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Abstract: Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis
set was used to reveal functionally connected networks and their temporal progression over a multi-
stage verbal working memory trial in which memory load was varied. Four components were
extracted, and all showed statistically significant sensitivity to the memory load manipulation. Addi-
tionally, two of the four components sustained this peak activity, both for approximately 3 s (Compo-
nents 1 and 4). The functional networks that showed sustained activity were characterized by
increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and
left supramarginal gyrus, and decreased activations in the primary auditory cortex and ‘‘default net-
work’’ regions. The functional networks that did not show sustained activity were instead dominated
by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical
regions, and superior parietal cortex. The response shapes suggest that although all four components
appear to be invoked at encoding, the two sustained-peak components are likely to be additionally
involved in the delay period. Our investigation provides a unique view of the contributions made by a
network of brain regions over the course of a multiple-stage working memory trial. Hum Brain Mapp
32:856–871, 2011. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

Working memory can be described as the ability to hold
a limited amount of information in an active state, for use
in guiding behavior after the information is removed from
the environment [Baddeley and Hitch, 1974]. A common
approach to testing working memory experimentally using
functional magnetic resonance imaging (fMRI) involves
the delayed recognition task. Experiments using delayed
recognition involve three stages: (1) encoding, during
which items to remember are presented, (2) delay, during
which the previously presented items must be maintained,
and (3) probe, during which a recognition test for the pre-
vious items is administered. Functional neuroimaging
investigations often attempt to identify and localize cogni-
tive processes engaged by these individual task stages.

However, one limitation of many such investigations is
that the stages are assessed separately and in isolation to
one another. As a result, there is limited knowledge on
how the involved brain regions change over the course of
a delayed recognition trial, making inferences on the
extent to which distinct networks of regions contribute
separately to each task stage difficult [Postle, 2006]. In
addition, as has been previously noted [e.g., Cairo et al.,
2004; Manoach et al., 2003; Woodward et al., 2006),
attempts to analyze fMRI data by modeling stage-specific
working memory processes can lead to a number of meth-
odological concerns, particularly when stage-specific he-
modynamic response functions (HRFs) are used in
prediction models. Because of the assertion of an assumed
HRF shape associated with each specific task stage, the
estimated blood oxygen level-dependent (BOLD) response
for any given stage is, by virtue of the application of mul-
tiple regression, restricted to a scaled version of the mod-
el’s shape. Because there is substantial overlap between
the HRF modeled for each task stage, and because these
stages necessarily occur in a fixed order, any mismatches
between the model and the ‘‘true’’ evoked BOLD signal
shape for that stage is likely to result in an automatic, stat-
istically induced misattribution of signal to the incorrect
task stage. For example, any encoding-specific BOLD sig-
nal that is not fit well by the encoding-labeled HRF model
(e.g., more prolonged than expected) may be fit by the
delay-labeled model and would therefore be automatically
misattributed to the delay stage by the statistical proce-
dure [see Manoach et al., 2003, for a simulation of this
misattribution risk]. Moreover, highly correlated predictors
in multiple regression are associated with inflated stand-
ard errors [Pedhazur, 1982, p 245], resulting in unstable
parameter estimates. Although important advances have
been made regarding how some of these problems can be
avoided by adjusting the timing of the experimental
design [Ollinger et al., 2001] and the placement of impulse
response functions in the model [Zarahn et al., 1997], in
addition to sometimes requiring potentially undesirable
changes to the behavioral task paradigm, this area of
research is still susceptible to interpretative errors caused

by labeling potentially inaccurate hemodynamic response
models of task stages. This is a particularly pertinent point
for delayed recognition tasks, for which an assumed shape
of evoked responses is important for interpreting whether
or not a region is involved in a particular task stage [e.g.,
sustained delay period activity reflecting storage- and
maintenance-related processes; Postle et al., 2000].

Data analytic approaches that focus on peristimulus time
(i.e., on the time points immediately following, or preced-
ing and following, presentation of the imperative stimulus)
instead of isolated task stages avoid the interpretational
errors associated with automatic misattribution of signal to
the incorrect task stage. Using a deconvolution approach
focusing on peristimulus time, minimal assumptions are
made regarding the shape of evoked responses of interest
[Dale and Buckner, 1997; Glover, 1999]. Thus, unlike mod-
eling task stages with synthetic HRF models, this method
does not impose the assumption that the brain processes
involved in working memory are organized according to
the discrete stages of the behavioral task. One of the sim-
plest and least constrained approaches to deconvolution is
the finite impulse response (FIR) approach, which provides
an estimate of average BOLD response amplitude for a
number of peristimulus time points [Henson et al., 2001;
Serences, 2004]. A univariate FIR model approach has pre-
viously been employed in a working memory study [Man-
oach et al., 2003], but such an analysis produces images of
neural activation computed separately for each peristimu-
lus time point, and so difficulties arise in formally selecting
the ‘‘correct’’ time points for further inspection, and as a
result, also in determining the progression of activation
change over peristimulus time points.

In contrast to univariate methods, multivariate analyses
methods using a FIR model can extract patterns of inter-
correlation among voxels that are determined by, and can
be mapped back to, coordinated changes in BOLD signal
over peristimulus time, thereby allowing estimated
changes in activation in a single neural network to be fol-
lowed over peristimulus time. Several methods exist
which permit this, but if functional connectivity is to be
approached in a whole-brain exploratory fashion, whereby
any voxel could potentially load onto the network, then
methods which involve a priori specification of specific
regions of interest, such as dynamic causal modeling or
structural equation modeling [Penny et al., 2004], are not
suitable. A number of exploratory multivariate methods
are available. Some, such as principal component analysis
[Viviani et al., 2005] and independent component analysis
[ICA; McKeown et al., 1998] do not take into account in-
formation about the stimulus timing before computing the
neural networks (it should be noted that ICA methods are
now being developed that allow this; [Calhoun et al.,
2005]). Other exploratory methods incorporate information
about stimulus timing into the computations before
extracting patterns of intercorrelation and focus on sum-
marizing the patterns of inter-relationship between two
sets of variables (the obtained BOLD data and the model).
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Examples of these model-based methods are partial least
squares [PLS; McIntosh et al., 2004], canonical variates
analysis [CVA; Strother et al., 2004], and multivariate lin-
ear models method [MLM; Worsley et al., 1997]. In the
current study, we use an approach that falls into this
model-based category referred to as FIR-based constrained
principal component analysis (FIR-CPCA; www.nitrc.org/
projects/fmricpca). More detail about how FIR-CPCA
compares with other methods that decompose inter-rela-
tionships between two sets of variables will be presented
in the Discussion section.

In the current study, we employed FIR-CPCA to visual-
ize, across multiple subjects, how functional networks
change over the course of a multistage behavioral trial (i.e.,
over peristimulus time) and how these networks respond
to experimental manipulations. Using a variable memory
load delayed-recognition data set, we demonstrate how this
approach allows (1) the determination of multiple func-
tional networks involved in working memory, (2) the esti-
mation of the pattern of BOLD changes associated with
each functional network over the course of a trial, (3) a sta-
tistical test of the reliability of the HRF associated with each
component, and (4) a statistical test of the degree to which
experimental manipulations (in this case working memory
load) affect each functional network.

METHODS

Details regarding the motivation for task design, nature
of the sample, and data acquisition have been published
previously [Cairo et al., 2004]; a summary is presented
here. Subjects were 18 right-handed, healthy, native English
speakers (10 women, mean age 27.50 years, age range 18–
35). Written informed consent was obtained before partici-
pation, and all experimental procedures were approved by
the University of British Columbia’s Clinical Research
Ethics Board. Subjects performed a variable load delayed
recognition working memory task while undergoing fMRI.
During a single trial of this task, subjects viewed a string of
2, 4, 6, or 8 differing uppercase consonants for 4 s, which
they were instructed to remember over a short delay. Fol-
lowing the delay, a single lowercase consonant was shown
for 1 s. Subjects were asked to decide whether this letter
had been included in the preceding letter string. Binary
responses were indicated by right-handed index and mid-
dle finger presses, and the finger-response assignments
were counterbalanced across subjects. The probe stage was
followed by an intertrial interval of 3, 4, or 5 s in duration.
Twenty percent of the experimental trials were followed by
a blank trial of similar length in which the world ‘‘Relax’’
was projected on the screen. The jittering of the delay phase
and the intertrial interval, and the blank trials, were imple-
mented in order to optimize the experimental design
according to available recommendations [Dale, 1999].

Echo-planar images were collected on a standard clinical
GE 1.5 T system fitted with a Horizon Echo-speed

upgrade. Conventional spin-echo T1 weighted sagittal
localizers were used to view the positioning of the partici-
pant’s head and to graphically prescribe the functional
image volumes. Functional image volumes were collected
with a gradient echo (GRE) sequence (TR/TE 3,000/40 ms,
90 flip angle, FOV 24 � 24 cm2, 64 � 64 matrix, 62.5 kHz
bandwidth, 3.75 � 3.75 mm2 in plane resolution, 5.00 mm
slice thickness, 29 slices, 145 mm axial brain coverage).
Each stimulus run consisted of 194 scans (encompassing
the entire brain). The first 12 s (4 scans) collected at the be-
ginning of each run were discarded, to avoid variation
due to T1 saturation effects. Functional images were recon-
structed offline. Statistical parametric mapping software
(SPM2, Wellcome Institute of Cognitive Neurology, Lon-
don, UK, http://www.fil.ion.ucl.ac.uk/spm) was used for
image realignment and normalization into Montreal Neu-
rological Institute (MNI) anatomical space (resampled to
4 � 4 � 4 mm3 voxel sizes), and spatially smoothed using
a Gaussian kernel (8 mm FWHM).

Constrained Principal Component Analysis

Most fMRI experiments are designed to determine how
stimulus presentations cause BOLD signal to change;
therefore, from this perspective, information about the
stimulus presentations should be considered a set of pre-
dictor variables, and the BOLD signal a set of criterion
variables. A multivariate analysis method that takes this
conceptual framework into consideration is CPCA
[Takane and Shibayama, 1991]. CPCA is a general
method for structural analysis of multivariate data that
combines regression analysis and principal component
analysis into a unified framework. As for typical princi-
pal component analysis on fMRI data, this method
derives images of functional neural networks from singu-
lar-value decomposition of BOLD signal time series; how-
ever, CPCA allows derivation of images when the
analyzed BOLD signal is constrained to that aspect of
variance in BOLD signal that is predictable from how the
stimuli were presented.

We now briefly present the matrix equations for the cur-
rent application of CPCA [for the comprehensive CPCA
theory and proofs please see Hunter and Takane, 2002;
Takane and Hunter, 2001; Takane and Shibayama, 1991].
This involves preparation of two matrices. The first matrix,
Z, contains columns of normalized and smoothed subject-
mean-centered activations for all voxels over all scans. The
second matrix, G, can be referred to as the design matrix. It
contains models of the expected BOLD response to the
timing of stimulus presentations. The matrix of BOLD
time series (Z) and design matrix (G) are taken as input,
with BOLD in Z being predicted from the model in G. To
achieve this, multivariate least-squares linear regression is
carried out, whereby the BOLD time series (Z) is regressed
onto the design matrix (G):

Z ¼ GCþ E; (1)
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where C ¼ (G0G)�1G0Z. This analysis yields condition-spe-
cific regression weights in the C matrix (i.e., regression
weights specific to the experimental conditions as defined
by the design matrix). The condition-specific regression
weights are often referred to (in conventional fMRI analy-
ses) as beta images. GC contains variability in Z that is
predictable from the design matrix G, that is to say, vari-
ability in Z that is predictable from a model of BOLD
response to the timing of stimulus presentation.

The next step involves extracting a component (or compo-
nents) that represents a network (or networks) of function-
ally interconnected voxel activations that are related to the
experimental stimulus presentations. This involves singular
value decomposition of the activation variability that was
predictable from the design matrix (GC). The maximum
number of extractable components is equal to the rank of
GC, which is the minimum row or column subscript of G:

UDV0 ¼ GC; (2)

where U = matrix of left singular vectors; D = diagonal
matrix of singular values; and V = matrix of right singular
vectors. Each column of V can be overlaid on a structural
brain image to allow visualization of the neural regions
involved in each functional network. In the current appli-
cation of CPCA, we orthogonally rotated and rescaled (by
D) the V matrix before display, so that a rotated loading
matrix (VD) is displayed. The values of the loading matrix
are weights that represent the contribution of each compo-
nent (functional network) to the variance of each column
of GC and can be scaled to contain the correlations
between the components in U and the variables in GC.

To interpret the components with respect to the condi-
tions represented in G, we produced predictor weights
[Hunter and Takane, 2002] in matrix P. These are the
weights that would be applied to G to create U (U ¼
G�P). They indicate the importance of each column in the
G matrix to the network(s) represented by the compo-
nent(s), so are essential for relating the resultant compo-
nents to the experimental conditions of interest
represented in G.

Preparation of Z and G

To prepare the Z matrix for the current data, SPM2 was
first used to realign, spatially normalize and smooth
BOLD data. A binary brain mask image obtained from a
random-effects SPM2 analysis was used to extract the
BOLD signals in 23,929 voxels from each of 190 scans data
collected from each individual subject. This produced a
matrix of BOLD signals consisting of 3,420 rows (18 sub-
jects �190 scans) and 23,929 columns. Then the matrix Z
was standardized to have zero mean and unit standard
deviation in each column for each subject.

In the analysis reported here, the G (design) matrix con-
sisted of a FIR basis set, as opposed to the HRF model
employed in past studies [Cairo et al., 2004, 2006; Wood-

ward et al., 2006]. The FIR model estimates the change in
BOLD signal at specific peristimulus scans relative to all
other scans. The value 1 is placed in rows of G for which
BOLD signal amplitude is to be estimated, and the value 0
in all other rows (resulting in ‘‘mini boxcar’’ functions).
The time points coded by this model were the 1st to 8th
repetition times (TR) following stimulus presentation. As
the TR for these data was 3 s, this resulted in estimating
BOLD signal over a 24 s window, with the start of the first
time point (time ¼ 0) corresponding to encoding stimulus
onset. Thus, the encoding, delay, and probe stages were
not modeled separately; rather, all stages are covered by
this 24 s window of peristimulus time. The columns in
this subject-and-condition based G matrix code 8 peristi-
mulus time points for each of four load conditions (2, 4, 6,
and 8 letters), for each subject, totaling 576 columns (8 � 4
� 18 ¼ 576). The matrix equations for FIR-CPCA using the
matrix dimensions for the current study (and extracting
four components as in the present study) would then be:

3;420Z23;929 ¼ 3;420G576C23;929 þ 3;420E23;929; (3)

3;420U4D4V
0
23;929 � 3;420G576C23;929: (4)

The columns of G represent points in peristimulus time
for each condition and subject combination; therefore, the
predictor weights in 576P4 (3,420U4 ¼ 3,420G576P4) are the
values that determine the contribution of each peristimu-
lus time point, for each condition and subject, on the tem-
poral variation in the functional networks over scans.
These predictor weights are therefore appropriate for use
in familiar tests of statistical significance, such as analysis
of variance (ANOVA; see below).

As the sign of a singular vector is arbitrary, positive val-
ues in the loading matrix (VD) do not necessarily imply
activation increases. Therefore, in order to ensure corre-
spondence between the interpreted directionality of the he-
modynamic response represented by the predictor weights
and activation increases/decreases, for each component,
the trial-averaged BOLD signal contained in Z was
extracted for the voxels showing the most extreme 5% of
component loadings, and this was displayed separately for
positive and negative component loadings.

Statistical Test of Load Dependence

For each component, predictor weights were produced
for each combination of peristimulus scan, load condition,
and subject. These weights can be used to statistically test
the effect of peristimulus time, to determine whether or
not the values in the P matrix are reflecting a hemody-
namic response and not varying randomly around zero.
The effect of increasing memory load can also be tested, as
can the interaction between peristimulus time and load.
Leaving out the first point of peristimulus time (which
was adjusted to zero for predictor weights in all conditions
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for the purposes of display and data analysis), this analy-
sis would be carried out as a 7 � 4 within-subjects
ANOVA for each component, with the factors of time
point (time points 2–8 after the initiation of a task trial)
and Load (2, 4, 6, and 8 letters) as the within-subject fac-
tors. Tests of sphericity were carried out for all ANOVAs.
Greenhouse-Geisser adjusted degrees of freedom are
reported when violations of sphericity affected interpreta-
tion of results; otherwise, the original degrees of freedom
are reported.

Component Rotation

Component rotations provide interpretational frame-
works with which to understand the data configuration.
Infinite rotations are possible, and rotation choice is up to
the discretion of the investigator. Any of the three (option-
ally rescaled) matrices that result from this application of
CPCA can be rotated (i.e., VD, U, or P); however, the
transformation matrix that is used for the rotation of either
VD, U, or P must also be applied to the other two matrices
to ensure that all three matrices are aligned to the same
orientation. In our previous work [Woodward et al., 2006],
we employed promax rotation to VD, and subsequently
applied the same transformation to U and P. Promax rota-
tion is based on methods such as varimax and quartimax
which are oriented toward finding simple structure [Har-
man, 1967, p 304; Yates, 1987, p 32], and therefore utilizes
the criterion of maximizing the (row-wise or column-wise)
variance of the squared loadings (i.e., voxel-based compo-
nent loadings, or VD). However, with the current FIR-
based application of fMRI-CPCA, our interpretation of
components (with respect to the conditions represented in
G) is based not on the voxel-based matrix VD but on the
hemodynamic response shape of the predictor weights
contained in P; therefore, it was logical to apply rotation
to P for computation of a transformation matrix, and then
apply this transformation matrix to VD and U.

The simple-structure criteria that are traditionally used
on VD would not be appropriate for application to P
because P is hypothesized to reflect an HRF shape, not
polarization of zero and nonzero values. One strategy for
rotation of P is to use a Procrustes-style rotation of P to a
target matrix (of the same dimensionality) that represents
the HRF shape expected from the experimental design.
This would allow the components to reflect an HRF shape,
where one is present in the predictor weights, without lim-
iting the predictable variance to specific shapes (and the
task stage labels associated with them). However, this
method does not allow multiple components to be ori-
ented to various manifestations of the same basic HRF
shape because the computation requires the target matrix
in a Procrustes rotation be of full rank, disallowing
repeated shapes in the target matrix. Our rotation
approach involved iteratively generating random Gram-
Schmidt orthogonalized transformation matrices (T),
applying them to P, and selecting the PT matrix that most

closely matched any of a set of HRF shapes expected to
result from the experimental design. The T matrix that
resulted from this iterative method was then applied to
the other matrices as follows: UT ¼ GPT; VDT; in order to
align them to the same orientation as PT. These matrix
equations with row and column subscripts matching the
current analysis are:

576P
�
4 ¼ 576 P4T4; (5)

3;420U
�
4 ¼ 3;420U4T4 ¼ 3;420G576P4T4; (6)

23;929ðVDÞ�4 ¼ 23;929V4D4T4; (7)

where P* ¼ rotated P matrix; U* ¼ rotated U matrix; and
(VD)* ¼ rotated VD matrix.

The steps for optimizing T for rotation of P are detailed
below:

1. Candidate HRF shapes are repeated for all subjects
and all conditions, and as such, populate vectors hav-
ing the same number of rows as P.

2. A transformation matrix T is randomly generated and
Gram-Schmidt orthogonalized, and P* is computed.

3. The absolute value of Pearson’s correlation coefficient
is computed between each column of P* and each
candidate HRF shape vector.

4. The product of the maximum values derived for each
column of P* is computed.

5. Steps 2–4 are iteratively repeated, with the transfor-
mation matrix T that maximizes the product com-
puted at step 4 retained as the optimal solution.

In the current study, we used 500,000 iterations with a
set of six candidate HRF shapes. To produce the six HRF
shapes, we used SPM2 to produce single-trial time series
based on specific task stages predicted by a canonical
HRF, convolved with a delta function. Single and com-
bined event models were developed for: (1) encoding only;
(2) encoding þ delay; (3) delay period only; (4) delay þ
probe; (5) probe only, and (6) encoding þ delay þ probe.

RESULTS

Four components were extracted in order to optimize
comparison with our previous analysis of the same data
[Woodward et al., 2006]. The percentage of variance in GC
that was accounted for by Components 1, 2, 3, and 4 in
the unrotated solution was 32.63, 4.71, 2.31, and 1.98,
respectively. The sum of the squared loadings divided by
the number of scans for the rotated solution was 20.48,
9.47, 9.01, and 2.66 for Components 1, 2, 3, and 4, respec-
tively. The neural regions comprising the functional net-
works represented by each component for FIR-CPCA and
their associated Brodmann’s Areas (BAs) are displayed in
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Figures 1A–4A, with corresponding anatomical descrip-
tions in Tables I–IV. The mean predictor weights were plot-
ted as a function of peristimulus time (see Figs. 1B–4B) and
represent the response of each functional network to the
delayed recognition task at different memory loads.

Component 1

The component loadings mapped onto an M.N.I. struc-
tural image and the associated predictor weights plotted
as a function of peristimulus time are displayed in Figure
1 and described in Table I. The pattern of activity suggests
that this functional network involves the bilateral supra-
marginal/angular gyri (peaks in BAs 39, 40), with these
clusters extending into the superior temporal gyrus (peak

in BA 22) and the primary auditory cortex (Heschl’s
Gyrus; peaks in BAs 41/42 on the left). Other regions im-
portant for this component included bilateral superior/
middle frontal gyri (peak in BA 9) and the bilateral poste-
rior cingulate/precuneus (peaks in BA 7, 23).

Inspection of the predictor weights time series combined
with the negative component loadings suggests that, rela-
tive to baseline, these regions showed decreased activation
at the onset of the trial in a load-dependent fashion.
ANOVA revealed a highly significant time point � load
interaction, F(18, 306) ¼ 15.30, P < 0.001, g2 ¼ 0.47, sug-
gesting that brain regions in this functional network are
sensitive to increasing memory load. This was due to the
magnitude of the time point effect increasing from 2 to 4,
6 and 8 letters, F(6, 102) ¼ 10.72, P < 0.001, g2 ¼ 0.39; F(6,

Figure 1.

Images, plots of predictor weights, and plots of BOLD signal for

Component 1. The dominant 5% of component loadings are dis-

played (A), with negative component loadings displayed in black

(max ¼ �0.32) and blue (min ¼ �0.39). (No positive compo-

nent loadings passed this threshold.) The mean FIR-based pre-

dictor weights are plotted as a function of peristimulus time in

the right panel, top (B; error bars are standard errors). The

predictor weights at the first point of peristimulus time are

adjusted to zero, and all other values scaled accordingly for each

subject, and therefore differ from % signal change by a constant

term only. The mean BOLD signal extracted from the regions

displayed in (A) are plotted as a function of peristimulus time in

the right panel, bottom (C; error bars are standard errors).

Axial slices are located at the following Talairach z axis coordi-

nates: 0, 9, 27, 37, 43. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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102) ¼ 42.31, P < 0.001, g2 ¼ 0.71; F(6, 102) ¼ 29.00, P <
0.001, g2 ¼ 0.63; F(6, 102) ¼ 31.06, P < 0.001, g2 ¼ 0.65,
respectively. These significant time point effects demon-
strate that the HRF shapes associated with this component
were reliable for all load conditions. Considered within
the context of the exclusively negative component loadings
in Figure 1A, inspection of Figure 1C suggests that this
pattern of decreased activation relative to baseline was
confirmed with trial-averaged BOLD signal for the regions
displayed in Figure 1A.

Component 2

The component loadings mapped onto an M.N.I. struc-
tural image and the associated predictor weights plotted

as a function of peristimulus time are displayed in Figure
2 and described in Table II. This functional network was
characterized by activation in bilateral occipital gyri and
primary visual cortex (peaks in BAs 17, 18, 19), bilateral
precuneus (peak in BA 7), bilateral thalamus, bilateral
medial/superior frontal gyri and precentral gyri (peaks in
BAs 4, 6), and left postcentral/precental gyrus (peak in
BAs 6, 3, 4).

Inspection of the predictor weights time series suggests
that relative to baseline, these regions increased activity at
the onset of the trial in a load-dependent fashion, and this
was confirmed by examining the trial-averaged BOLD sig-
nal in Figure 2C for the regions displayed in Figure 2A.
An ANOVA carried out on the predictor weights revealed
a highly significant time point � load interaction, F(18,
306) ¼ 11.92, P < 0.001, g2 ¼ 0.41, indicating that the

Figure 2.

Images, plots of predictor weights, and plots of BOLD signal for

Component 2. The dominant 5% of component loadings are dis-

played (A), with positive component loadings displayed in red

(min ¼ 0.26) and yellow (max ¼ 0.41). (No negative component

loadings passed this threshold.) The mean FIR-based predictor

weights are plotted as a function of peristimulus time in the

right panel, top (B; error bars are standard errors). The predic-

tor weights at the first point of peristimulus time are adjusted

to zero, and all other values scaled accordingly for each subject,

and therefore differ from % signal change by a constant term

only. The mean BOLD signal extracted from the regions dis-

played in (A) are plotted as a function of peristimulus time in

the right panel, bottom (C; error bars are standard errors).

Axial slices are located at the following Talairach z axis coordi-

nates: �25, �11, 12, 41, 83. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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magnitude and/or shape of the hemodynamic response
was dependent on memory load. To interpret this interac-
tion, we studied the effect of time point separately for
each load. The magnitude of the time point effect
increased over loads of 2, 4, 6, and 8 letters, F(2.4, 40.8) ¼
2.71, P ¼ 0.07, g2 ¼ 0.14; F(6, 102) ¼ 11.52, P < 0.001, g2 ¼
0.40; F(6, 102) ¼ 18.37, P < 0.001, g2 ¼ 0.52; F(6, 102) ¼
25.52, P < 0.001, g2 ¼ 0.60, respectively. These significant
time point effects demonstrate that the HRF shapes associ-
ated with this component were reliable for the 4, 6, and 8
letter conditions.

Component 3

The component loadings mapped onto an M.N.I. struc-
tural image and the associated predictor weights plotted
as a function of peristimulus time are displayed in Figure

3 and described in Table III. This functional network was
dominated by positive component loadings in the bilateral
occipital gyri and primary visual cortices (BAs 17, 18, 19),
bilateral dorsal anterior cingulate gyri (peaks in BAs 32, 6),
right dorsolateral prefrontal cortex (peak in BA 46), and
bilateral supramarginal gyri and superior parietal lobes
(peaks in BAs 7, 40).

Inspection of the predictor weights time series suggests
that relative to baseline, these regions increased in activity
at the onset of the trial in a load-dependent fashion, and
this was confirmed by examining the trial-averaged BOLD
signal in Figure 3C for the regions displayed in Figure 3A.
An ANOVA carried out on the predictor weights revealed
a significant time point � load interaction, F(18, 306) ¼
25.97, P < 0.001, g2 ¼ 0.60, indicating that the magnitude
and/or shape of the hemodynamic response was depend-
ent on memory load. To interpret this interaction, we

Figure 3.

Images, plots of predictor weights, and plots of BOLD signal for

Component 3. The dominant 5% of component loadings are dis-

played (A), with positive component loadings displayed in red

(min ¼ 0.26) and yellow (max ¼ 0.41). (No negative compo-

nents loadings passed this threshold). The mean FIR-based pre-

dictor weights are plotted as a function of peristimulus time in

the right panel, top (B). The predictor weights at the first point

of peristimulus time are adjusted to zero, and all other values

scaled accordingly, and therefore differ from % signal change by

a constant term only. The mean BOLD signal extracted from

the regions displayed in (A) are plotted as a function of peristi-

mulus time in the right panel, bottom (C; error bars are stand-

ard errors). Axial slices are located at the following Talairach z

axis coordinates: �12, 1, 15, 33, 49. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4.

Images, plots of predictor weights, and plots of BOLD signal for

Component 4. The dominant 5% of component loadings are dis-

played (A), with positive component loadings displayed in red

(min ¼ 0.17) and yellow (max ¼ 0.29), and negative component

loadings are displayed in black (max ¼ �0.17) and blue (min ¼
�0.30). The predictor weights at the first point of peristimulus

time are adjusted to zero, and all other values scaled accord-

ingly, and therefore differ from % signal change by a constant

term only. The mean FIR-based predictor weights are plotted as

a function of peristimulus time in the right panel, top (B). The

mean BOLD signal extracted from the regions comprising the

FIR component positive component loadings are plotted in the

right panel, bottom (C), and the negative component loadings

are plotted in the bottom panel (D; error bars are standard

errors). Axial slices are located at the following Talairach z axis

coordinates: �12, 4, 11, 29, 57. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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studied the effect of time point separately for each load.
The magnitude of the time point effect increased over
loads of 2, 4, 6, and 8 letters, F(6, 102) ¼ 7.29, P < 0.001,
g2 ¼ 0.30; F(6, 102) ¼ 5.12, P < 0.001, g2 ¼ 0.23, F(6, 102)
¼ 47.59, P < 0.001, g2 ¼ 0.74; F(6, 102) ¼ 66.81, P < 0.001,
g2 ¼ 0.80, respectively. These significant time point effects
demonstrate that the HRF shapes associated with this
component were reliable for all load conditions.

Component 4

The component loadings mapped onto an M.N.I. struc-
tural image and the associated predictor weights plotted

as a function of peristimulus time are displayed in Figure
4 and described in Table IV. This functional network was
dominated by positive component loadings in bilateral
medial frontal gyri (peak in BA 6), right dorsolateral pre-
frontal cortex (peak in BA 46), left inferior and middle
frontal gyrus (peaks in BAs 45, 47), bilateral precentral/
postcentral gyri (peaks in BA 6), and left supramarginal

TABLE I. Anatomical descriptions for each cluster

(>5 voxels) of Component 1, with corresponding

Brodmann’s Areas and peak Talairach (XYZ) coordinates

Cortical region
Brodmann’s

area

Max
Talairach
coordinate

Cluster 1: Right hemisphere
Superior temporal gyrus 22 51, �8, �10

Insula 36, 0, 4
Middle temporal gyrus 21 51, �8, �13
Angular gyrus 39 48, �53, 28

Cluster 2: Left hemisphere
Supramarginal gyrus 40 �55, �49, 28

Heschl’s gyrus 41/42 �36, �30, 16
Superior temporal gyrus 22 �44, �34, 16
Middle temporal gyrus 21 �48, �58, 14

Cluster 3: Bilateral
Precuneus 7 8, �65, 25

Posterior cingulum 23 8, �37, 39
Postcentral gyrus 3 �20, �32, 61
Supplementary motor cortex 6 �8, �17, 49

Cluster 4: Right hemisphere
Superior frontal gyrus 9 20, 33, 39

Middle frontal gyrus 9 24, 33, 39
Inferior frontal gyrus
(pars opercularis)

46 32, 17, 36

Cluster 5: Left hemisphere
Postcentral gyrus 3 �20, �32, 61

Precentral gyrus 4 �12, �29, 46
Cluster 6: Left hemisphere
Middle frontal gyrus 8 �28, 18, 43

Cluster 7: Left hemisphere
Paracingulate gyrus 32 �12, 48, 27

Superior frontal gyrus 9 �12, 52, 27
Cluster 8: Left hemisphere
Postcentral gyrus 3 �32, �21, 42

Cluster 9: Left hemisphere
Middle frontal gyrus 9 �24, 33, 35

Cluster 10: Right hemisphere

Postcentral gyrus 3 51, �14, 27

Bold type denotes the region with the maximum loading for that
cluster.

TABLE II. Anatomical descriptions for each cluster

(>5 voxels) of Component 2, with corresponding

Brodmann’s Areas and peak Talairach (XYZ) coordinates

Cortical region
Brodmann’s

areas

Max
Talairach
coordinate

Cluster 1: Bilateral
Fusiform gyrus 19 28, �82, �13

Middle occipital gyrus 18 32, �89, 8
Lingual gyrus 17 16, �82, 13
Inferior occipital gyrus 18 24, �82, 13

Cluster 2: Bilateral
Precuneus 7 �8, �75, 48

Cuneus 19 �4, �80, 33
Cluster 3: Left hemisphere
Cerebellum �36, �75, �16

Fusiform gyrus 19 �40, �74, �13
Middle occipital gyrus 19 �48, �70, �10
Inferior occipital gyrus 19 �44, �82, �6

Cluster 4: Bilateral
Medial frontal gyrus 6 0, 3, 59

Superior frontal gyrus 6 4, 7, 62
Middle frontal gyrus 6 32, �1, 55
Precentral gyrus 4 28, �16, 63

Cluster 5: Left hemisphere
Superior frontal gyrus 6 �32, �8, 63

Middle frontal gyrus �32, �5, 59
Precentral gyrus �32, �9, 59

Cluster 6: Left hemisphere
Middle frontal gyrus 6 �51, 2, 40

Postcentral gyrus 3 �51, �9, 45
Precentral gyrus 4 48, �9, 48

Cluster 7: Bilateral
Thalamus �8, �11, 12

Cluster 8: Left hemisphere
Cuneus 17 �16, �93, �2

Lingual gyrus 18 �8, �93, 1
Cluster 9: Bilateral
Cerebellum 4, �47, 2

Cluster 10: Right hemisphere
Subcallosal gyrus/gyrus rectus 11 16, 19, �11

Putamen 16, 11, �7
Cluster 11: Left hemisphere
Cerebellum �28, �59, �14

Cluster 12: Bilateral
Thalamus 0, �27, 5

Cluster 13: Left hemipshere
Superior temporal gyrus 22 �59, 11, �4

Bold type denotes the region with the maximum loading for that
cluster.
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gyrus (peak in BA 40). This component also showed nega-
tive component loadings in the bilateral medial/superior
frontal gyri (peaks in BAs 9, 10), bilateral precuneus and
posterior cingulate gyri (peak in BA 23), and bilateral
superior temporal activation peaking in the angular gyri
(peaks in BA 39).

Inspection of the predictor weights time series, inter-
preted alongside the component loadings displayed on the
structural image in Figure 4A, suggests that relative to
baseline, some regions increased and others decreased
activation at different points in the working memory trial,
in a load-dependent fashion. An ANOVA carried out on
the predictor weights revealed a significant time point �
load interaction, F(18, 306) ¼ 3.95, P < 0.001, g2 ¼ 0.19,

indicating that the magnitude and/or shape of the hemo-
dynamic response was dependent on memory load. To
interpret this interaction, we studied the effect of time
point separately for each load. The magnitude of the time
point effect increased over loads of 2, 4, 6, and 8 letters,
F(6, 102) ¼ 6.43, P < 0.001, g2 ¼ 0.27; F(6, 102) ¼ 5.36, P <
0.001, g2 ¼ 0.24; F(6, 102) ¼ 12.30, P < 0.001, g2 ¼ 0.42;
F(6, 102) ¼ 17.66, P < 0.001, g2 ¼ 0.51, respectively. These
significant time point effects demonstrate that the HRF

TABLE IV. Anatomical descriptions for each cluster

(>5 voxels) of Component 4, with corresponding

Brodmann’s Areas and peak Talairach (XYZ) coordinates

Cortical region
Brodmann’s

areas
Max Talairach
coordinate

Positive component loadings

Cluster 1: Bilateral
Medial frontal gyrus 6 �4, 1, 55

Superior frontal gyrus 6 �8, 10, 47
Precentral gyrus 6 �36, �5, 52
Inferior frontal gyrus 44 �51, 5, 26

Cluster 2: Left hemisphere
Inferior frontal gyrus 47 �36, 23, �5

Middle frontal gyrus 45 �44, 32, 13
Insula �40, 12, 3

Cluster 3: Left hemisphere

Middle occipital gyrus 19 �28, �69, 26

Superior occipital gyrus 19 �20, �64, 33
Cluster 4: Right hemisphere

Middle frontal gyrus 46 32, 47, 16

Superior frontal gyrus 46 24, 48, 20
Cluster 5: Left hemisphere
Middle occipital gyrus 37 �48, �63, �7

Cluster 6: Left hemisphere

Supramarginal gyrus 40 �40, �41, 35

Negative component loadings

Cluster 1: Bilateral
Superior frontal gyrus 10 8, 60, 26

Medial frontal gyrus 9 �4, 56, 34
Anterior cingulum 32 4, 47, 9

Cluster 2: Left hemisphere
Angular gyrus 39 �48, �68, 37

Middle occipital gyrus 19 �40, �76, 33
Middle temporal gyrus 21 �55, �61, 22

Cluster 3: Right hemisphere
Angular gyrus 39 48, �60, 44

Middle temporal gyrus 21 55, �61, 21
Supramarginal gyrus 40 59, �49, 28

Cluster 4: Bilateral

Precuneus 23 4, �57, 32

Posterior cingulum 23 0, �53, 28
Cuneus 0, �69, 26

Cluster 5: Left hemisphere
Anterior cingulum 32 �16, 44, 16

Cluster 6: Left hemisphere
Superior frontal gyrus 46 �28, 59, 15

Bold type denotes the region with the maximum loading for that
cluster.

TABLE III. Anatomical descriptions for each cluster

(>5 voxels) of Component 3, with corresponding

Brodmann’s Areas and peak Talairach (XYZ) coordinates

Cortical region
Brodmann’s

area

Max
Talairach
coordinate

Cluster 1: Right hemisphere
Lingual gyrus 18 16, �82, �6

Middle occipital gyrus 19 28, �69, 26
Superior lateral occipital cortex 7 24, �63, 51
Superior parietal lobule 7 32, �56, 51

Cluster 2: Left hemisphere
Middle occipital gyrus 19 �32, �81, 19

Superior lateral occipital cortex 18 �24, �84, 26
Occipital pole 17 �8, �93, �2
Intracalcarine cortex 17 �12, �81, 4

Cluster 3: Left hemisphere
Posterior inferior temporal gyrus 37 �44, �63, �14

Temporal occipital fusiform cortex 37 �40, �59, �14
Superior lateral occipital cortex 19 �44, �67, �13
Occipital fusiform gyrus 19 �36, �67, �17

Cluster 4: Left hemisphere
Superior parietal lobe 7 �28, �60, 47

Superior lateral occipital cortex 7 �20, �68, 48
Cluster 5: Left hemisphere
Precentral gyrus 4 �51, �6, 44

Cluster 6: Right hemisphere
Middle frontal gyrus 46 40, 40, 27

Cluster 7: Bilateral

Paracingulate gyrus 32 0, 14, 47

Posterior superior frontal gyrus 6 0, 14, 55
Cluster 8: Right hemisphere
Precentral gyrus 6 55, 9, 33

Inferior frontal gyrus
(pars opercularis)

44 48, 9, 22

Cluster 9: Left hemisphere

Supramarginal gyrus 40 �40, �45, 32

Cluster 10: Left hemisphere
Inferior frontal gyrus
(pars opercularis)

44 �51, 13, 18

Bold type denotes the region with the maximum loading for that
cluster.
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shapes associated with this component were reliable for all
load conditions. Inspection of Figure 4C,D suggests that
this pattern of increased and decreased activation relative
to baseline can be confirmed with trial-averaged BOLD
signal for the regions displayed in Figure 4A.

DISCUSSION

FIR-CPCA was used to examine the temporal dynamics
of functional networks involved in verbal working mem-
ory. This technique involved performing principal compo-
nent analysis on the variation in BOLD signal that is
predictable from a FIR model of the stimulus presentation
timing. Four components were extracted, all of which
peaked at approximately 10 s following trials onset. Two
of the components sustained this peak for approximately 3
s (Components 1 and 4), and the other two did not (Com-
ponents 2 and 3). All components showed statistically sig-
nificant sensitivity to the memory load manipulation and
reliable HRF shapes.

It has recently been discovered that a wide range of
effortful cognitive tasks consistently lead to not only
increases in activity in fronto-parietal brain regions but
also concomitant decreases in activity in ventro-medial
brain regions. These anticorrelated networks have been
coined the task-positive and task-negative network, respec-
tively [Fox et al., 2005]. The current network-focused anal-
ysis method emphasized the possibility of an important
interplay between the two anticorrelated functional net-
works. Interestingly, most activations and deactivations
observed in the current set of results can understood
within this context.

The exclusively negative component loadings on Com-
ponent 1, combined with the BOLD signal changes
depicted in Figure 1C, suggest that activation decreased
on initiation of a delayed recognition trial. These deactiva-
tions included some task negative regions, such as poste-
rior cingulate/precuneus and superior medial prefrontal
cortex. Also observed for this component was the coordi-
nated decrease in bilateral primary auditory cortex activity
that could relate to reduced activation during inner speech
[Buchsbaum et al., 2005; Frith et al., 1991] or a more gen-
eral phenomenon whereby task-irrelevant primary sensory
cortex (with visual cortex being task-relevant) is deacti-
vated during task performance [Laurienti et al., 2002;
Shulman et al., 1997]. The effect size associated with Com-
ponent 1 was smallest for the load 2 condition; however, it
did not exhibit clearly linearly increasing load dependent
(de)activity. Together, the regions and patterns of activity
for this component are consistent with deactivations found
specifically in working memory paradigms, as well as
deactivations related to effortful cognitive processing,
more generally.

Components 2 and 3 were dominated by regions typi-
cally involved in effortful, attention demanding cognitive
tasks in addition to those more specific to working mem-

ory, and both showed clear load dependence, with linearly
increasing effect sizes. Several of the neural regions
involved in both Components 2 and 3 appear consistent
with the task-positive functional network, such as dorsal
anterior cingulate, postcentral/precentral gyri, and dorso-
lateral prefrontal cortex. Load-sensitive involvement of
fronto-parietal regions is also consistent with the multiple
demands network of Duncan and Owen [2000] in which
these regions function as a network during the perform-
ance of a variety of attention demanding tasks. Some of
the observed regions have, however, been tied to more
specific roles in working memory. One of these, the fusi-
form gyrus, is considered sensitive to the encoding and
short-term maintenance of letter strings and words [Fie-
bach et al., 2006]. The superior parietal lobule (Component
3) may play a critical role in both maintenance and manip-
ulation of verbal information in working memory, as dem-
onstrated by a recent transcranial magnetic stimulation
study [Postle et al., 2006], whereas the intraparietal sulcus
is a candidate for capacity-limited storage in (visual) work-
ing memory [Todd and Marois, 2004]. The posterior mid-
dle frontal gyrus (Components 2 and 3), on the other
hand, has been associated with control processes recruited
during working memory [Derrfuss et al., 2004; McNab and
Klingberg, 2008]. The visual cortices (BA 18, 19) were also
strongly activated but presumably reflect perception of vis-
ually presented stimuli during the initial phase of each
trial.

Component 4 was also strongly load dependent and
involved aspects of both the task positive and task nega-
tive networks, and the fronto-parietal network. Relative to
Components 2 and 3, the task-positive aspects of Compo-
nent 4 did not involve primary visual cortex regions, and
included left inferior prefrontal and right dorsolateral pre-
frontal activations that were more anterior than the like-
lateralized activations in Components 2 and 3. Relative to
Component 1, the task-negative aspects of Component 4
were more anterior and dominant for the medial frontal
regions and more posterior and dominant for the posterior
cingulate and angular gyrus aspects.

It is perhaps important to comment upon the small
amount of variance accounted for by Component 4.
Indeed, one might expect the task-positive processes sus-
tained into the delayed recognition trial to be more domi-
nant, given that there are a number of processes related to
memory capacity limits, retrieval from memory, decision
making, and response preparation/execution required by
the task, but it may be precisely the variability across these
different processes which leads to the relatively minor sig-
nal reflected by Component 4. Alternatively, or perhaps in
addition to these reasons, there could have been substan-
tial individual differences within any of these processes
resulting in increased variability in the evoked signal.
Some cognitive processes in which such individual differ-
ences have been noted are proactive interference [Feredoes
et al., 2009], memory capacity [Todd and Marois, 2005],
and the scanning of the contents of memory [Oztekin
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et al., 2009]. These considerations of variability across sub-
jects may help to constrain the interpretation of the proc-
esses represented by the other components, in that they
might be representing those processes which are less sus-
ceptible to individual differences.

In sum, these networks revealed by FIR-CPCA are con-
sistent with previous findings from both the working
memory literature and more general cognitive investiga-
tions. The identification of multiple networks simultane-
ously is, however, a unique observation, and one would
predict that with more targeted manipulation of the differ-
ent task stages, for example, the contribution of each net-
work could be more thoroughly explored.

Interpretation of Component Time Series

All four components displayed peak activation approxi-
mately 10–11 s after trial onset, which is precisely the peak
expected for a HRF in response to a 3-s encoding stage.
However, only two of the four components sustained this
peak activity, both for approximately 3 s (Components 1
and 4). Although all components are likely invoked at
encoding, the sustained peak components are more likely
to be involved in both the encoding and delay period. Cor-
respondingly, these sustained peak components may be
more representative of the regions involved in encoding
and maintenance over a short period [Postle, 2006].

Role of HRF shapes in FIR CPCA

As was mentioned in the introduction, FIR models are
preferable to HRF models in CPCA for a number of rea-
sons, one of which is avoidance of restricting the variance
in GC to scaled versions of the HRF model shapes. Given
this, clarification may be needed to explain our reasons for
revisiting HRF models at the stage of component rotation.
In this context, it is important to distinguish between the
three CPCA stages of analysis [Hunter and Takane, 2002,
pp 107–112]: (1) the external analysis, involving multivari-
ate multiple regression, depicted in Eqs. 1 and 3, (2) the
internal analysis, involving singular value decomposition,
depicted in Eqs. 2 and 4, and (3) component rotation,
depicted in Eqs. 5–7. The internal analysis is exploratory
in nature and does not involve use of a FIR or HRF model.
In contrast, the variance captured in the external analysis
is completely determined by the choice of model, such
that any variation in BOLD signal that is not captured by
the model (e.g., that not conforming to a scaled version of
the HRF model shapes) would be excluded for the subse-
quent internal analysis, thus leading to the preference for
the less restrictive FIR model. This can be contrasted with
the component rotation stage, which, as is clear from Eqs.
5–7, involves redistributing variance by creating weighted
combinations of the existing columns of VD, U, and P
matrices. This allows new combinations of the patterns of
variance contained in the components, leading to new

interpretations, but does not exclude certain patterns of
variance as does the external analysis, or create new pat-
terns of to-be-redistributed variance. In fact, all rotations
of the component solution are equally valid, in that they
do not change the adequacy of the solution; that is to say,
the percentage of variance in GC accounted for by the
component solution will not change with rotation method-
ology. Thus, the function of the HRF shapes at the rotation
stage are to emphasize HRF-shaped patterns that already
exist in the component solution, but not to increase or
decrease the percentage of variance accounted for by the
component solution.

Comparison to Prior Analyses

Our original CPCA analysis of these data [Woodward
et al., 2006] used an HRF design matrix in G, which mod-
eled stage-specific hemodynamic responses as idealized
BOLD responses to stimulus presentations. The current
FIR model method allowed the following to be demon-
strated: (1) a load-dependent interpretation for a previ-
ously uninterpretable component; namely, a network
characterized by reduced activation likely involved in
encoding and delay period processes (Component 1); (2) a
detailed display of the estimated hemodynamic response
associated with each component; (3) elimination of the risk
of interpretative errors linked to inaccurately labeled or
inaccurately derived hemodynamic response models of
correlated task stages; and (4) elimination of the risk that
BOLD activity not conforming to the modeled synthetic
HRF shape is either misattributed to correlated task stages
or is overlooked by the analysis procedure.

As a concrete example of how the FIR-CPCA analysis
can eliminate the risk of certain interpretative errors, we
revisit our previous article [Woodward et al., 2006] where
we reported evidence for a ‘‘load-dependent, reciprocal
relationship’’ between the encoding and delay networks
that involved the occipital cortex (based on a component
similar to what is referred to here as Component 4). In
light of the results obtained from the FIR analysis, our pre-
vious interpretation appears erroneous. The previously
reported component displayed negative loadings in occipi-
tal regions, negative loadings in task-negative regions, and
positive loadings in task-positive regions. The negative
loadings on occipital regions did not replicate in the cur-
rent FIR analysis, although the task-negative and task-pos-
itive loadings did. The FIR analysis clarifies that both the
occipital regions and the task positive network in fact
increased together with the onset of encoding, but the vis-
ual cortex activation (Components 2 and 3) drops off ear-
lier than the task-positive activations on Component 4,
producing the correlation with the task-negative network
observed in our previous paper. This suggests that the
previously reported negative component loadings in occi-
pital regions were due to spurious correlations between a
decrease in occipital cortex due to termination of the
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visual display, and task-related deactivations associated
with the task-negative network. The emergence of these
predictor weights and the misinterpretation of occipital
decreases associated with the termination of the encoding
display as deactivations associated with the delay period
(and reciprocally related to encoding) appear to be inter-
pretational errors partly caused by the false precision asso-
ciated with using labels attached to HRF models of task
stages.

Comparison of CPCA to Related

Multivariate Methods

There are a number of previously proposed multivariate
methods for analyzing fMRI data that examine the rela-
tionship between two sets of variables (X and Y denoting
stimulus information and BOLD signal, respectively), such
as PLS [McIntosh et al., 2004], CVA [Strother et al., 2004],
and MLM [Worsley et al., 1997]. Although these
approaches are similar to CPCA and are mathematically
equivalent under some conditions, there are some impor-
tant differences.

One of the main considerations when comparing CPCA
to other multivariate approaches relates to the fit between
the statistical method and the logic underlying fMRI
experiments, with respect to how the X and Y matrices are
placed on the predictor and/or criterion sides of the gen-
eral linear model. Most fMRI experiments, such as the cur-
rent one, are designed to determine how experimental
design and stimulus timing (modeled in X and treated as
a fixed effect) affects the distribution of the brain state (as
measured by the BOLD signal Y); therefore, information
about the stimulus presentations should be considered a
set of predictor variables and the BOLD signal a set of cri-
terion variables. Regression analysis specifically analyzes
the conditional expectation of Y given X, that is to say,
E(Y | X) ¼ $ (Yp(Y | X))dX, where p(Y | X) is the (condi-
tional) distribution of Y given X. Correspondingly, for
CPCA, X is placed on the predictor side, Y is placed on
the criterion side, and the objective is to find a conse-
quence of X, which is, in turn, a cause for Y, thereby pro-
viding a natural fit to the logic underlying typical fMRI
experimental designs. For CPCA (or any linear regression
analysis), E(Y | X) is assumed to be linear. In other con-
texts, however, the motivation may be to predict stimulus
condition X from the brain state Y, as is the case with
mind-reading paradigms [Hansen, 2007], for which dis-
criminant function analysis would be a more appropriate
analytic method (review of this class of fMRI experiments
is outside the scope of the current discussion, but please
refer to Haynes and Rees [2006]).

In contrast to CPCA, PLS places both X and Y on the
criterion side and seeks to find a common cause for both.
The mathematical technique employed by PLS is com-
monly referred to as least squares interbattery factor anal-
ysis [Tucker, 1958], where it is assumed that there is a

common cause for the two sets of variables and their joint
distribution is analyzed [Hansen, 2007]. This is the meth-
odology of choice under conditions where neither X nor Y
are controlled. However, it should be noted that PLS
reduces to a special case of CPCA when X is column-wise
orthonormal.

Despite this mathematical equivalence, the current
application of CPCA would not give the same results as
the PLS software package [McIntosh et al., 2004] due to
important differences in the matrices submitted to the
analysis. For example, in PLS, the BOLD signal matrix
referred to above as Y is converted to a percent signal
change (from trial onset) and reorganized into a matrix
that the authors referred to as M. Each row of the M ma-
trix contains the (percent-signal-change converted) BOLD
signal from prespecified peristimulus time points, aver-
aged over all occurrences of the condition of interest, com-
puted separately for each subject and condition. Thus,
unlike its CPCA counterpart Z, M will not consider BOLD
signal from the entire time series if the specified number
of scans comprising peristimulus time does not cover all
collected scans due to the experiment design. (The CPCA
method of using the values 0 and 1 in G to contrast peri-
stimulus time against other scans in Z does not have the
same effect as the PLS method of selecting only scans in
peristimulus time for inclusion in M. G is used as a set
of binary predictor variables in a multivariate multiple
regression, and the actual values are arbitrary and do not
affect results.) An additional difference involves the matrix
representing the experimental design, referred to above as
X, but referred to as C by the authors. Unlike its CPCA
counterpart G, the PLS-based C does not contain a model
of the hemodynamic response, but instead contains codes
that contrast the averaged BOLD signal from the condi-
tions represented in the rows of M.

CVA is a special case of canonical correlation analysis,
where it is assumed that the two sets of variables are caus-
ing a common factor, typically arising when X and Y are
causing something in common. As such, CVA places both
X and Y on the predictor side and seeks to find a common
consequence of both. In the case where Y is column-wise
orthonormal or X is a matrix of dummy variables indicat-
ing class labels, CVA reduces to CPCA. However, in part
due to the preliminary PCA performed on the BOLD sig-
nal, CVA as suggested by Strother et al. [2004] would not
match the results provided by the current application of
CPCA.

In MLM, as in CPCA, X is placed on the predictor side
and Y is placed on the criterion side, and the objective is
to find a consequence of X, which is, in turn, a cause for
Y. In terms of mathematical operations, the main differ-
ence between MLM and CPCA lies in the estimation
method they use. MLM uses a heuristic estimation
method, which is claimed to be robust, and leads to an
analytical significance testing procedure [Worsley et al.,
1997] and takes into account possible nonzero covariances
among the rows of Z represented by a matrix S. The
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estimation method used in CPCA is consistent with redun-
dancy analysis [Lambert et al., 1988] and, in the form uti-
lized here, it ignores the covariances among the rows of Z;
however, this could be remedied by taking C ¼ (G0S�1G)�1

G0S�1Z as the rank-free estimate of regression weights
(rather than assuming S ¼ I), where S is the covariance
matrix among the rows of Z. If S is known exactly (i.e.,
when the population covariance matrix is known), this
gives the best linear unbiased estimator (BLUE) of C. S
usually has to be estimated, however, and a very good
estimate of S must exist in order for the above estimator to
work well, and this is also the case for MLM. In general, it
is difficult to determine which estimation method (MLM
or CPCA) is uniformly better than the other in a small
sample and this question must be addressed empirically
in future research.

As a final and very important point of comparison,
CPCA provides a more general mathematical framework
than PLS, CVA, or MLM, in that it allows the data to be
decomposed into sources of variance predictable from row
information (as does PLS, CVA or MLM), but also from
column information, contrasts of row and column informa-
tion, all combinations thereof, as well as the variance not
explained by row or column information, with compo-
nents being computed on any or all of those sources of
variance [Takane and Hunter, 2001; Takane and Shi-
bayama, 1991]. The full CPCA model is as follows:

Z ¼ GMH0 þ BH0 þ GCþ E; (8)

With the H matrix providing constraints on the voxels
coded in the columns of Z, and GMH is variance in Z pre-
dictable from the interaction between G and H. We are
currently developing applications of CPCA to use the G
and H matrices simultaneously to analyze fMRI data.
Candidates for the H matrix are anatomical networks of
theoretical interest, such ventral/dorsal networks, laterali-
zation of cognitive functions, or any a priori neural net-
works of interest.

CONCLUSIONS

This FIR-CPCA analysis methodology provided a
method for assessing functional connectivity between neu-
ral regions engaged by a verbal delayed recognition task.
This approach allowed (1) determination of multiple func-
tional networks involved in working memory, (2) estima-
tion of the pattern of BOLD changes associated with each
functional network over peristimulus time points, (3) a sta-
tistical test of the reliability of the HRF associated with
each component; and (4) a statistical test of the degree to
which experimental manipulations (in this case working
memory load) affects each functional network. Each of the
components included brain regions consistent with previ-
ous studies on the stages involved in working memory
delayed recognition, but also included regions involved

in the putative task-positive/task-negative anticorrelated
functional networks [Fox et al., 2005] and the multiple
demands network [Duncan and Owen, 2000]. The ability
to visualize the pattern of activity of a correlated network
over time and its sensitivity to experimental manipulations
are suited particularly for investigation of multiple-stage
cognitive tasks.
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