For each signal, we estimated its mean instantaneous fre-
quency. The estimates centered at 10 Hz with a spread of
10�3 Hz without any spatial bias. Thus, the observed fre-
quency differences are not caused by the extraction
method.

Coupling between spontaneous alpha oscillations

Figure 7 shows the estimated modulation functions M̂0

and M̂F in the alpha band (7–13 Hz) for each of the nine
subjects. In eight of the nine subjects, the occipital modula-
tion function has a higher mean frequency than the frontal
modulation function. In Table I, the estimated coupling
strength indices ĵ0 and ĵF are listed, together with their p
values. In subjects 4–6, occipital–frontal coupling was
found with p � 0.05 and in subject four frontal–occipital
coupling was found with p � 0.05, yielding subject 4 as
the only subject with significant bidirectional coupling. In
the latter subject, the coupling direction index d̂ ¼ 0:32
had a p value of 0.09. Note that the modulation functions
corresponding to significant indices have similar shapes.
To check consistency, we cut the data into two equal and
nonoverlapping parts and estimated the modulation func-
tions on both parts. The resulting modulation functions
were—to a good approximation—equal and also highly
resembled the modulation functions estimated on the total
recording length.

Figure 8 shows the group average of the observed rela-
tive phase distribution and estimated modulation func-
tions. The frontal alpha rhythm, which has a slightly
lower frequency than the occipital alpha rhythm, is upmo-
dulated at p. Moreover, the frequency of the occipital
rhythm tends to be upmodulated at 0, but this effect is
much less pronounced. In sum, the fitted model suggests
that phase locking of spontaneous MEG rhythms in the
alpha band is a consequence of the upmodulation at p of
the frontal rhythm by the occipital rhythm.

The observed phase difference distributions and their
reconstructions are shown in Figure 9. Although the recon-
structed distributions are a bit flattened when compared
with the observed distributions, they capture the shape of
the observed distributions including their symmetries. In
this sense, the proposed phase-interaction model accounts
for the observed phase difference distributions.

Coupling between spontaneous beta oscillations

We repeated the earlier analysis in the beta band (17–23
Hz). Figure 10 shows the estimated modulation functions
M̂0 and M̂F for all subjects. In eight of nine subjects, the
frontal oscillations have a higher frequency than the occi-
pital oscillations in contrast with alpha band oscillations.
In Table II, the computed coupling-strength indices ĵ0 and
ĵF are listed, together with their p values. In subjects 4 and
6, occipital–frontal coupling was found with p � 0.05.
Although the modulation functions corresponding to sig-
nificant indices do not have the same shape, their shapes
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were consistent when estimating them on two nonoverlap-
ping epochs.

The group average is shown in Figure 11. Both the fron-
tal and occipital modulation functions are asymmetric
around p and have a sinusoidal shape. Even though both
modulation functions are asymmetric around p, the phase

Figure 7.

Frequency modulation in the alpha band. Shown are the estimated modulation functions in the

alpha band (7–13 Hz) for all nine subjects. Blue lines denote the occipital modulation functions

(M̂0) and green lines the frontal modulation functions (M̂F). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

Mean frequencies of spontaneous beta oscillations. Shown is the

mean instantaneous frequency in the beta band (17–23 Hz) per

channel and averaged over the 2-min recording time and over

all subjects. The color bar ranges from 19.3 to 20.5 Hz. The

four white dots represent bad channels and were excluded from

the analysis. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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difference clusters around p. Furthermore, the frontal oscil-
lations are stronger modulated than the occipital oscilla-
tions. Thus, the model suggests that phase locking
between spontaneous occipital and frontal beta oscillations
is a result of a mutual asymmetrical modulation of their
instantaneous frequencies by their instantaneous phase dif-
ference. Moreover, the relative shapes of the modulation
functions force the oscillations to be in antiphase, which is
reflected in the location of the peak in the distribution of
phase differences.

Figure 12 shows the observed and reconstructed distri-
butions of phase differences for all subjects. The resem-
blance between the reconstructed and observed
distributions is comparable to the resemblance in the alpha
band analysis. In subject 2, the estimated modulation func-
tions touch each other, yielding a stable fixed point in the
estimated model [Eqs. (5) and (6)]. Consequently, the dy-
namics of the estimated model is not intermittent, but the
signals are fully phase locked, resulting in an extremely
peaked reconstructed distribution.

Dynamical interpretation

While on the basis of the observed phase difference dis-
tributions (Figs. 8a and 11a), it is impossible to distinguish
between the phase-interaction dynamics in alpha and beta
bands, the estimated modulation functions suggest that, in
the alpha and beta bands, the observed phase locking is
caused by qualitatively different dynamical mechanisms
(Figs. 8b and 11b). The fitted models suggest that in the
alpha band, phase locking between frontal and occipital
oscillations is caused by an acceleration of the slower fron-
tal rhythm. This acceleration is modulated by the phase
difference between the rhythms and is strongest when the
rhythms are in antiphase. The consequence of this dynami-
cal process is a clustering of phases at p, which is reflected
in the peak in the distribution of phase differences. In con-
trast, the fitted models suggest that, in the beta band,
phase locking is caused by an acceleration of the slower

occipital rhythm and a simultaneous deceleration of the
faster frontal rhythm. While the occipital rhythm is accel-
erated strongest when the phase difference is smaller than
p, the frontal deceleration is strongest when the phase dif-
ference is larger than p. The interplay between these influ-
ences results in phase clustering at p, which is again
reflected in the peak in the distribution of phase differen-
ces. Thus, while the distributions of phase differences in
the alpha and beta bands are similar, the underlying dy-
namical processes are different, as revealed by the esti-
mated phase-interaction model.

DISCUSSION

In this study, we modeled the phase interaction between
bivariate ongoing MEG oscillations by assuming that they
can be described by weakly coupled self-sustained oscilla-
tors. We proposed a method to fit the model to data and
defined indices for measuring the strength and direction in
coupling. Furthermore, using simulated data, we tested the
method’s performance, described the effect of volume con-
duction on the fitted model, and showed that the model is
robust against model violations. We fitted the model to
spontaneous (eyes-closed resting state) occipital–frontal
MEG oscillations, recorded from nine healthy subjects in
the alpha (7–13 Hz) and beta bands (17–23 Hz). The model
can reconstruct the observed phase difference distributions
between occipital and frontal oscillations reasonably well,
and hence, can account for observed values of phase syn-
chronization indices derived from this distribution. More-
over, it suggests that, in the alpha and beta bands, phase
locking is a result of qualitatively different coupling mecha-
nisms. In contrast to the commonly used interaction indi-
ces, the model-based approach followed in this study does
not merely quantify the interaction strength but also char-
acterizes how the instantaneous phases influence the fre-
quencies of the recorded rhythms. Statistical testing
confirmed the existence of coupling in three of nine sub-
jects. This suggests that the phase dynamics following a
coupled oscillator model correspond to a specific type of
interaction that is not always present. When it is present,
we found that it is consistent in form over different epochs.

The computed occipital–frontal coupling indices in the
alpha band tend to be higher than the frontal–occipital
coupling indices (Table I). These findings suggest that the
occipital rhythm drives the frontal rhythm stronger than
vice versa. This seems to be in contradiction with the
results reported in Nolte et al. [2008]. In that study, a
directionality index was applied to spontaneous (eyes-
closed resting state) EEG data of 88 subjects using all EEG
sensors, and the results suggested for the alpha band a
stronger coupling in the front-to-back direction than vice
versa. The direction of coupling was based on an average
over all channel pairs. Although a large number of sub-
jects was studied in Nolte et al. [2008], substantial inter-
subject variability was found. Therefore, the results of the

TABLE I. Coupling strengths in the alpha band

Subject k̂O (Hz) p value k̂F (Hz) p value

1 0.04 0.41 0.02 0.88
2 0.07 0.21 0.05 0.49
3 0.05 0.41 0.05 0.44
4 0.14 0.01* 0.28 0.01*
5 0.06 0.28 0.10 0.05*
6 0.05 0.26 0.17 0.01*
7 0.04 0.51 0.05 0.37
8 0.02 0.76 0.04 0.41
9 0.07 0.32 0.06 0.39

The table lists the estimated coupling strength indices k̂F and k̂O
in the alpha band (7–13 Hz) with their corresponding p values for
all subjects.
*Denotes p � 0.05.
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present study, using a smaller number of subjects, do not
necessarily contradict the earlier findings. An important
difference between the methods is that the coupling mea-
sure and directionality index used in Nolte et al. [2008] is
insensitive to volume conduction. In our study, we mostly

found symmetric modulation functions in the alpha band
(see Fig. 7), which may be partly due to volume conduc-
tion. Following the idea used in Nolte et al. [2008], initially
introduced in Nolte et al. [2004] and varied upon in Stam
et al. [2007], the method presented in the current study

Figure 9.

Phase difference distributions in the alpha band. Shown are the observed (black) and recon-

structed (red) distributions of phase differences in the a band (7–13 Hz) for all nine subjects.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8.

Group-average results in the alpha band. (a) Observed distribution of phase differences in the

alpha band (7–13 Hz) averaged over all subjects. (b) Estimated modulation functions averaged

over all subjects. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 10.

Frequency modulation in the beta band. Shown are the estimated modulation functions in the

beta band (17–23 Hz) for all nine subjects. Blue lines denote the occipital modulation functions

(M̂0) and green lines denote the frontal modulation functions (M̂F). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 11.

Group average results in the beta band. (a) Observed distribution of phase differences in the

beta band (17–23 Hz) averaged over all subjects. (b) Estimated modulation functions averaged

over all subjects. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



can be extended by deriving coupling indices from the
asymmetric part of the estimated modulation functions.
Such indices will be insensitive to volume conduction,
which only affects the symmetric part of the modulation
functions. Another possible approach to the volume con-
duction problem is to attempt to unmix the source signals
by applying an appropriate transformation to the sensor
signals [Meinecke et al., 2005].

As described in the ‘‘Synchronization Behavior’’ section,
weakly coupled oscillators can display intermittent
dynamics, where episodes of (almost) phase locking are

interwoven by periods called phase slips, where the phase
of one of the oscillators advances relative to the other.
Intermittent phenomena are observed in a number of other
studies and a conceptual framework is provided in Friston
[2000]. In Freeman and Rogers [2002], phase slips in
gamma-band EEG oscillations in rabbit sensory cortices
were observed and interpreted as state transitions, which
are assumed to play a role in converting sensory input to
conceptual output. In Freeman et al. [2003], related findings
are described in human EEG experiments. In Breakspear
[2002], transient phase desynchronization was proposed to
play a role in the generation of human alpha oscillations. In
Breakspear [2004] and Ito et al. [2007], the spatial structure
of instantaneous phase patterns was investigated in human
EEG studies and was suggested to play a role in perception
and cognition. In Thatcher et al. [2008], a human EEG study
was performed, where it was found that the duration of
phase resettings positively correlates with IQ.

In this study, we tested for significance of the coupling
strength indices using surrogate data [Pereda et al., 2005).
The idea is to generate signals that are identical to the
recorded signals, except that they are uncoupled, i.e., have
constant modulation functions. Besides the method
described in this study, we also investigated an alternative
randomization procedure, namely randomizing the instan-
taneous frequencies of the recorded signals [Hurtado
et al., 2004]. Although this produced signals with constant
modulation functions, it detected significant coupling

Figure 12.

Phase difference distributions in the beta band. Shown are the observed (black) and reconstructed

(red) distributions of phase differences in the beta band (17–23 Hz) for all nine subjects. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE II. Coupling strengths in the beta band

Subject k̂O (Hz) p value k̂F (Hz) p value

1 0.01 0.99 0.07 0.16
2 0.02 0.91 0.07 0.31
3 0.07 0.38 0.03 0.82
4 0.04 0.67 0.13 0.05*
5 0.06 0.41 0.03 0.77
6 0.08 0.09 0.13 0.02*
7 0.03 0.75 0.04 0.54
8 0.06 0.32 0.08 0.17
9 0.03 0.78 0.01 0.99

The table lists the estimated coupling strength indices k̂F and k̂O
in the beta band (17–23 Hz) with their corresponding p values for
all subjects.
*Denotes p � 0.05.
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between two independent and bandpass-filtered Gaussian
noise processes, which is clearly undesirable. The cause
for this deficit is that randomizing the instantaneous fre-
quencies of a signal can only be performed after the sig-
nals have been bandpass filtered. To avoid the detection of
spurious coupling due to bandpass filtering, a randomiza-
tion procedure should be applied to the raw broadband
signals. The difficulty now exists in the fact that instanta-
neous phases and, hence, frequencies cannot be defined
for broadband signals. Since phase randomization by
means of the Fourier transformation destroys the nonlinear
relationship between the phases of both signals, and since,
coupling through modulation function is a special kind of
nonlinear relationship between the phases of both signals,
we used this to generate surrogate signals. We note, how-
ever, that an optimal randomization procedure does not
exist and that this applies to every synchronization index
[Schreiber and Schmitz, 2000].

Although the phase-interaction model proposed in this
study provides a dynamical account for observed phase
locking between ongoing occipital and frontal MEG oscilla-
tions in the alpha and beta bands, most likely, it is a simpli-
fication of the actual dynamics of the ongoing alpha and
beta rhythms. For example, the model ignores other sources
of influence such as common driving signals (see [Perkel
et al., 1967] for common-driving signals in spike trans), the
existence of time delays in coupling, the effects of ampli-
tude dynamics, and dynamical noise. Incorporating these
aspects in the model will be the objective of future studies.
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APPENDIX A: REDUCTION OF THE GENERAL

PHASE MODEL

In the literature, more general phase interaction models
have been proposed (Rosenblum et al., 2006). Again, let ux

and uy be the instantaneous phases of two weakly coupled
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oscillators x and y. Then in general, the phase interactions
can be described by the following equations:

Dux

Dt
ðnÞ ¼ Mxðux;uyÞ þ nxðnÞ; (A1)

Duy

Dt
ðnÞ ¼ Myðux;uyÞ þ nyðnÞ; (A2)

where Mx and My are 2p-periodic in both arguments.
These models have been proposed in the general context
of weakly coupled oscillators. For ongoing MEG oscilla-
tions, we can, without compromising the data, reduce this
model to the more restricted model described in this study
[Eqs. (2) and (3)]. The reduction is based on the following
empirical findings regarding the dynamics of spontaneous
MEG oscillations.

First, the distribution of (ux, uy) is to a reasonable
approximation a function of the phase difference w ¼ ux �
uy, as illustrated in Figure A1a. This observation is consist-
ent over all nine subjects and, hence, makes it reasonable
to model the phase interaction by a one-dimensional mod-
ulation function, that is, to let Mx and My only depend on
the instantaneous phase difference between x and y. Thus,
we can replace the model described Eqs. (A1) and (A2) by

Dux

Dt
ðnÞ ¼ MxðwÞ þ nxðnÞ; (A3)

Duy

Dt
ðnÞ ¼ MyðwÞ þ nyðnÞ (A4)

By an averaging argument, one can also theoretically
show that when the natural frequencies of the coupled

oscillators are close, then their modulation functions
depend only on their phase difference (Pikovski et al.,
2001).

If one would still wish to account for nonlinearities in
the model, 2p-periodic modulation functions Nx and Ny

with mean zero could be included, leading to the follow-
ing equations:

Dux

Dt
ðnÞ ¼ NxðuxÞ þMxðwÞ þ nxðnÞ; (A5)

Duy

Dt
ðnÞ ¼ NyðuyÞ þMyðwÞ þ nyðnÞ: (A6)

Since ux and uy are distributed independently of their
phase difference w, as illustrated in Figure A1b, informa-
tion on the value of ux (or uy) does not disclose the value
of w and vice versa. Again, this finding is consistent over
subjects. Theoretically, this can be explained by the fact
that when the natural frequencies of two coupled oscilla-
tors are close, the dynamics of both oscillators are much
faster than the dynamics of their phase difference (Pikov-
ski et al., 2001). This allows to estimate Nx and Mx (and
Ny and My) independent from each other.

The functions Nx and Ny however, turn out to be more
or less constant (zero), at least when compared to Mx and
My as illustrated in Figure A1c. Again, this observation is
consistent over subjects and reflects the fact that the in-
stantaneous frequencies of MEG oscillations are not modu-
lated by their own instantaneous phases. This observation
allows us to discard Nx and Ny and reduces the model
described by Eqs. (A1) and (A2) to the specific phase
model given by Eqs. (A3) and (A4).

Figure A1.

Observed characteristics of spontaneous MEG oscillations. (a)

Histogram in color of the occipital–frontal phases (u0,uF). (b)

Histogram of the pair (u0,w). (c) Estimates of f 0 þN0 and fF þ
NF. (a–c) were computed for a single subject in the alpha band

(7–13 Hz). The observed features are however, constant over

subjects and frequency bands. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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APPENDIX B: COMPARISON OF

ESTIMATION METHODS

In the literature, other methods have been proposed to
estimate the modulation functions from data. The method
described in Rosenblum et al. (2006) parameterizes the
modulation functions Mx and My by a finite Fourier series
(remember that Mx and My are 2p-periodic in w):

MxðwÞ ¼
Xp
j¼0

ak cosðjwÞ þ bk sinðjwÞ; (B1)

where ak and bk (j ¼ 0,. . ., p) are the Fourier coefficients
and p is the model order. The Fourier coefficients are
estimated from the pairs of observations ðwðnÞ,
Dux

Dt ðnÞÞ; n ¼ 1; : : : ;N via least-squares regression. We
compared the performance of this parametric method
to the nonparametric method described in this study,
which we refer to as conditional averaging (because the
modulation functions are estimated by averaging the

Figure B1.

Performance as a function of noise intensity. Shown are the

square root of the sum of squared errors (SSE) as a function of

noise variance for both methods. The black and red curves

denote the square root of the sum of squared errors (SSE). The

vertical bars with circles denote one standard deviation (based

on 1,000 simulations). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure B2.

Stability against parameter changes. (a) Estimates of Mx via Fourier approximation for Fourier orders

4, 3, 2, 1, 0. (b–d) Estimates of Mx via conditional averaging where in each case one of the parameters

was varied: In (b), the frame length f, in (c) the filter order k, and in (d) the number of bins B. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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instantaneous frequencies of the signals conditional on
their phase difference).

We first compare the performance of both methods as
a function of noise intensity. We simulated the system
described by Eqs. (11) and (12) for 10 s (again, using an
integration interval of 0.005 s) with fx ¼ 10 Hz, fy ¼ 9
Hz, cx ¼ 0.2, and cy ¼ 0. For these choices, the oscillators
are in the intermittent regime. For the conditional aver-
aging method, we fixed the settings B ¼ 16, f ¼ 11, and k
¼ 2, and for the Fourier method, we fixed p ¼ 1. We let
the noise intensity vary from 0 to 1 in steps of 0.05, and
for every value, we simulate the system 1,000 times with
random initial conditions. The performance of both
methods to estimate Mx is quantified by the SSEs taken
over the B points at which Mx is estimated. The results
of the simulation are summarized in Figure B1. As the
figure shows, the performance of both methods gradu-
ally decreases with increasing noise strength. Further-
more, the Fourier approximation method performs better
in reducing noise.

We compared the robustness of both methods against
changes in the settings of the method. As modulation
functions, we chose Mx(w) ¼ 10 � 0.2 sin(4w) and My con-
stant (9 Hz), and we set the noise intensity to zero. Both
methods were applied for multiple settings of their pa-
rameters. For the conditional averaging method, we per-
formed three simulations, where in each simulation two
parameters were held constant and the third parameter
was varied. We chose the following values: (i) B ¼ 32, k
¼ 3, f ¼ 5, 9, 13, 17, 21, (ii) B ¼ 32, f ¼ 5, k ¼ 4, 3, 2, 1, 0,
and (iii) f ¼ 5, k ¼ 3, B ¼ 32, 25, 18, 11, 4. For the Fourier
approximation method, we chose p ¼ 4, 3, 2, 1, 0. For ev-
ery choice of values for (B, k, f), we estimated Mx. The
results of the simulations are illustrated in Figure B2. As
Figure B2a shows, the Fourier approximation method is
very sensitive to the choice of the model order; when the
true order is higher than the estimation order the esti-
mate distorts the shape of the modulation function. As
Figure B2b–d shows, the conditional averaging method is
more robust against parameter changes; although the am-
plitude of Mx is underestimated, the shape remains
undistorted.

APPENDIX C: UNCOUPLED BUT MIXED

SOURCES YIELD SYMMETRICAL

MODULATION FUNCTIONS

Let s1(t) ¼ cos(x1t þ u0,1) and s2(t) ¼ cos(x2t þ u0,2) be
source signals with initial phases u0,1 and u0,2 respectively,
and with x1 = x2. Furthermore, let m1(t) and m2(t) be the
signals recorded at sensors 1 and 2, respectively, thus

mjðtÞ ¼ aj;1s1ðtÞ þ aj;2s2ðtÞ; ðj ¼ 1; 2Þ: (C1)

for certain mixing coefficients a1,1, a1,2, a2,1, a2,2 � 0. We
assume that a1,1 � a1,2 and a2,1 � a1,2 reflecting that s1 is
recorded at sensor 1 stronger than s2 is and that s2 is

recorded stronger at sensor 2 than s1 is. The analytic signals
of m1 and m2 are given by (see Mallat, 1998, p. 85)

ma
j ðtÞ ¼ aj;1e

iðx1tþu0;1Þ þ aj;2e
iðx2tþu0;2Þ; ðj ¼ 1; 2Þ: (C2)

The instantaneous phases u1(t) and u2(t) of m1 and m2

are defined by uj(t) ¼ arg ma
j (t). Let w(t) ¼ u1(t) 2 u2(t)

(mod2p) denote the relative phase between m1 and m2. We
will argue that there exist real-valued functions

M1;M2 : ½0; 2p� ! R;

which are symmetrical, that is, they satisfy M1(2p � w) ¼
M1(w) and M2(2p � w) ¼ M2(w) for all w [ [0, 2p], and
such that

d

dt
ujðtÞ ¼ MjðwðtÞÞ; ðj ¼ 1; 2Þ: (C3)

It suffices to prove the existence of M1; the existence of
M2 follows by symmetry.

By straightforward algebra, we can write

wðtÞ ¼ arg
ma

1ðtÞ
ma

2ðtÞ
¼ arg hðeiðDxtþDuÞÞ;

for Dx ¼ x1 � x2 the frequency mismatch between s1 and
s2, Du ¼ u0,1 � u0,2 the initial phase difference, and the
function h : C/{�d} ! C, defined by

hðzÞ ¼ c� d

dþ z� þ 1; (C4)

where C denote the complex numbers, c ¼ a1,1/a1,2, d ¼
a2,1/a2,2, and * denotes complex conjugation. Similarly,
the function u1(t) can be written in the form u1ðtÞ ¼
x1tþ u0;1 þ argðcþ e�iðDxtþDuÞÞ:

Using the facts that c > 1 and d < 1, we show below
that the function h induces an orientation-preserving dif-
feomorphism between the unit circle S1 ( C and a closed
curve h(S1) ( C that encloses the origin and has the
property that h(ei(2p�t)) ¼ h*(eit) for t [ [0,2p]. It follows
that the map c : [0,2p] ! [0,2p] defined by c(t) ¼ arg
h(eit) is a diffeomorphism satisfying c(2p � t) ¼ 2p � c(t).
Hence, the derivative of any smooth map l : [0,2p] ! R
can be written in the form l0(t) ¼ M(c(t)), for the function
M ¼ l0 � c�1. If l0 is symmetrical about p, then it can be
checked that the map M is symmetrical about p as well.
One function with these properties is given by l(t) ¼
arg(c þ e�it). Now u1(t) ¼ x1t þ u0,1 þ l(Dxt þ Du) and
hence,

d

dt
u1ðtÞ ¼ x1 þ DxMðcðDxtþ DuÞÞ ¼ x1 þ DxMðwðtÞÞ;

which proves the assertion with M1 ¼ x1 þ DxM
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It remains to establish the asserted properties of the
map h. When z runs counterclockwise along the unit
circle with constant angular velocity (z ¼ eit for t
increasing from 0 to 2p), then d þ z* runs through a
unit circle around d clockwise. Since d < 1 this circle
contains the origin. Because arg(z�1) ¼ �arg(z) and
|z�1| ¼ 1/|z|, the inverse 1/(d þ z*) traces out a
closed curve counterclockwise, which also contains the
origin in its interior. This curve crosses the positive

real axis at time t ¼ 0 at the point 1/(d þ 1) > 0 and
crosses the negative real axis at t ¼ p at 1/(d � 1) <
0. Multiplication by c � d > 0 changes the size of the
curve, and adding 1 moves it one unit to the right.
Because (c � d)/(d � 1) < 1 the resulting curve
t 7!hðeitÞ is a closed curve that circles the origin coun-
terclockwise. The identity h(ei(2p�t)) ¼ h*(eit) follows
from the algebraic definition of h or from the preced-
ing geometric description.
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