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Abstract: In this communication, we extended a previously described and validated diffusion tensor
imaging (DTI) method for segmenting whole brain cerebrospinal fluid (CSF) and gray and white mat-
ter (WM) tissue to provide regional volume and DTI metrics of WM tract and cortical and subcortical
gray matter. This DTI-based regional segmentation was implemented using the statistical parametric
mapping (SPM) toolbox and used the international consortium for brain mapping atlases and Montreal
Neurological Institute brain templates. We used our DTI-based segmentation approach to calculate the
left putamen volume in a cohort of 136 healthy right-handed males and females aged 15.8-62.8 years.
We validated our approach by demonstrating its sensitivity to age-related changes of the putamen.
Indeed, our method found that the putamen volume decreased with age (r = —0.30; P < 0.001) while
the corresponding fractional anisotropy (FA) increased with advancing age (r = 0.5; P < 0.00001). It is
then demonstrated, on a subset of our cohort (1 = 31), that the putamen volume obtained by our
method correlated with measurements obtained from FreeSurfer (r = 0.396, P < 0.05). Our novel
approach increases the information obtained with a DTI examination by providing routine volumetry
measure, thereby eliminating separate scans to obtain volumetry data. In addition, the labeled volumes
obtained with our method have the potential to increase the accuracy of fiber tracking. In the future,
this new approach can be automated to analyze large data sets to help discover noninvasive
neuroimaging markers for clinical trials and brain-function studies in both health and disease.
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INTRODUCTION

Magnetic resonance imaging (MRI) methods provide sev-
eral tissue contrast mechanisms that can be used to assess
the micro- and macrostructure of living tissue in health and
disease. There are several applications that can benefit from
the availability of robust methods for estimating cortical
and subcortical gray matter (GM) volume and their corre-
sponding quantitative relaxation or diffusion tensor metrics
[Fjell et al., 2008; Hasan et al., 2009; Lawes et al., 2008; Mab-
bott et al., 2006; Makris et al., 2007, Wakana et al., 2004]. In
general, current MRI methods for tissue volume assessment
use high-spatial resolution T1-weighted, or multimodal T2-
weighted, fluid-attenuated, and proton density volumes for
regional tissue segmentation. Tissue segmentation using T1-
or T2-weighted volumes require image intensity correction
[Ahsan et al., 2007], whereas multimodal MRI methods
require coalignment of all data sets before segmentation [Ali
et al., 2005; Hasan et al., 2008a; Liu et al., 2006; Pham et al.,
2000]. To obtain intrinsic tissue relaxation or diffusion ten-
sor imaging (DTI) metrics from certain manually or auto-
matically segmented regions, the acquisition of separate
data sets is needed along with perfect multimodal data core-
gistration and fusion with the T1-weighted volume [Mab-
bott et al., 2006; Thottakara et al., 2006].

In a previous publication, we presented and validated a DTI-
based tissue contrast method that was used to obtain whole
brain cerebrospinal fluid (CSF), GM, and white matter (WM)
volumes from typically developing children [Hasan et al.,
2007a]. This DTI-based method was applied to obtain well-
documented developing and aging trends of whole brain CSF,
GM, and WM across the human lifespan [Hasan et al., 2007b].
These DTI-based segmentation methods were validated and
extended further to the semiautomated segmentation of WM
regions such as the corpus callosum [Hasan et al., 2008b,c].

In this work, we extended the whole brain DTI segmenta-
tion approach to provide regional volumetry of cortical and
subcortical structures using the DTT data in combination with
commonly used human brain templates and anatomically la-
beled atlases. For validation, we have applied our methods on
a large healthy cohort of right-handed adolescents and adults
to demonstrate this method’s sensitivity to well-documented
age and gender effects of the left putamen nucleus, which has
been used as a marker of deep subcortical GM atrophy in both
health [Giedd et al., 1996, Greenberg et al., 2006; Vernaleken,
2007; see Table I] and disease [Bramilla et al., 2001; de Jong
et al., 2008; Jacobsen et al., 2001; Keshavan et al., 1998; Rosas
et al., 2001; Teicher et al., 2000]. We have also compared our
results on the left putamen with the segmentation results
using FreeSurfer and published trends.

MATERIALS AND METHODS
Subjects

The participants included 136 right-handed healthy ado-
lescents, young and older adults aged 15.8-62.8 years. The

healthy volunteer cohort was pooled from two ongoing
studies. The cohort consisted of 65 males (age mean + SD
= 31.2 + 11.5 years) and 71 females (age mean + S.D =
34.8 + 11.7 years). All volunteers were identified as neuro-
logically normal by review of medical history and were
medically stable at the time of the assessments. Written
informed consent was obtained from the guardians and
adolescents and assent from the children participating in
these studies per the University of Texas Health Science
Center at Houston institutional review board regulations
for the protection of human research subjects.

Conventional MRI Data Acquisition

We acquired whole-brain data using a Philips 3.0 T
Intera system with a SENSE parallel imaging receive head
coil. The conventional MRI data acquisition protocol
included a 2D dual spin-echo Tg/Tg2/Tr = 10/90/5,000
ms, in the axial plane (3-mm slice thickness, square field-
of-view = 240 mm x 240 mm @ 44 sections) and a high-
spatial resolution spoiled gradient echo sequence acquired
using ~180 sagittal sections covering the whole brain with
isotropic voxel dimensions 0.9375 mm x 09375 mm x
0.9375 mm (e.g., field-of-view 240 mm x 240 mm and
image matrix = 256 x 256).

Diffusion Tensor Acquisition

The diffusion-weighted data were acquired using a sin-
gle-shot spin echo diffusion sensitized echo-planar imaging
(EPI) sequence with the balanced Icosa21 encoding scheme
(Hasan and Narayana, 2003), a diffusion sensitization of b
= 1,000 s mm ?, and a repetition and echo times of Tg =
6.1 s and Ty = 84 ms, respectively. EPI image distortion
artifacts were reduced by using a SENSE acceleration factor
or k-space undersampling of two. The slice thickness was
3 mm with 44 axial slices covering the whole-brain (fora-
men magnum to vertex), a square field-of-view = 240 mm
x 240 mm, and an image matrix of 256 x 256 that matched
the 2D dual spin echo sequence described earlier. The num-
ber of nondiffusion weighted or b ~ 0 magnitude image
averages was eight. Each encoding was repeated twice and
magnitude-averaged to enhance the signal-to-noise ratio
(SNR); thus, effectively 50 images were acquired for each of
the 44 axial sections to cover the whole-brain. The total DTI
acquisition time was ~7 min and resulted in SNR-inde-
pendent DTI-metric estimation [Hasan et al., 2007a]

Conventional MRI Data Processing and
Tissue Segmentation

The whole-brain ctMRI data were converted into ANA-
LYZE formatted volumes, resliced to isotropic voxels
(Ahsan et al., 2007), and skull stripped using the brain
extraction tool (BET) of the MRIcro software package
(http:/ /www.sph.sc.edu/comd/rorden/mricro.html).
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TABLE I. A summary of published normative putamen right, left volume in milliliters and
computed asymmetry index of the putamen volume using several manual and automated methods along
with the control population demographics

N(H/S) Delineation Right PUT Left PUT
Author and year controls Age (years) methods Vol (mL) Vol (mL) Al Age r(p)
Ahsan et al., 2007 30 (15M; 25Rh) 31 (median) Rater no. 1 454 + 0.63 4.61 + 0.63 -1.5
20-54
Rater no. 2 4.34 £ 0.61 4.26 + 0.50 1.9
Automatic 6.72 + 0.64 7.03 + 0.70 —4.5
Anastasi et al., 2006 35 Rh (21M) 34 (mean) Automatic (NURBS) 343 £0.14 3.37 £0.19 34
22-43
Brambilla et al., 2001 22 (14M) 38 +£10 Manual 243 + 093 318 £ 092  —26.7 —0.33 (0.14)
de Jong et al., 2008 35 (M) 65 + 13 FSL-FIRST (SIENAX)  6.47 4+ 0.86 5.90 + 0.77 12.3
35 (F) 67 +12 5.56 + 0.75 524 + 0.61 59
Greenberg et al., 2006 138 (38M) 71+ 6 Automatic GRID 3.58 + 0.67 3.56 + 0.62 0.6 —0.22
60-85 0.32 £+ 0.06 0.32 £+ 0.06 —0.37
Gunning-Dixon et al., 1998 148 (Rh) 46.5 £ 172  Manual 4.36 + 0.61 4.02 £ 0.60 8.1 —0.41
82 (W) 47.4 4+ 18.1(W) 4.19 + 0.53(W) 3.88 £ 0.54 (W) 7.7 —0.43
66 (M) 45.7 + 16.5(M) 456 + 0.64(M) 4.18 £ 0.62 (M) 8.7 —0.43
18-77
Jacobsen et al., 2001 20 (OM) 35.0 + 6.8 ANALYZE 4.0 3.7 9.0 —0.40
22-48 0.291 £ 0.034  0.266 + 0.030
Jovicich et al., 2009 15 69.5 + 4.8 FreeSurfer 4.35 4+ 0.70 4.65 + 0.85 —6.6
4 34+3 5.64 + 0.89 5.88 + 0.83 —42
Keshavan et al., 1998 17 (12M) 229 4+ 5.1 Manual 291 + 0.89 2.37 + 1.13 20.5
Mcdonald et al., 2008 21 (10M) 33.0 £ 10.2  FreeSurfer ICV-cov 5.07 +£ 0.11 5.26 + 0.11 -3.7
Peran et al., 2009 30 (16M) 29.3 + 5.7 FSL-FIRST 6.66 + 0.61 6.47 + 0.73 2.9 —0.43
20-41 —0.43
Rosas et al., 2001 24 (12M) 412 4+98 Automatic 45+ 0.7 47 +0.7 —43 —0.36
29-62
Shattuck et al., 2008 40 (20F) 292 + 6.3 Manual 422 4+ 0.49 4.25 + 0.52 —0.7
19.3-39.5 LPBA40/AIR 5.13 + 0.61 517 + 0.73 —0.8
FLIRT 5.83 + 0.63 5.87 + 0.69 —0.7
SPM5 5.77 + 0.62 5.69 + 0.68 14
Vernaleken et al., 2007 18 M) 35.6 + 104 Manual 4.85 + 0.56 4.64 + 0.86 44 —0.61
Rh 24-60 —0.43

The putamen volume vs. age correlation coefficient was listed whenever provided in the original papers.

Notes:

1. Papers are alphabetized by leading author last name and year. Tabulated putamen volume (PUTV) values are mean =+ standard devi-

ation. The values are taken from healthy controls.

2. Putamen volume asymmetry index, Al = 2*(RPUTV — LPUTV)/(LPUTV + LPUTV) x 100%, where RPUTYV, right putamen volume
in mL; LPUTYV, left putamen volume in mL; Rh, right handed; M, males; F, females.

3. The age correlation (p) is the Pearson’s correlation coefficient, which corresponds to the linear model: ¥ = a + B * x, where x is age in
years and y may correspond to the absolute, covaried or ICV-normalized putamen right or left volume. Note that the slope of regres-
sion or atrophy annual rate is related to the Pearson linear correlation coefficient by the relation: B = r*s(y)/s(x).

4. Underlined values are putamen volumes to ICV percentage (e.g., covaried with ICV).

5. Tabulated putamen volume versus age correlations are all significant (P < 0.01).

DTI Data Processing

Although the DTI raw images were acquired with fat sup-
pression, all image volumes were semiautomatically stripped
to remove nonparenchymal tissue. Diffusion-weighted data
were distortion-corrected using the mutual information max-
imization approach [Netsch and Van Muisvinkel, 2004]. After
image distortion correction, the nondiffusion volume was
masked using the BET. All b0 and diffusion-weighted data
were resliced to attain isotropic voxels (Hasan et al., 2008c).

The diffusion-weighted data were decoded, and the diffusion
tensor volumes were diagnolized for subsequent quantitative
steps. The details of the DTI processing are provided else-
where [Hasan et al., 2007a, 2008c].

DTI-Based Tissue Segmentation

All DTI pre- and postprocessing stages resulted in AN-
ALYZE volumes. These volumes were subjected to subse-
quent steps that included tissue segmentation [Ashburner
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and Friston, 2005], nonlinear registration [Ashburner and
Friston, 1997], spatial normalization [Allen et al., 2008;
Good et al.,, 2001] and brain atlas labeling [Collins et al.
1995, 1999; Desikan et al.,, 2006; Evans et al.,, 1994; Ham-
mers et al, 2002; Tzourio-Mazoyer et al., 2002] imple-
mented in the individual brain atlases using statistical
parametric mapping (SPM) [Aleman-Gomez et al., 2007;
Tae et al., 2008; Tzarouchi et al., 2009] toolbox (http://
www.thomaskoenig.ch/Lester/ibaspm.htm). All original
and modified programs were developed in MATLAB
(http:/ /www.mathworks.com) based on SPM2 and SPM5
(Wellcome Department of Cognitive Neurology, London,
UK; http://www fil.ion.ucl.ac.uk/spm).

A pictorial of the main steps used in the atlas-based DTI
segmentation procedure is shown in Figure 1. Using DTI-
based clustering, the brain was segmented into WM, GM,
and CSF. The method uses a feature space obtained from a
large training set (see Fig. 1 in Hasan et al. [2007a]). The con-
trast in fractional anisotropy (FA) (Fig. 1a) maps between
CSF, WM, and GM and the cluster separability and discrimi-
nability of WM and GM based on the principal diffusivity
indices (Fig 1b). The CSF was segmented based on its high
diffusivity and low anisotropy [Cercignani et al., 2001; Frei-
dlin et al., 2007; Hadjiprocopis et al., 2005; Hasan et al.,
2007a; Jones et al., 2000; Pierpaoli et al., 1996; Wiegell et al.,
2003]. Subsequent steps used the DTI-segmented volumes
(Fig 1c) normalized (Fig 1d) to the Montreal Neurological
Institute template (http://www.mrccbu.cam.ac.uk/Imag-
ing/Common/mnispace.shtml) (see Fig le) and the interna-
tional consortium for brain mapping human brain
probabilistic atlases [Mazziotta et al., 1995; Mori et al., 2008;
Van Essen and Dierker, 2007]. The anatomically labeled
brain atlases had a voxel size =1 mm x 1 mm x 1 mm and
matrix = 181 x 217 x 181 (http://www.loni.ucla.edu/
Atlases/). A representative output is shown in Figure 1f,
which shows multiplanar views. Qualitative segmentation
results on the cortical lobes, and subcortical structures were
examined using available interactive atlases such as http://
www9.biostr.washington.edu/da.html and http://www.
radnet.ucla.edu/sections/DINR/index.html.

Because the segmented volumes (~200 subcortical and
cortical regions) were obtained in the DTI native space as
labeled volume masks, we were able to obtain directly the
corresponding volume-averaged mean values of the corre-
sponding DTI metrics (e.g., FA and mean diffusivity).

Validation of Regional GM Segmentation Results

For quantitative analyses, we compared the absolute vol-
ume obtained using the DTI-based methods with those pub-
lished previously using manual or automated methods
([Ahsan et al., 2008; see Table I). To reduce the number of
comparisons and avoid controversial issues related to later-
ality (see Table I), we only examined the results of the left
putamen. This structure was chosen as a representative
deep GM structure, because its gender-related developmen-
tal and aging trends have been studied extensively using

(ICBM Atlas)

Figure 1.

A pictorial illustration of the DTl-based atlas-driven method for
regional volume estimation (a) the fractional anisotropy and (b)
diffusivity maps are used to (c) cluster brain tissues into GM,
white matter, and CSF The tissue map is normalized (d) using
the ICBM/MNI (e) templates and (f) labeled atlases and then
transformed back in SPM to each subject’s original space (g).
The results shown in (g) are viewed in both sagittal and coronal
planes. Note that the ICBM atals used in this illustration con-
tains both lobar cortical regions and subcortical structures. The
CSF is assigned a yellow color in (c) and white color in (g).

MRI volumetric (Greenberg et al., 2008; Shattuck et al., 2008;
see Table I) and DTI region-of-interest (Lebel et al., 2008;
Pfefferbaum et al., 2009] or voxel-based [Camara et al., 2007]
methods. All participants were used to examine age trends.

Comparison of DTI Atlas-Based Segmentation
and 3D Tiw

We compared the volume results of the 2D DTI-based
segmentation with those obtained using the FreeSurfer
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analysis pipeline on the 3D high-resolution T1-weighted
data (Fischl et al., 2002). A subset of 31 right-handed ado-
lescents and young adults (18 males and 13 females of
equivalent age; age range, 15.83-28.83 years) were used for
this analysis. The details of the application and validation
of FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) tissue
segmentation to cortical and subcortical structures are
described elsewhere [Jovicich et al.,, 2009; MaCdonald
et al., 2008].

Because FreeSurfer results are obtained using a high-reso-
lution 3D data set that is acquired sagittaly, and the DTI-
based segmentation results are obtained using 2D axially
acquired data set. Therefore, we did not attempt in this work
to fuse the results into one common space as this would have
required additional nonlinear registration and warping pro-
cedures that could have biased the results obtained by each
analysis pipeline [Allen et al., 2008; Lacester et al., 2007; Shat-
tuck et al., 2008]. The absolute volumetry results relative and
the volume relative to the intracranial volume (ICV) obtained
by each method are reported in this manuscript.

Statistical Analysis

Group mean comparisons between males and females
were made using the t-test for unpaired groups. Within-
group comparisons were conducted using paired t-tests.
Correlations with age were based on the Pearson coeffi-
cient [Glantz, 2002]. Statistical comparisons between
regression coefficients and Bland-Altman bias analysis of
methods were conducted as described elsewhere [Glantz,
2002]. A P-value <0.05 (two-tailed) was considered statisti-
cally significant.

Data Quality and Reproducibility

Because the data from all healthy controls were collected
over a 4-year span at high SNR, we collected, using identi-
cal protocols a database of water phantom measurements,
and adult controls to assure the field uniformity and sta-
bility of the MRI scanner. The diffusion encoding (Ico-
sa2lb) provided three levels of SNR [Hasan and
Narayana, 2003], and hence the SNR dependence of the
DTI-metrics and estimates reported in this work were also
studied on all subjects [Hasan et al., 2008a].

RESULTS

We validated the DTI-based segmentation results in our
previous publication [Hasan et al., 2007a] using the whole
brain CSF, WM, and GM [Hasan et al., 2007b] and on re-
gional structures such as the corpus callosum [Hasan
et al., 2008c]. Because this manuscript is more concerned
with the GM atlas-based DTI segmentation results, we
used the left putamen volume as a representative bench-
mark to evaluate the accuracy and sensitivity of the new
approach to age and gender. The use of age and gender as

useful and sensitive variables to test and compare segmen-
tation results has been recommended [Hasan and Pedraza,
2009].

Comparison of DTI-Based and FreeSurfer Results
on the Left Putamen Volume

The volume of the left putamen using FreeSurfer was
6.080 £ 0.671 mL, whereas the DTI-based approach pro-
vided 4.815 £+ 0.766 mL. The volume of the left putamen
obtained using FreeSurfer and the DTI-based approach
correlated (r = 0.40; P = 0.03; N = 31; see Fig. 2a). There
was a significant difference between the two approaches
(P =1 x 1077). A Bland-Altman bias analysis (Fig 2b)
shows that FreeSurfer left putamen volumes are larger
than the DTI-based method. The FreeSurfer or T1-
weighted ICV and 2D-based estimated ICV were not sig-
nificantly different (e.g., 1559.255 + 178.421 mL wvs.
1569.948 + 138.596 mL; P = 0.715). The left putamen vol-
ume-to-ICV percentage (LPUT Vol/ICV *100) was signifi-
cantly larger using FreeSurfer compared to the DTI-based
approach (e.g., 0.392 £ 0.044 vs. 0.308 £ 0.063; P = 6 x
10" paired t-test).

The sensitivity of the estimated left putamen absolute
volume and volume-to-ICV ratio to age is plotted in Fig-
ure 2c,d, respectively. Note that the DTI-segmentation
approach predicts that left putamen volume-to-ICV per-
centage decreases with age (r = —0.43, P = 0.02), whereas
FreeSurfer results seem to be less sensitive to age effects (r
= —029, P = 0.12). A further statistical comparison
[Glantz, 2002] shows that the left putamen annual volume
loss rates obtained by FreeSurfer and DTI-segmentation
are not statistically different (P = 0.54).

DTI-Based Left Putamen Normalized Volume and
FA Gender and Age Effects

Males had larger ICV (ICV = 1607.9 + 1242 mL; N =
65) when compared with females (ICV = 1462.8 + 1155
mL; N=71; P <1 x 10719. The DTI-segmented left puta-
men average volumes were significantly larger in males
(5.108 £ 0.811 mL) when compared with females (4.641 +
0.932 mL; P < 1 x 10°). The left putamen volume-to-ICV
percentage was not significantly different between males
and females (0. 317 &+ 0.056 vs. 0.318 + 0.043; P = 0.954).

The left putamen volume-to-ICV percentage and corre-
sponding mean FA values are plotted and compared in
Figure 3a on both males and females and the entire sam-
ple (N = 136). Note that the putamen volume-to-ICV per-
centage decreased with advancing age for both males (r =
—0.267; P = 0.03) and females (r = —0.336; P = 0.004; Fig
3a). The annual putamen volume loss rate did not differ
between males and females (P = 0.67) and hence males
and females were pooled together. Figure 3b shows that
for the entire cross-sectional cohort (N = 136), the puta-
men volume-to-ICV percentage significantly decreased
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Figure 2.

Comparison of DTl-segmentation and FreeSurfer volume estima-
tion on the left putamen volume on the N = 31 sample. (a) A scat-
ter plot along with the linear regression analysis, (b) a bias analysis
using the Bland—Altman method, (c) scatter plots and regression
analysis of the dependency of the estimated left putamen volume

with age (r = —0.3; P = 0.0003). Figure 3c shows that the
FA of the left putamen significantly increased with age in
both males (r = 0.42; P = 0.0005) and females (r = 0.55; P
< 0.000001). The rate of FA increase with age did not dif-
fer between males and females (P = 0.34). A strong posi-
tive correlation between left putamen mean FA and age
was found on the entire cohort and is shown in Figure 3d
(r=049; P = 1.6 x 1079).

Application of the DTI-Segmentation

Figure 4 illustrates one novel application of the DTI re-
gional segmentation in the DTI native space. The seg-
mented GM volumes obtained using the new DTI-based
approach were fused with the DTI color-coded maps (FA-
modulated principal eigenvector) to enhance the accuracy

on age, and (d) scatter plots and regression analysis of the scatter
plots and regression analysis of the dependency of the estimated
left putamen volume on age. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com]

of quantitative DTI measurements using region-of-interest
or fiber tracking [Wakana et al., 2004].

DISCUSSION

In this report, we described and applied for the first
time a novel DTI-based and automated regional approach
for tissue segmentation that is based on intrinsic and core-
gistered volumes derived from DTI data in each subject’s
native space. In contrast to other approaches, we did not
warp the DTI data to the Tlw-volumes acquired from
each subject [Liu et al., 2006; Mabbott et al., 2006; Thotta-
kara et al., 2006]. The approach is based on a trained fea-
ture space (see Fig. 1 in Hasan et al. [2007a]) derived on a
population of subjects using the same high-SNR DT-MRI
protocol. This high SNR provided accurate estimation of
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Figure 3.

(a) Scatter plots of the DTI segmentation results of the left puta-
men volume-to-ICV for (a) both the 65 males and 71 females, (b)
the entire cohort (N = 136). The average fractional anisotropy
values of the left putamen volume is shown in (c) for both males

anisotropy and mean diffusivity in both WM and GM
[Hasan et al., 2007a]. In this report, we adapted our whole
brain tissue segmentation methodology to handle regional
cortical and subcortical tissue segmentation that incorpo-
rated well-established statistical and probabilistic atlases
[Collins et al., 1995; Maziotta et al., 1995; Mori et al., 2008]
as we proposed in our previous manuscript [Hasan et al.,
2007a].

In this manuscript, we have presented the DTI-based re-
gional segmentation results using the left putamen volume
and its corresponding age and gender effects on a large
cohort of healthy right-handed males and females. For val-
idation in this Technical Report, we have avoided lateral-
ity effects as this seems to be controversial in published
literature ([Ahasan et al., 2007; Ifthikharuddin et al., 2000;
see Table I). The absolute and ICV-normalized left puta-

and females and (d) the entire population. Note the gender-inde-
pendent effects, the decrease in putamen volume and the increase
in putamen FA with advancing age. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

men volumetry values and gender effects obtained using
the DTT approach are comparable to those published using
different populations and analysis methods [Ahsan et al.,
2007; Gunning-Dixon et al.,, 1998; Ifthikharuddin et al.,
2000; Péran et al., 2009; Raz et al., 2003; Walhovd et al.,
2005]. The age trends results using the young adults (N =
31) and the entire cohort (N = 136) are consistent with
published literature on the putamen ([MacDonald et al.,
1991]; see Table I).

The increase in the entire left putamen volume FA with
advancing age has been reported in DTI literature using
voxel-based [Camara et al.,, 2007] or DTI-ROI measure-
ments [Lebel et al., 2008; Pfefferbaum et al., 2009]. The
gender-independent and commensurate decrease in puta-
men volume and increase in corresponding FA with
advancing age has been also reported on other basal
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Figure 4.

lllustration of the application of DTl-based segmentation of gray
matter volumes to build a teaching brain digital atlas and to
improve the accuracy of quantitative DTI measurements (e.g.,
fiber tracking and region-of-interest). The figure shows in 3D mul-
tiplanar views a fusion of color-coded and FA-modulated principal
eigenvector map with the regional gray matter volume segmenta-

ganglia such as the caudate nuclei [Hasan et al., 2008a].
The decrease in basal ganglia GM volume has been
hypothesized to be related to neuronal and dendrite loss
[Raz et al., 2003], which is also related to cortical GM tis-
sue loss and the loss of corresponding WM connections
(see Hasan et al. [2008a] and references therein).

Our results on the volumetry of the left putamen indi-
cate some discrepancy with FreeSurfer, which provided a
26.3% overestimation that is not explained by scaling due
to ICV. The differences across methods cannot be attrib-
uted to the automated DTI approach alone. The “uned-
ited” FreeSurfer volumetry results have been reported to
be overestimated with respect to manually delineated val-
ues in a recent publication [Tae et al., 2008]. Discrepancies
between manual and atlas-based segmentation methods

tion also shown in 3D. The different shades of gray correspond to
deep subcortical and lobar regions while red is assigned to com-
missural fibers oriented right-to-left (e.g. corpus callosum), green
is assigned to association fibers oriented anterior-to-posterior
(e.g. cingulum), and blue is assigned to projection pathways ori-
ented superior-to-inferior (e.g. corticospinal tract).

have been reported on several brain structures including
the putamen [Shattuck et al., 2008].

To help readers further, we compiled Table I from pub-
lications that tabulated the putamen right and left volumes
on healthy controls in addition to putamen volume versus
age trends whenever documented. Table I shows some
discrepancy in reported normative putamen absolute vol-
ume and asymmetry [Brambilla et al., 2001; Keshavan
et al., 1998] using both manual and automated methods
that are not primarily explained by age or gender effects
(e.g., cf. Rosas et al. [2001] and Vernaleken et al. 2007]).
For example, Shattuck et al. [2008] reported a 21-39%
overestimation in left putamen volume using three auto-
mated Tlw and atlas-based methods compared to manual
delineation.
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Some major differences between our approach and those
commonly adopted for tissue segmentation should be
noted. The DTI approach used 2D EPI data with 3-mm
axial acquisitions, whereas the FreeSurfer used the high re-
solution T1-weighted data with 0.9375 isotropic voxels.
DTI approach uses intrinsic contrast metrics such as tensor
anisotropy and mean diffusivity, which are decoupled
from the original intensity of the raw data (see Hasan
et al. [2007a]). The average values of left putamen FA
obtained using our approach indicate minimal contamina-
tion with neighboring WM as confirmed by careful sec-
tion-by-section visual inspection of the segmentation
results (see Fig. 4). The FA in addition to mean diffusivity
values provided important and sensitive microstructural
quality control metrics to assess macrostructural tissue
segmentation fidelity.

Our study shows that the left putamen volume
decreases with age in both males and females using a lin-
ear regression model (see Fig. 2). Our results while being
consistent with several studies on children [Caviness et al.,
1996; Giedd et al., 1996], young adults ([Gunning-Dixon,
1998; Peran et al.,, 2009; see Table I) and older adults
[Greenberg et al., 2008] need also be compared with the
age trends reported in other studies across the human life-
span. For example, Walhovd et al. [2005] reported a cubic
putamen volume relation with age, and Zimmerman et al.
[2006] reported a quadratic trend which contradicts the
trends of steadily decreasing putamen volume in a large
study of older adults [Greenberg et al., 2006] and a longi-
tudinal study by Raz et al. [2003].

A more comprehensive compilation and analysis of pub-
lished putamen volumetry is beyond the scope of this
communication and will be pursued in a future meta-anal-
ysis study that will also discuss laterality.

The current work shows that DTI data in combination
with brain templates and anatomically labeled brain
atlases can be used to provide cortical and subcortical
volumetry that can be used to regularize or improve the
accuracy of several additional applications such as fiber
tracking [see Fig. 4; Hasan et al., 2009a].

CONCLUSION

The approach presented in this manuscript extends the
information content of the ~6-min DTI exam, which can
now be used for both macro and microstructural regional
evaluations of both gray and WM. Future advancements
in high field and data acquisition procedures to reduce
DTI limitations and challenges that include image distor-
tions [Gui et al., 2008], partial volume averaging at tissue
boundaries [Alexander et al., 2001; Papadakis et al., 2002],
crossing fibers [Wiegell et al., 2000; Tuch et al., 2002], and
improvements in spatial resolution [Hasan et al., 2009]
would help mitigate some of the challenges encountered
when using EPI for DTI. Because the segmentation
approach uses the DTI data in native space, the approach
basically provides a labeled anatomical atlas (~200

regions; see Figs. 1 and 4) for each subject that can be
used to reduce errors associated with ROI placement
needed for cortical or subcortical parcellations. In this
report, only the left Putamen was selected as a quantita-
tive benchmark of deep GM. The presentation and sum-
mary of all available cortical and deep GM will be
presented in future manuscripts across the human lifespan
to tackle subtle issues related to laterality using even
larger normative populations (additional data will be pre-
sented if requested).

The fusion of these subject-customized gray or WM
atlases with additional functional MRI [Van Essen and
Dierker, 2007], magnetoencephalography [Kamada et al.,
2007], metabolic [Kochunov et al.,, 2009], perfusion, or
relaxation measurements [Teicher et al., 2000] for studies
of brain-function relations in both health and disease
would help advance system-driven approaches in human
brain research and future clinical trials.
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