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Francisco J. Román,1 Eva Alfayate,2 Jesús Privado,5 Sergio Escorial,5
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Abstract: Neuroimaging studies provide evidence for organized intrinsic activity under task-free condi-
tions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze
changes in resting-state functional connectivity after videogame practice applying a test–retest design.
Twenty young females were selected from a group of 100 participants tested on four standardized cogni-
tive ability tests. The practice and control groups were carefully matched on their ability scores. The prac-
tice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in
the laboratory, showing systematic performance improvements in the game. A group independent com-
ponent analysis (GICA) applying multisession temporal concatenation on test–retest resting-state fMRI,
jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding
reveals an increased correlated activity during rest in certain predefined resting state networks (albeit
using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the video-
game. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous
cognitive functions. Hum Brain Mapp 34:3143–3157, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Neuroimaging studies have shown structural and func-
tional changes in the brain associated with varied motor,
visuomotor, perceptual, and cognitive practice or training
methods. These changes in cortical activity or structure
(e.g. gray/white matter) are usually interpreted as reflect-
ing the experience-dependent plasticity of neural systems
[Aydin et al., 2007; Olsen et al., 2003]. Thus, practice on
specific tasks may improve performance and modify the
underlying neural activation patterns and/or the macro-
scopic structure [Jolles et al., 2010].

Nevertheless, findings are heterogeneous because of fac-
tors such as the nature of practice or training demands
(i.e. task domain), and the specific features of the meth-
odological design (i.e. length of the practice period, com-
paring participants already trained who show specific
talents and skills or analyzing changes induced by a par-
ticular practice program, or neuroimaging methods) [Kelly
and Garavan, 2005]. Generally speaking, practice evokes
changes in brain areas supporting the cognitive require-
ments of the practiced task, even when the specific pattern
of changes varies across trained-tasks or procedures.

For instance, task-related functional magnetic resonance
imaging (fMRI) studies have been shown that patterns of
changes in activation associated with practice in sensory/
motor and higher-order cognitive tasks are different. Prac-
tice-related changes in activation in sensory-motor tasks
may increase connectivity within the primary cortex [e.g.
primary motor cortex, Karni et al., 1995], whereas activa-
tion changes related to practice on higher-order cognitive
tasks (e.g. working memory, visual attention, or planning)
might be associated with connectivity changes in a parieto-
frontal distributed network [Dahlin et al., 2008; Hempel
et al., 2004; Olesen et al., 2003]. For example, Wan et al.
[2011] compared brain activity of shogi’s professional and
amateur players. Shogi is a board game with high-level
cognitive requirements. Activations typically associated
with professional playing were located in the posterior
precuneus (related to visuospatial imagery, episodic mem-
ory retrieval, and working memory) during perception of
board patterns, and in the caudate nucleus (involved in
goal-directed behavior) during quick generation of the best
next. Based on these findings, Kelly and Garavan [2005]
have suggested that the predominant pattern of change
involves reduced activation across the network of brain
areas (association cortex) underlying task performance.
Practice in complex cognitive tasks increases connectivity
between hubs within this distributed network, perhaps
increasing neural efficiency.

Also, it has been shown that functional connectivity at
rest may change after perceptual [Lewis et al., 2009],
motor [Ma et al., 2011], and complex cognitive training
[e.g. working memory, Jolles et al., in press]. Analyses of
resting-state fMRI imaging data have demonstrated tem-
poral correlations in low frequency BOLD signals of
widely separated brain regions. These correlations quan-

tify intrinsic functional connectivity [Biswal et al., 1995; De
Luca et al., 2005; Fox and Raichle, 2007; Fox et al., 2005;
Greicius et al., 2003; Raichle et al., 2001; Smith et al., 2009].
Synchronized blood flow fluctuations, or functionally con-
nected networks, are spatially consistent across time (test–
retest reliability), subjects, resting-state conditions, con-
scious states, and analysis techniques [Beckmann et al.,
2005; Biswal et al., 2010; Boly et al, 2009; Damoiseaux
et al., 2006; De Luca et al., 2006; Fox and Raichle, 2007;Fox
et al., 2005; Shehzad et al., 2009; Smith et al., 2009; Toro
et al., 2008; Zuo et al., 2010] and they are significantly
related to structural connections [Buckner et al., 2008; Hag-
mann et al., 2008, Honey et al., 2009, van den Heuvel
et al., 2009]. Spatial patterns of coherent spontaneous fluc-
tuations overlap functional brain systems activated by spe-
cific task-evoked paradigms, including sensoriomotor,
visual and auditory processing, language, working mem-
ory, or attention systems [Beckmann et al., 2005; Biswal
et al., 1995; De Luca et al., 2005; Corbetta and Shulman,
2002; Cordes et al., 2000; Fox et al., 2005; Hampson et al.,
2002, 2006a,b; Vincent et al., 2006; Zuo et al., 2010]. Indeed,
correlation patterns of spontaneous activity may predict
the topography and/or variability of both brain responses
and behavioral performance to a range of perceptual,
motor, and cognitive tasks [Andrew–Hanna et al., 2007;
Fox and Raichle, 2007; Fox et al., 2006; Hampson et al.,
2006a; Kelly et al., 2008; Seeley et al., 2007]. The common
architecture of these correlation patterns under rest condi-
tions shows changes in the context of task performance.
Synchrony among areas involved in the task increases,
whereas it decreases for other networks, probably due to
compensatory mechanisms. Thus, intrinsic activity might
be understood as a dynamic prediction system: coactiva-
tions under resting conditions are possible because these
regions have frequently been activated together for goal-
directed brain function; and these coactivations remain
active as a prediction about future usage, mediating task
preparation processes. In short, intrinsic activity might
coordinate neuronal activity across several temporal and
spatial ranges. So, coherence of oscillatory spontaneous
fluctuations within functional systems increases for a bet-
ter large-distance neuronal communication, facilitating in-
formation processing and behavior [Buzsaki and Draguhn,
2004; Fox et al., 2005; Fox and Raichle, 2007; Salinas and
Sejnowski, 2001; Varela et al., 2001].

Functional connectivity is thought to play ‘‘a dynamic
role in brain functions, supporting the consolidation of
previous experience : : : i.e., the history of network activa-
tion’’ [Lewis et al., 2009]. Consistently, the covariance
structure of spontaneous brain networks engaged by var-
ied practice or training methods may be modified and
these changes might be related to performance improve-
ments. For example, an intense training on a shape-identi-
fication task modified the resting-state functional
connectivity and directed mutual interaction between
trained visual cortex and frontal–parietal areas (they were
independent before training and became negatively
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correlated after practice) [Lewis et al., 2009]. These
changes were associated with the degree of perceptual
learning (i.e. more negative correlation with improved per-
ceptual learning). Jolles et al. 2011 found that functional
connectivity within the parietofrontal network increased
after practice on a verbal working memory task and these
changes were associated to individual differences in after-
practice performance improvements.

Here, changes in resting-state functional connectivity,
presumably induced by practice (16 h spread over 4
weeks) on a cognitively challenging videogame, are ana-
lyzed in a sample of young females using a test–retest
design. A broad spectrum videogame was chosen, ‘‘Profes-
sor Layton and the Pandora’s Box,’’ because of its demon-
strated varied high level cognitive requirements (e.g.
intellectual performance and working memory capacity)
[Quiroga et al., 2009, 2011]. The practice group solved var-
ied puzzles demanding reasoning, along with mental
manipulation of verbal, spatial, and numerical informa-
tion. These puzzles increased their complexity across ses-
sions. The control group (carefully matched with the
practice group across several relevant variables) remained
in a ‘‘passive condition.’’ Therefore, we contrast gaming
versus not gaming.

Structural and functional neuroimaging studies provide
evidence for a distributed parietofrontal network relevant
for high level cognition, such as reasoning, working mem-
ory, short-term memory, and attention [Colom et al., 2006,
2007, 2009, 2010a, 2011; Corbetta and Shulman, 2002;
Gläscher et al., 2010; Hampson et al., 2006a,b; Jung and
Haier, 2007; Karama et al., 2009, 2011, Song et al., 2008,
2009; van den Heuvel et al., 2009; Vincent et al., 2006;
Wang et al., 2011]. Because of the nature of the selected
videogame, changes in brain networks topographically
overlapping these parietofrontal regions are predicted.
Probable effects due to both the passage of time on func-
tional connectivity and baseline intellectual performance
are controlled by comparing the practice and control
groups. Reliable networks are selected for studying
changes in resting state connectivity presumably induced
by practice.

METHOD

Participants

The sample comprised 20 young females (mean age for
the complete group ¼ 18.95; SD ¼ 2.65, mean age practice
group ¼ 19.60; SD ¼ 3.69, mean age control group ¼
18.30; SD ¼ 0.48) from ‘‘Colegio Universitario Cardenal
Cisneros’’ (Madrid). Volunteers were selected from a N ¼
100 database taking into account the following criteria: (1)
no history of psychiatric or neurological illness, (2) little
previous experience with videogames and no experience
with any version of ’Professor Layton’ game (by Nin-
tendo), (3) right-handed, and (4) varied in their level of
cognitive abilities and skills assessed with a set of standar-

dized tests. The practice and control groups were carefully
matched by general cognitive ability [differences between
groups were not significant (p < 0.01)]. Table II shows the
descriptive statistics for each group and the complete sam-
ple on the cognitive ability tests. Written informed consent
was obtained in accordance with regulations of Fundación
CIEN-Fundación Reina Sofia (Madrid). The local ethical
committee approved the study.

Procedure

Participants completed a battery of four reasoning tests
and they were submitted to a 6-min resting-state fMRI
scanner (rest quietly with eyes closed) in two blocks (both
intelligence measures and rsfMRI scan) separated by 4
weeks (test–retest). Between these blocks, 10 females (prac-
tice group) were trained during a maximum of 16 h (2 h
by session, two sessions by week) on a pack of reasoning
puzzles (Professor Layton and The Pandora’s Box, by Nin-
tendo) under strict supervision in the laboratory. Retest
(Session 2) replicated the first, just changing the items
(even-test vs. odd-retest numbered items). In order to con-
trol for retest effects, resting brain activity of the practice
group was compared with the remaining females (control
group). General cognitive ability scores were also consid-
ered for control purposes. This is unusual in previous
research, but we reasoned that individual differences in
intelligence might mediate both videogame performance
[Colom et al., 2010b, Quiroga et al., 2009, 2011] and inter-
subject variability in the analyzed resting state networks
[Song et al., 2008, 2009; van den Heuvel et al., 2009; Wang
et al., 2011].

Behavioral Measures

Intelligence

Screening versions of four well-known reasoning tests
were used: (1) the Raven Advanced Progressive Matrices
test (RAPM), along with the (2) abstract reasoning (AR),
(3) verbal reasoning (VR), and (4) spatial relations (SR)
subtests from the Differential Aptitude Test (DAT-5) Bat-
tery. Accuracy scores were calculated for each measure.
For general intelligence (g) an omnibus measure was
obtained (RAPM þ DAT-AR þ DAT-VR þ DAT-SR ¼ 83
items).

The RAPM comprises a matrix figure with three rows
and three columns with the lower right hand entry miss-
ing. Participants choose, among eight alternatives, the one
completing the 3 � 3 matrix figure. DAT-AR is a series
test based on abstract figures. Each item includes four fig-
ures following a given rule, and participants choose one of
five possible alternatives. DAT-SR is a mental folding test.
Each item is composed by an unfolded figure and four
folded alternatives. The unfolded figure is shown at the
left, whereas figures at the right depict folded versions.
Participants choose one folded figure corresponds to the
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unfolded figure at the left. DAT-VR is verbal reasoning
test. A given sentence stated like an analogy must be com-
pleted. The first and last words from the sentence are
missing, so a pair of words must be selected to complete
the sentence from five possible alternative pairs of words.
For instance: ‘‘ : : : is to water like eating is to : : : (A) Tra-
velling-Driving, (B) Foot-Enemy, (C) Drinking-Bread, (D)
Girl-Industry, (E) Drinking-Enemy’’. Only one alternative
is correct.

Cognitive practice

‘‘Professor Layton and The Pandora’s Box’’ is a ‘‘solving
history’’ (mystery) videogame. To advance on the story,
the player must solve puzzles built with different charac-
ters. The game includes 138 puzzles (plus 15 extra puz-
zles) demanding reasoning and mental manipulation of
spatial, numerical, and verbal information (examples are
depicted in Fig. 1). Solved puzzles per hour of practice
were systematically registered.

Imaging Methods

Data acquisition

Images were acquired on a General Electric Signa 3T
MR Scanner (General ElectricHealthcare, Farfield, CT)
using a whole-body radiofrequency (RF) coil for signal ex-
citation and quadrature 8-channel coil for reception. For
the functional scan, 6 min Gradient-Echo EPI were
acquired with the following sequence parameters: repeti-
tion time (TR) ¼ 3,000 ms, echo time (TE) ¼ 28.1, flip
angle ¼ 90�, 36 oblique ACPC-oriented slices, FoV ¼
24 cm, slice thickness ¼ 2.4 mm, spacing between slices ¼
0.3 mm, acquisition matrix ¼ 96 � 96. One hundred twenty
volumes were acquired during the resting-state scan.

For the structural image, a high-resolution three-dimen-
sional T1-weighted Gradient Echo-SPGR with parameters:
1-mm slice thickness, 260 � 260 matrix, Preparation Time
¼ 500 ms, TE ¼ 4.2 ms, TR ¼ 9.2 ms, flip angle 8�, com-
plete volume with 158 sagittal slices.

Data preprocessing

RsfMRI images were analyzed using FSL (fMRIB Soft-
ware Library; available at: www.fmrib.ox.ac.uk/fsl) [Smith
et al., 2004; Woolrich et al., 2009]. The preprocessing
method applied to the images was divided into different
stages. First, a slice timing correction for interleaved
bottom-up acquisition using a sinc interpolation was
applied; then head motion correction was performed using
the algorithm MCFLIRT [Jenkinson et al., 2002] to obtain
spatially realigned images across volumes. Furthermore, a
spatial smoothing of 6 mm FWHM and a high-pass tem-
poral filter (100 s) were used. In addition, functional
images were coregistered to its three-dimensional high-re-

solution anatomical images and normalized to MNI152
phantom using the FLIRT algorithm as found in FSL.

ICA analysis and dual regression

To obtain group independent spatial maps, the multi-
variate exploratory linear optimized decomposition into
independent components (MELODIC) [Beckmann and
Smith, 2004] toolbox in FSL (FMRIB Software Library;
available at: www.fmrib.ox.ac.uk/fsl) was used. Temporal
Concatenation Group Independent Component Analysis
(TC-GICA) was conducted to generate group-level compo-
nents across all participants and sessions [Beckmann et al.,
2005]. This approach consists of three fundamental steps:
(1) estimation of a mean covariance matrix: all 40 prepro-
cessed and normalized to MNI152 standard space individ-
ual fMRI datasets (20 test and 20 retest; 120 volumes each)
were temporally concatenated and used to estimate the
mean covariance matrix; (2) PCA reduction of individual
datasets. The number of components was restricted, as
suggested by Smith et al. [2009], to study large-scale spa-
tial networks. Here it was fixed to 25 components as
reported by Damoiseaux et al. [2006]. Before PCA, data
must be demeaned; also, as part of the pre-ICA process-
ing, all voxels’ time series were variance normalized
[Smith et al., 2009]; and (3) probabilistic ICA was con-
ducted on temporally concatenated data. This procedure
produced 25 group independent spatial maps.

A spatial mixture model was then applied to each com-
ponent map to infer whether the voxels were significantly
modulated by the associated estimated independent com-
ponent (IC) timeseries (p < 0.5). All components were
standardized into Z-scores maps by dividing the relevant
component weight by the standard deviation of the back-
ground noise. These maps were a measurement of the sig-
nal-to-noise ratio (SNR). The 25 ICs were sorted into two
broad classes: biologically plausible/functionally relevant
components or RSNs, and scanner/physiological artifac-
tual components (cerebrospinal fluid, white matter, head
motion, and large vessels artifacts). The inspection was
made visually based, primarily, on each component’s spa-
tial profile following criteria purposed by Kelly et al.
[2010]: a component was classified as ‘‘noise’’ (NIC) when
90% or more of it ‘‘activations’’ or ‘‘deactivations’’ were
localized ‘‘in peripheral areas or in a spotty or speckled
pattern : : : without regard for functional–anatomical boun-
daries’’ (p. 234). In contrast, they were identified as ‘‘func-
tionally relevant network’’ (RSN) when at least 10% of the
activations or deactivations were found in small to larger
grey matter biologically plausible brain areas. The second
step examined the time series-based power spectrum pro-
file. Components were considered ‘‘noise’’ when (1) more
than 50% of the power in the Fourier Frequency spectrum
of the component’s time course is over 0.1 Hz; or/and (2)
one or more large (greater than five standard deviations),
abrupt (over 6 s or less) changes appear in the normalized
time course; or/and (3) there is a sharply and regularly
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Figure 1.

Professor Layton and the Pandora’s Box. Examples of (A) ‘‘spatial’’ puzzle, (B) ‘‘general’’ puzzle,

and (C) ‘‘verbal’’ puzzles. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r Videogame Practice and Functional Connectivity r

r 3147 r



alternating up-and-down time course; (4) sinus coactiva-
tion: roughly 10 or more thresholded voxels is presented
in the superior sagittal sinus (p. 234–235). Nine RSNs pre-
viously related to functionally relevant brain functions
were chosen [Beckman et al., 2005; Damoiseaux, 2006,
2008; Filippini et al., 2009; Perlbarg and Marrelec, 2008;
Smith et al., 2009; Shehzad et al., 2009; Toro et al., 2008;
Zuo et al., 2010] and labeled accordingly (see Fig. 2).

It is important to note that TC-GICA analysis was
applied using the entire dataset from the 20 participants
across the two scans (a total of 40 scans: test and retest).
This was done for providing a setup equivalent to studies
based on control-patient populations making their group
level analyses over the large dataset rather than over a sin-

gle subset [Damoiseaux et al., 2008; Filippini et al., 2009;
Rombouts et al., 2009; Zuo et al 2010]. Further, this allows
obtaining the best possible ICA estimation multiplying
sample size by a factor of 2.

To perform intersubject analysis, each subject-specific
temporal dynamics and spatial map related to each group
IC was computed using a dual regression procedure. This
was done in two steps: (1) each group IC spatial map was
used as a mask in a spatial regression obtaining a subject-
specific time course associated to that group IC, and (2)
the obtained time courses in the first regression were used
in a temporal regression to estimate a subject-specific spa-
tial map per group component. The result of this dual
regression approach provided 40 � 25 subject-specific

Figure 2.

Visually identified group-level components obtained by temporal

concatenation group independent component analysis (TC-

GICA): fourth parietofrontal networks (IC1, IC21, IC24, and

IC25), two default mode networks (IC2; IC23 ¼ posterior cin-

gulate/ precuneus subsytem), one sensoriomotor (IC22) net-

work, one mainly temporal network (IC5), and one visual

network (IC8). Sagittal, coronal, and axial views (showed as x, y,

z according to MNI152 standard space) of these nine function-

ally relevant group-level independent components (ICs) are dis-

played according to neurological convention (right on right). The

percentage of variance explained by each IC is displayed below

each IC. The z-statistic map legend for all networks is shown in

the up right corner. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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spatial maps related to the 25 groups ICs per subject and
session.

Statistical Analyses

Test–retest reliability

Intraclass correlation coefficients (ICC) [Shrout and
Fleiss, 1979] were used for assessing intersession reliability
in the RsfMRI per group level IC. The specific form used
here is [Caceres et al., 2009]:

ICC ð3; 1Þ ¼ BMS � EMS

BMSþ ðk� 1Þ EMS

where, BMS ¼ sum of mean squares between subjects,
EMS ¼ error mean squares, k ¼ number of repeated
sessions

Test–retest reliability was assessed using the dedicated
MATLAB reliability toolbox [Caceres et al., 2009] in con-
junction with SPM8. One ICC per relevant group-level com-
ponent was computed using as input the individual dual
regression outputs per subject and session (20 pairs of con-
trast images). The mode [the first most frequent ICC value,
like in Zuo et al., 2010] of the ICC distributions per group-
level component were obtained for three different brain
areas: (1) the whole brain, where the nonbrain structures
were masked, (2) the activation network, defined by voxels
in each relevant spatial group IC map, where Z-scores
exceeded 2.3 (p < 0.01), and (3) the deactivation network,
defined by voxels in each relevant spatial group IC map,
where the Z-scores were lower than �2.3 (p < 0.01).

Voxel-wise analyses

For studying practice effects on functional connectivity,
IC maps for the practice and control groups at both ses-
sions were compared using permutation-based inference
(5,000 permutations) [Nichols and Holmes, 2002] with a
threshold-free cluster enhancement (TFCE) method as it is
found in FSL (randomize) [Smith and Nichols, 2009]. The
multiple comparisons nonparametric permutation
approach relies on minimal assumptions, deals with the
multiple comparisons issue, and can be applied when the
assumptions of a parametric approach are untenable for
obtaining an empirical null distribution. The rationale for
choosing non-parametric permutation is directly related to
the nature of the analyzed sample and to the employed ex-
perimental design. It is better for multisubject fMRI
involving small numbers of subjects, where analysis must
be conducted at the subject level to account for intersubject
variability [Nichols and Holmes, 2002]. Also, the TFCE
method is more sensitive than voxel-wise thresholding in
finding the ‘‘true signal’’ making possible cluster-based in-
ference without specifying an arbitrary cluster-forming
threshold. TFCE allows enhancing individual voxels pro-
portionally to their level of local cluster support at a wide

range of different thresholds, while still facilitating a fun-
damentally voxel-wise comparison.

Two t-tests were computed, adding Z-normalized intelli-
gence scores as a confound regressor: (a) paired t-test for
related measures (two statistical contrasts obtained: retest
> test and retest < test) for the practice group to inspect
significant increases or decreases on regional functional
connectivity after practice, (b) unpaired t-test for related
measures for both sessions in the two groups [two statisti-
cal contrasts obtained: practice group (retest–test) > con-
trol group (retest–test) and control group (retest–test) >
practice group (retest–test)] to study specific effects of
practice on functional connectivity. Results were consid-
ered significant at P < 0.005 uncorrected and cluster size
¼ 10, because statistical maps did not survived FWE cor-
rection. We assume these as non-‘‘false-positive’’ results
noting that (1) we applied an accurate and sensitive meth-
odology for detecting variations across regions in a small
sample, and (2) significant results are coherent with theo-
retical expectations based on previous research (regions
that exhibited changes were indeed located in the parieto-
frontal network). Moreover, chosen RSN were obtained by
ICA (which distinguishes artifactual noise and functionally
relevant signal) and selected from a set of networks
according to their intersession reliability (ICC) in our sam-
ple (which secures the analysis of practice-related changes
on stable networks). Nevertheless, because uncorrected
statistics were considered results should be interpreted
with caution.

We also directly link changes on functional connectivity
(individual IC maps) and increases in cognitive perform-
ance after practice sessions. A statistical permutation test
was computed per component of interest using randomize
from FSL. We defined as regressor the mean of difficulty
solved by each subject in the training group (10 females).
Z-normalized intelligence scores in Session 1 were added
as confound covariable. Each statistical analysis used as
input the difference between sessions (Retest minus Test)
in individual beta maps obtained after the dual-regression
procedure. Results were considered significant for P <
0.005 uncorrected using a threshold-free cluster enhance-
ment (TFCE) [Smith and Nichols, 2009].

Statistical analyses

Statistical analyses for the behavioral measures were
conducted using SPSS 15 (Statistical Package for the Social
Sciences).

RESULTS

Group-Level Components: Test–Retest Reliability

Across Sessions and Subjects

Twenty-five group-level components resulting from TC-
GICA analysis across sessions and subjects (approximately
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70% of explained variance) were visually inspected. Based
on biological relevance and plausibility of their spatial
maps plus time series power spectrum profiles, nine ICNs
(Fig. 2) previously related to relevant and high-order brain
functions or systems [Beckman et al., 2005; Demoiseaux
et al., 2006, 2008; Perlbarg and Marrelec, 2008; Shehzard
et al., 2009; Toro et al., 2008; Zuo et al., 2010] were chosen:
four parietofrontal networks (IC1, IC21, IC24, and IC25),
two default mode networks (IC2; IC23 ¼ posterior cingu-
late/precuneus subsytem), one sensoriomotor (IC22) net-
work, one mainly temporal network (IC5), and one visual
network (IC8).

ICCs were obtained for all relevant visually selected ICs.
As Table I shows, activations within networks were more
reliable than deactivations (except for IC1 and IC21), and
both were more reliable than the whole brain. Components
showed moderate to high test–retest reliability (modal
ICC: 0.50 to 0.65). Only two components, IC5 and IC8,
exhibited low reliability (modal ICC: 0.378 and 0.046,
respectively) so they were excluded for subsequent
analyses.

Intelligence Differences and Performance in

Practice Sessions

A mean of solved difficulty per hour score was com-
puted taking into account the difficulty rating by puzzle
(provided by Nintendo). Difficulty scores during practice
sessions revealed strong improvements over time (Fig. 3).
Solved puzzles were mainly grouped and labeled ‘‘verbal,’’
‘‘spatial,’’ ‘‘abstract,’’ and ‘‘general,’’ according to their
mental processing requirements.

The descriptive statistics and correlation matrix for the
intelligence measures in both sessions are shown in Table

II. The administered intelligence tests showed distinguish-
able loadings on a composite factor representing general
intelligence (g). Further, these measures were also distin-
guishable by performance variability. Changes on intelli-
gence scores between sessions were also studied
computing a t-test for related measures. Results showed
nonsignificant differences (P < 0.01) between Session 1
and Session 2 in both groups (practice and control) for all
the intelligence measures.

Stepwise linear regression was carried out for predicting
intelligence measures. General intelligence (g) and DAT-
VR scores in Session 1, were predicted by verbal puzzles
[(b ¼ 0.78; R2 corrected ¼ 0.56, P < 0.01) and (b ¼ 0.79; R2

corrected ¼ 0.58, P < 0.01) respectively]; DAT-AR scores
were predicted by verbal and spatial puzzles (b ¼ 0.82
and b ¼ �0.45, respectively; R2 corrected ¼ 0.70, P < 0.01);
RAPM scores were predicted by abstract puzzles (b ¼
0.71; R2 corrected ¼ 0.44, P < 0.05); DAT-SR scores were
predicted by general puzzles (b ¼ 0.71; R2 corrected ¼
0.44. P < 0.05). Therefore, solving puzzles during practice
sessions required reasoning, verbal, and spatial skills.

Intelligence differences at Session 1 predict variability
on behavioral performance improvements during practice
sessions: mean of difficulty solved (b ¼ 0.77; R2 corrected
¼ 0.54, P < 0.01) and number of hours needed to finish
the videogame (b ¼ 0.71; R2 corrected ¼ 0.43, P < 0.05).
Females who finished the videogame (t-test for independ-
ent samples, P < 0.01) were on average more intelligent at
Session 1 (mean ¼ 51.67) than those that failed to finish
(mean ¼ 37.75) (t(8) ¼ 3.557; d ¼ 2.52).

TABLE I. Mode for the intraclass correlation coefficients

(ICC) distributions per group-level component obtained

for three different brain areas: (1) brain: the whole

brain, where the nonbrain structures were masked; (2)

network: the activation network, defined by the voxels

in each relevant spatial group IC map, where z-scores

exceeded 2.3 (P < 0.01) (activations); and (3)

deactivations: the deactivation network, defined by the

voxels in each relevant spatial Group IC map, where the

z-scores were lower than 22.3 (P < 0.01)

IC Brain Network Deactivations

1 0.431 0.435 0.439
2 0.343 0.624 0.440
5 0.154 0.378 0.198
8 0.068 0.046 0.199
21 0.275 0.416 0.617
22 0.108 0.424 0.382
23 0.286 0.547 0.395
24 0.329 0.687 0.294
25 0.302 0.587 0.309

Figure 3.

Practice improvements in ‘‘Professor Layton and The Pandora’s

Box’’ measured by difficulty levels of the solved puzzles. The

graph only extends to 13 h on the x-axis because from that

point several participants systematically finish the standard game:

three in 13 h, one in 14 h, one in 15 h, and one in 16 h. These

six participants keep playing but using problems that cannot be

compared with those organized for the standard game.
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Regional Changes on Functional Connectivity

After Videogame Practice

Voxel-wise analyses using permutation methods (TFCE;
p < 0.005; cluster size ¼ 10) were used to study significant
test–retest changes on functional connectivity in the prac-
tice group compared with the control group, controlling
for intelligence differences (unpaired t-test for related
measures).

Figure 4 shows several areas in which changes could be
attributed to practice (i.e. where beta values at Session 2
were greater than at Session 1 in the practice group as
compared with the control group). Importantly, no signifi-
cant changes were found in the control group as compared
with the practice group.

Almost all relevant changes were localized at the left
hemisphere, mainly on parietal, prefrontal, and temporal
regions: lateral temporal (posterior inferior and middle,
fusiform and temporal pole), medial temporal (hippocam-
pus, parahippocampal gyrus), anterior and central precu-
neus, dorsolateral prefrontal, and ventrolateral prefrontal.
Significant changes on bilateral thalamus, right precuneus,
bilateral posterior cingulate (PCC), and left anterior cere-
bellum were also found.

Voxel-wise analyses using permutation methods and con-
trolling for intelligence differences (p < 0.005 uncorrected;
cluster size ¼ 5) showed several areas in which mean of
solved difficulty score were positively related to changes on
connectivity. As it can be seen in Figure 5, improvements on
videogame basically showed positive correlations with
large-scale synchronization between several parietal, frontal,
and temporal regions involved in high-order cognitive proc-
essing across components. Main regional findings are con-
centrated on bilateral superior parietal (precuneus),
posterior cingulated, retrosplenial cortex, inferior parietal/
supramarginal (BA40), temporoparietal and occipitotemporal
junctions and posterior temporal (BA21/22 Wernicke’s area),
left temporal pole, bilateral bilateral parahippocampal gyrus,
left inferior frontal gyrus, bilateral dorsolateral and ventro-
medial prefrontal (BA10, 11), left middle frontal gyrus
(BA9), anterior cingulate (BA24, 32) and bilateral cuneus
(BA18, 19), bilateral cerebellum, and thalamus. No negative
correlations were found. Thus, improvements on videogame
were also related to connectivity changes on several key
regions for high order cognition.

Statistical maps for the practice group before and after
videogame practice (paired t-tests), suggest that the
observed changes (in both above-mentioned contrasts)
mainly denote connectivity improvements (increases in
functional connectivity measured as z-value in dual regres-
sion individual maps).

DISCUSSION

Here we have shown that practice on a videogame with
high-level cognitive requirements can be tentatively associ-
ated with changes in the synchrony levels of low
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frequency spontaneous fluctuations in some, but not all,
resting state networks. Changes occurred mainly on left
temporal, parietal, and frontal resting networks, most prob-
ably because they were especially required during practice.
Behavioral improvements in the videogame across practice
sessions were related to more efficient large-scale connected
key regions presumably involved in varied memory and ex-
ecutive functions. Admittedly, a small sample was consid-
ered, but participants within the practice and control
groups were carefully selected for representing a wide
range in general cognitive ability, which is unusual. Never-
theless, because uncorrected statistics were used, results
should be interpreted with caution, even when they sup-
port the main prediction. Further, they cannot be immedi-
ately generalized to other videogames or samples.

Considering the proposed role of functionally organized
spontaneous BOLD activity in brain function [Buzsaki and

Draguhn, 2004; Fox and Raichle, 2007; Fox et al., 2005; Sali-
nas and Sejnowski, 2001; Varela et al., 2001] changes
mainly in temporal-parietofrontal functional connectivity
might be understood from the frequent coactivation of
these regions during videogame practice.

Changes were prominent on parietofrontal network espe-
cially devoted to a wide variety of complex cognitive proc-
essing (such as attention, working memory, and episodic
memory retrieval). Comparing control and practice groups,
functional connectivity changes on parietal cortex were com-
monly detected in central precuneus, which plays a multimo-
dal integrative role [Margulies et al., 2009]. Consistently,
long-distance central precuneus and left dorsolateral prefron-
tal brain regions were simultaneously modified in the same
component. This central precuneus region has been previ-
ously related to the parietofrontal control system, because of
its strong resting state functional connectivity with the

Figure 4.

Voxel-wise analyses using permutation methods (TFCE p < 0.005; cluster size ¼ 10). Areas in

which changes in functional connectivity after practice were significantly higher for the practice

group compared with the control group are displayed (IC1 ¼ red; IC2 ¼ green; IC23 ¼ violet;

IC22 ¼ blue; L ¼left; R ¼ right). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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multisensory angular gyrus and dorsal prefrontal cortex,
which is consistent with our results. Thus, considering the
role of this network on integration and control of information
processing, we suggest that practice on this type of video-
game increases the functional connectivity within brain net-
works underlying higher-order executive processing, such as
monitoring information in working memory and action
planning.

Moreover, functional connectivity in the posterior cingu-
late cortex was modified along with two functionally rele-
vant pathways, namely (1) the parietofrontal control
system, including multimodal integration temporal areas,
and (2) the hippocampal memory system, including the
left prefrontal cortex, hippocampus, and parahippocam-
pus. Interestingly, functional connectivity on bilateral thal-
amus was also modified. This structure plays an important
role in sensory and motor integration. In addition, tha-

lamic regions interact with the hippocampus for support-
ing learning and memory [Aggleton et al., 2010]. These
interactions seem relevant for episodic memory.

Taken together, these results suggest that the cognitive
practice employed here involve prefrontal regions interact-
ing with posterior memory-related areas for cognitive con-
trol of encoding and retrieval processes when the
maintained information is monitored and manipulated in
the working memory system [Takahashi et al., 2007]. This
key finding is consistent with previous studies exploring
how resting-state functional connectivity is modified by
practice, specifically functional systems presumably
involved in the practiced cognitive activity. Several studies
have found that parietofrontal regions are especially re-
sponsive to practice on working memory [Jolles et al., in
press], visuomotor [Albert et al., 2009], or visuospatial
tasks [Lewis et al., 2009].

Figure 5.

Voxel-wise analyses using permutation methods (TFCE p < 0.005

uncorrected; cluster size ¼ 5). Areas in which mean of solved dif-

ficulty per hour score (practice group) were positively related to

changes on connectivity (retest–test) across relevant independent

components (IC) are shown (IC1 ¼ red; IC2 ¼ dark blue; IC21 ¼
green; IC22 ¼ yellow; IC23 ¼ pink; IC24 ¼ violet; IC25 ¼ light

blue; L ¼left; R ¼ right). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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We relied upon a cognitive practice program based on
the commercial videogame ‘‘Professor Layton and The
Pandora’s Box’’ (by Nintendo). To successfully play this
game, involvement of several complex cognitive processes
and skills is strongly required [Quiroga et al., 2009, 2011].
These processes and abilities are related to variability on
standardized intelligence measures, which is consistent
with our findings showing that intelligence differences pre-
dicted variability in practice performance (achieved mean dif-
ficulty and number of hours needed to finish the videogame).
These shared requirements of high-level cognition might
explain why changes on functional connectivity related to
improvements on the videogame (mean of difficulty solved)
overlap discrete brain regions supporting intelligent perform-
ance as summarized by the Parieto-frontal Integration Theory
(P-FIT) [Colom and Thompson, 2011; Colom et al., 2010a; Jung
and Haier, 2007]. This model nominates discrete brain regions
supporting distinguishable information processing stages: (1)
occipital and temporal areas for processing sensory informa-
tion, (2) integration and abstraction of sensory information by
parietal regions, (3) interaction between parietal areas and the
frontal lobes for supporting problem solving, evaluation, and
hypothesis testing, and (4) response selection and inhibition of
alternative responses supported by the anterior cingulate. All
these regions are relevant, but Jung and Haier [2007] under-
score the dorsolateral prefrontal cortex (BAs 9, 10, 45, 46, and
47) and the parietal cortex (BAs 7 and 40) for intelligence and
working memory capacity. Consistently, here we reported
improvements in functional connectivity between dorsolateral
prefrontal and parietal (precuneus and supramarginal) regions
related to highest videogame performance, even when indi-
vidual intelligence differences were controlled.

Finally, it has been suggested that cognitive training or
practice programs affecting higher association cortices, and,
specifically, neural changes in the parietofrontal network,
should improve performance in nontrained similar tasks [see
Klingberg, 2010]. Here we reported regional improvements in
functional connectivity after playing a commercial game, sug-
gesting that this practice requires higher-order abilities. But
even when these changes overlap key regions for intellectual
performance and reflects improvements solving the video-
game challenges, intelligence scores did not increase after
practice. Actually, it is not rare. The long history of research
on cognitive training have been showing that although per-
formance on trained tasks can increase dramatically after prac-
tice, transfer, or generalizability to other tasks or domains
usually fails [Colom et al., 2010]. Therefore, it is unclear
whether or not these functional connectivity improvements
are stronger enough for influencing behavioral performance in
related areas like intelligence tests. However, although highly
interesting, this point is far beyond our main research goal.

CONCLUSION

The present study suggests that practice on a cognitively
demanding commercial videogame increases correlated ac-
tivity in certain predefined theoretically relevant resting state

networks (albeit using uncorrected statistics). As demon-
strated by Quiroga et al. [2009, 2011] cognitive practice pro-
grams demanding high-level cognition involve (a) novelty,
(b) moderate complexity, and (c) working memory capacity.
These cognitive requirements are consistent with connectiv-
ity changes in spontaneous long-distance brain networks af-
ter practice revealed by the present study. Specifically,
functional connectivity among discrete regions presumably
involved in (1) early stages of new learning (thalamus-hip-
pocampus-prefrontal) and (2) processing within the working
memory system of previously integrated incoming informa-
tion (temporal-parietal-prefrontal) was modified.
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Quiroga MaA, Herranz M, Gómez-Abad M, Kebir M, Ruiz J,
Colom R (2009): Video-games: Do they require general intelli-
gence? Comput Educ 53:414–418.

Quiroga MA, Román FJ, Catalán A, Rodrı́guez H, Ruiz J, Herranz
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