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Abstract: Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitiv-
ities to differently configured brain activations, making them complimentary in providing independent
information for better detection and inverse reconstruction of brain sources. In the present study, we
developed an integrative approach, which integrates a novel sparse electromagnetic source imaging
method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of
EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of mul-
timodal data, we proposed to normalize EEG and MEG signals according to their individual noise lev-
els to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative
approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously acti-
vated and randomly located sources). Results from experimental data showed that complex brain acti-
vations evoked in a face recognition task were successfully reconstructed using the integrative
approach, which were consistent with other research findings and validated by independent data from
functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain
activations from both simulations and experimental data provided precise source localizations as well
as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone,
the performance of cortical source reconstructions using combined EEG and MEG was significantly
improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG
and MEG data could accurately probe spatiotemporal processes of complex human brain activations.
This is promising for noninvasively studying large-scale brain networks of high clinical and scientific
significance. Hum Brain Mapp 34:775-795, 2013.  © 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Electromagnetic source imaging (ESI) techniques based
on electroencephalography (EEG) and/or magnetoence-
phalography (MEG) signals provide estimates of spatial
distributions of coordinated brain electrical activity at a re-
solution of milliseconds [He, 2004]. This procedure has
been widely applied in studying simple human brain func-
tions and/or diseased human brains [Ebersole, 2000; Elbert
et al, 1995; Jensen et al., 2007; Liljestrom et al., 2009].
However, compared with other functional neuroimaging
techniques, e.g., functional magnetic resonance imaging
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(fMRI), the spatial resolution and localization characteris-
tics of these imaging techniques in studying complex brain
networks are still very limited.

From a methodological point of view, the accuracy of
ESI techniques depends on the particular source model
and the computational algorithm used to solve the so-
called “inverse problem” [Nunez, 1995]. Numerous princi-
ples have been utilized to develop solvers for the ESI
inverse problem, including spatial filter theory [Sekihara
et al., 2001; van Veen et al., 1997], subspace source local-
ization theory [Ding and He, 2006; Mosher et al., 1992],
least-squares source estimation [Henderson et al., 1975],
and distributed source reconstructions [Dale and Sereno,
1993; Huang et al., 2006; Hadmaldinen and IImoniemi, 1984;
Lin et al., 2006; Phillips et al., 2005, Wagner et al., 1998].
These methods were developed and implemented using
mainly two types of source models, i.e., parametric dipole
models [Henderson et al., 1975, Mosher et al., 1992] and
distributed source models [Dale and Sereno, 1993, Hama-
lainen and IImoniemi, 1984]. The parametric dipole models
use ideal point sources to represent electrical currents,
which ignore spatial distributions, and are only viable in
modeling focal sources. The distributed source models are
more suitable in characterizing extended sources in which
the source space is represented by continuously distrib-
uted elements over a volume (i.e., the brain) [Hamaéldinen
and IImoniemi, 1984] or a surface (i.e., the cortical surface)
[Dale and Sereno, 1993]. Because of the inherited nature of
non-uniqueness and ill-posedness [Nunez, 1995], distrib-
uted source reconstructions are usually achieved by regu-
larization schemes implemented in various L2-norm
[Hamaldinen and IImoniemi, 1984] or Ll-norm [Wagner
et al., 1998] of inverse solutions.

Recently, we have developed several sparse ESI (sESI)
techniques using distributed source models [Ding and He,
2008; Ding, 2009], which reconstruct brain sources from
EEG/MEG via exploring sparseness in solutions. Although
the sESI techniques use similar Ll-norm regularization
scheme as other L1-norm regularized imaging approaches
[Huang et al, 2006; Uutela et al, 1999; Wagner et al.,
1998], the rationale behind their developments can be
more precisely understood by compressive sensing (CS)
theory [Candes and Tao, 2005]. From CS theory, the L1-
norm regularized optimization problem can be solved
with the exact solution if the number of sparseness (i.e.,
the number of non-zero in solutions) is small enough in
comparison to the number of measurements. Furthermore,
the same principle is also applicable to signals which are
compressible (or sparse) after a transformation. We have
thus proposed a novel sESI technique, known as “the vari-
ation-based sparse cortical current density (VB-SCCD)
method” [Ding, 2009], to reconstruct brain sources with
the use of sparse representations in a transformed domain.
We have demonstrated the performance of this new tech-
nique in localizing multiple distributed brain sources and
reconstructing their cortical spatial distributions using
EEG [Ding, 2009] and MEG [Ding et al., 2010]. Although

the results exploring the sparseness in solutions are prom-
ising, the capability of VB-SCCD can be further improved
by considering the complimentary aspect of obtaining
more independent measurements.

From the measurement point of view, the performance
of ESI techniques is largely dependent on the signals uti-
lized (i.e., EEG or MEG) and their qualities [e.g., signal-to-
noise ratio (SNR)]. Although both EEG and MEG signals
reflect common neural electrical currents, there has been a
lengthy debate over the accuracy of EEG and MEG on
brain source localization. Phantom studies [Gharib et al.,
1995] and studies using artificial current sources delivered
through implanted electrodes in epilepsy patients [Yama-
moto et al.,, 1988] have reported better source localization
accuracy using MEG compared to EEG. Other studies [Bal-
ish et al, 1991; Krings et al, 1999], however, indicated
comparable performance of EEG and MEG. These conflict-
ing data suggested various factors influencing the per-
formance of EEG and MEG. Source estimation based on
EEG does require accurate conductivity profile of the head
volume. Without this information, errors in the head
model for forward computations are mixed with errors
from inverse estimations, which might magnify the error
of EEG source localization. On the contrary, electrical
inhomogeneities are transparent to MEG and adequate for-
ward modeling for MEG can be obtained with a simple
one-compartment model [Okada et al., 1999]. However,
recent developments in accurate realistic head modeling
for EEG, such as the boundary element (BE) model
[Hamaldinen and Sarvas, 1989] and the finite element (FE)
model [Zhang et al., 2006] that are constructed from high-
resolution head structural images, have shown signifi-
cantly improved accuracy in EEG forward calculations.
The conductivity values of different head tissues, espe-
cially the skull, have also been studied and reported [Lai
et al, 2005]. Meanwhile, MEG is mainly limited by its
insensitivity to radially oriented cortical sources [Baule
and McFee, 1965]. Since deep brain sources are nearly ra-
dial, the sensitivity of MEG to deep sources drops sharply
as the depth of source increases [Lin et al., 2006]. Alterna-
tively, EEG reflects current sources of all orientations.
However, when the distributions of field gradient are con-
sidered, the electrical field gradient could be dampened by
the low skull conductivity, which makes EEG signals vul-
nerable to noise. Furthermore, the electrical field gradient
reaches the highest along the current dipole moment while
the magnetic field has the highest gradient across the cur-
rent dipole moment. It is therefore expected that the longi-
tudinal source parameters are more precisely estimated
with EEG, whereas the transverse source parameters are
more precisely estimated with MEG.

The combined evidence indicates that EEG and MEG
are complimentary in characterizing brain electrical sour-
ces. Previous studies have reported several ESI methods to
integrate EEG and MEG for brain source reconstructions.
Methods involving sequential steps were proposed to
localize the tangential and radial components of sources
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(b)

Figure I.

(a) An example of CCD source model with examples for simu-
lated small extended cortical source (green area) and large
extended cortical source (green and red areas). (b) An example
of a BE volume conductor model consisting of the scalp (light

separately [Cohen and Cuffin, 1987; Huang et al., 2007]. In
contrast, most methods [Babiloni et al., 2001; Fuchs et al.,
1998; Liu et al., 2002; Molins et al., 2008] implemented
combined analysis of EEG and MEG yielding simultane-
ous estimation of all source parameters. Some of these
methods [Huang et al., 2007; Huizenga et al., 2001] are ca-
pable of estimating some conductivity parameters during
source estimation, such as the conductivity ratio between
the skull and brain. Both simulation [Fuchs et al., 1998;
Liu et al., 2002] and experimental data [Babiloni et al.,
2001; Fuchs et al., 1998; Sharon et al., 2007] obtained from
these studies have indicated superior performance using
combined EEG and MEG data compared to EEG or MEG
data alone. The improved accuracy of source localization
with combined EEG and MEG has also been reported in
clinical epilepsy [Huiskamp et al., 2004].

Here, we propose an integrative approach for combined
EEG and MEG source analysis in the framework of sESI,
which has been suggested to offer robust solutions in
sparse conditions. The combined use of EEG and MEG
data is expected to improve its performance by having a
greater number of measurements. We further investigated
the source reconstruction problem for complicated brain
activations (up to 10 sources in simulations, and activa-
tions from multiple distributed cortices in real data) by
exploiting the independent and complementary informa-
tion from combined EEG and MEG data. Specifically, the
problem of joint EEG and MEG source analysis was for-
mulated in the manner of unit-free data and the multimo-
dal inverse problems were simultaneously solved using
the sESI technique, i.e., VB-SCCD. The performance of the
new sESI technique using combined EEG and MEG data
was evaluated in both Monte Carlo simulations and exper-
imental data from a face recognition task [Henson et al.,
2003]. We conducted simulations to assess the capability
of VB-SCCD in localizating multiple brain sources (i.e.,
from 1 to 10) and recontructing their cortical spatial distri-

blue), the skull (red), and the brain (gray). (c) Co-registration
between EEG electrodes (green), MEG sensors (yellow), BE
model, and CCD model. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

butions, while paying special attention to more compli-
cated brain activations (e.g., 5 or 10 sources). We further
compared the performance of combined EEG and MEG
with EEG or MEG alone to demonstrate the integrative
benefit of multimodal data.

MATERIAL AND METHODS
Forward Model

The cortical current density (CCD) source model [Dale
and Sereno, 1993] was used in the present study, in which
the source space was represented numerically by continu-
ously distributed triangular elements over the cortical sur-
face (Fig. la). Each triangular element models the source
on itself by a current dipole oriented perpendicular to the
local surface. The CCD model was obtained by segmenting
the white matter/gray matter interface from a human
head MRI using the BrainSuite software [Shattuck and
Leahy, 2002]. The cortical surface was triangulated into a
high-resolution mesh of 48,864 triangles [triangle area: 5.54
+ 1.32 mm® (mean + SD)] (Fig. 1). To accurately compute
the forward EEG signals, BE models (Fig. 1b) were
adapted to represent the realistic geometrical shape of
human head and major conductivity profile (e.g., the
skull). The BE models included three compartments,
which were obtained by segmenting the surfaces of the
skin, skull, and brain and were simulated using different
conductivities (0.33/Qm, 0.0165/Qm, and 0.33/Qm, respec-
tively) [Lai et al., 2005]. The boundary element method
(BEM) was implemented to calculate both the EEG and
MEG forward solutions with BE models [Haméldinen and
Sarvas, 1989; Mosher et al., 1999].

EEG electrode locations and MEG sensor locations and
orientations were adopted from the realistic EEG and
MEG systems. In order to simulate similar spatial coverage
of EEG sensors as that of MEG, a subset of 120 EEG
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channels were selected from a realistic 128-electrode EGI
system (Electrical Geodesics, Inc., Eugene, OR) by remov-
ing some electrodes on face. EEG channels were also
evenly downsampled in space to 63 and 30 locations to
simulate different number of electrodes covering similar
area of sampling space. For MEG, there were 151 MEG
sensors from a 151 channel CTF Omega system, and the
downsampled configuration of 100 and 47 channels were
similarly generated as in the EEG. We also studied the
effects of various combinations of EEG electrode and MEG
sensor configurations. Both EEG electrode and MEG sen-
sor locations are illustrated in Figure 1c, overlaid with BE
and CCD models.

To formulate the forward problem, the vector 5 is used
to represent N elemental dipole moments defined on the
CCD model. Vectors o and b denote potentials and mag-
netic fields at M, EEG electrodes and M, MEG sensors,
respectively. A, = (y,,dy,, - ,dy, ) is the gain matrix (M,
x N) calculated by BEM for electrical potentials, whereas
Ap = (ab"l,ﬁbQ,"',ﬁb’N) is the gain matrix (M, x N) for

where i indicates the ith channel, j indicates the time
point, and t, is the number of time points in noise. In the
analysis of experimental data, noise data can be selected
from recordings considered as signal free (e.g., pre-stimu-
lus data). The SNR transformation can thus be performed
by normalizing EEG/MEG signals to their individual
standard deviation of noise, yielding unit-free measures
for both electric and magnetic modalities, using the follow-
ing equation:

ZA)i,j = U,‘,/'/GU,I‘ and Bl“j = bi.j/Gb‘i (3)

Note that the SNR transformation alters the relation-
ship between electrical/magnetic fields and the dipole
moments. The EEG/MEG gain matrices need to be
changed accordingly to avoid inconsistency since chan-
nels (especially EEG/MEG channels) are normalized
differently.

Av.zﬂo = AV.L./GV,i and Ab.,i‘u = Ab‘i,u/cb,i (4)

Each row of gain matrices is normalized by the individ-
ual standard deviation of noise from the corresponding
channel. Then, the columns of the MEG gain matrix are
appended to the corresponding columns of the EEG gain

magnetic fields. Both 7, and #;, denote background and
measurement noises in EEG and MEG. Then the forward
problem can be expressed in the following vector
notation:

7=A5+7, and b= A5+ 71y, (1)

SNR Transformation

Since EEG and MEG data have different measures (i.e.,
units), to combine them, they have to be converted to a
common basis. We utilized the SNR transformation con-
cept proposed in previous studies [Fucks et al., 1998;
Greenblatt, 1995], which converts all channel data into the
SNR domain, and applies the sESI method according to
the statistical significance of data as indicated by the SNR.
Specifically, a channel-wise SNR transformation was uti-
lized by estimating the standard deviations o of noise
from each channel for both EEG and MEG.

by

with 7,; = %”Zﬂ*z/ , x=v or b (2)
=1

matrix. The combined forward problem can thus be
expressed as follows:

n=[i] = &)+

where A is the combined gain matrix (M xN,M =
M, + M,,). Note that noise from EEG/MEG recordings is
also modified and their variances become unity. In studies
using EEG/MEG data alone, the channel-wise SNR transfor-
mation was also performed to make it consistent with com-
bined EEG and MEG analysis and also compensate for
different noise levels from different channels.

SHIDI

Sparse Representation of Extended Cortical
Sources

It has been suggested that detectable EEG/MEG sources
primarily consist of synchronized intracellular currents
flowing through pyramidal neurons, which cover extents
at least 40 mm?® [Chapman et al., 1984], or possibly even
much larger. This indicates that an extended cortical patch,
consisting of many elemental dipoles distributed over the
convoluted cortical surface, is a realistic model for EEG/
MEG sources. Many previous Ll-norm regularized
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imaging approaches [Huang et al., 2006; Uutela et al.,
1999; Wagner et al., 1998] directly penalized the L1-norm
of solution vector s. Since elemental dipoles within a cort-
ical patch are closely located, projections of their activity
on electrodes/sensors share largely overlapping patterns.
Penalties on the L1-norm of solution vectors tend to mini-
mize the Ll-norm by accumulating elemental dipole
moments onto one (or few) location(s) with diminished
extents. The enforcement of such sparseness in the source
domain thus produces over-focused solutions [Ding and
He, 2008]. In VB-SCCD, however, we proposed to penal-

ize the variation vector, which is in a transformed do-
main of the source vector [Ding, 2009], with the L1-norm.
The variation vector represents the variation map of corti-
cal source distributions (or current density maps), which
characterize boundaries between active (i.e., source) and
inactive cortical regions (i.e,, non-source) as the main
sparse feature (or the sparseness). This new sparse feature
obviously does not enforce over-focused solutions and
has been shown to better represent extended cortical
sources [Ding, 2009]. We proposed an operator V to
obtain variation maps:

11 U2 UIN
v U1 U2 N vj =1 v =—1 if elements jk share the edge i ©)
B v;j =0; otherwise
Up1 Up2 UPN
where V is a P x N matrix and P is the total number of tribution, 1y, with M degrees of freedom, i.e,

edges from triangular elements. Each row of V corre-
sponds to an edge i and only two elements (which share
the same edge i) within the row have non-zero values, i.e.,
1 and —1.

Variation-Based Sparse Cortical Current Density
Algorithm

By minimizing the Ll-norm of Vs, the regularization
scheme in VB-SCCD is formed as:
min||Vs||, subject to ||m — As|,< P (7)
Each element in this variation vector represents a coeffi-
cient defined on a triangular edge and its value indicates
the current density difference between two triangular ele-
ments which share the same edge. If the cortical current
density within each individual active cortical source is
close to uniform or can be approximated with uniform dis-
tributions, non-zero coefficients are expected to exist
mainly on boundaries (the sparse feature) and expected to
be identified by minimizing the L1-norm of this variation
vector. The second term in Eq. (7) is the data term, which
calculates the error between recordings and predicted val-
ues from the forward model [i.e., Eq. (5)]. This error will
only be allowed to be less than a parameter, 8, obtained
based on the noise level, which guarantees the consistency
between recordings and reconstructed results. The param-
eter B, known as the regularization parameter, is estimated
using the discrepancy principle [Morozov, 1966]. We
choose it to be high enough so that the probability of
ll7ll,> B, where 7t =1 — A5, is small. When we assume
Gaussian white noise, (1/c2)|||; follows a Chi-square dis-

(1/02)||7|5~ %% Because of the SNR transformation, o,
for both EEG and MEG signals have become unity and
thus [|72]3~ 2. In practice, the upper bound of |i1||,, i.e. B,
is selected such that the confidence interval [0, B] integra-
tes to a 0.99 probability [Ding and He, 2008]. The variance
o’ for real data was estimated using the method discussed
in the section of SNR transformation.

Solver: Second-Order Cone Programming

The optimization problem stated in Eq. (7) is a convex
optimization problem, which can be solved efficiently with
globally optimal solutions. It was solved using the second
order cone programming (SOCP) technique [Nemirovski
and Ben Tal, 2001], which utilizes the efficient globally
convergent solver known as the Interior Point Methods
(IPM). The method has been implemented in the MATLAB
package SeDuMi [Sturm, 2001]. In order to solve them,
these problems should be formulated into the framework
of SOCP (details for this approach can be found in our
previous study [Ding, 2009]).

Monte Carlo Simulation

It is well known that the accuracy of inverse solutions is
highly dependent on the location of source [Fuchs et al,,
1998; Liu et al., 1998] due to different sensitivities of EEG/
MEG to sources from different locations with different ori-
entations and depths. Simulations with a large number of
randomly sampled source locations [Liu et al., 2002] has
been suggested to better represent realistic conditions in
which electrical activity can occur in the brain. In our sim-
ulation, cortical sources were generated by selecting a seed
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triangular element on the cortical mesh and gradually
growing into patches by iteratively adding neighboring
elements. The dipole moment on each triangle was com-
puted as the multiplication of the individual triangular
area and the dipole moment density (i.e., 100 pAm/mm?).
Different brain activity was simulated with a different
number of cortical sources (i.e., 1, 2, 5, and 10 sources).
The locations of these sources were randomly selected.
The cortical extents of these sources were simulated with
small sizes (2.33 + 0.34 cm?) and large sizes (7.83 £+ 1.11
cm?; Fig. 1a). We further investigated the effects of using
different numbers of electrodes/sensors and different sig-
nal modalities (i.e., EEG alone, MEG alone, and
EEG+MEQG). For each condition (such as, different number
of sources, different number of electrodes/sensors, and
different modalities), we repeated the simulation 200 times
to cover most parts of the brain during the random sam-
pling procedure. Noiseless EEG/MEG signals generated
by individual elemental dipoles in a cortical source were
calculated using BEM and were then superposed to obtain
the surface fields of the cortical source. If there were multi-
ple sources in one simulation, surface fields from these
sources were superposed again. Simulated EEG/MEG
data were then contaminated by real noise recorded from
a subject in resting conditions and calibrated to a 10 dB
SNR.

We used the metrics, i.e., the receiver operating charac-
teristic (ROC) curve and the area under the ROC curve
(AUC) from detection theory [Grova et al., 2006] to assess
the performance of VB-SCCD in simulation data. Cortical
current distributions reconstructed from simulated data
can be thresholded (namely o) to determine active and
inactive cortical regions that are compared with simulated
source distributions. An active element in the simulated
map is regarded as a true positive (TP) if it is an active
element in the reconstructed map thresholded at o. Other-
wise, this element is a false negative (FN). An inactive
element in the simulated map is regarded as a false posi-
tive (FP) if it is an active element in the reconstructed
map thresholded at o. Otherwise, this element is a true
negative (TN). Specificity and sensitivity are then defined
as:

specificity (o) = TN(a) /(TN(or) + FP(at)) 8
sensitivity(c) = TP(x)/(TP(x) + FN(2)) ®)

ROC curves can be obtained by plotting sensitivity(o)
against 1 — specificity(a) at different thresholds. The AUC
metric is calculated as the area under ROC curves. High
AUC values indicate both high sensitivity and high speci-
ficity in detecting extended cortical sources. To obtain an
unbiased estimation of the AUC metric, a similar number
of simulated active and inactive elements should be pro-
vided, which is obviously not the case in our simulation
study. We used a method reported in Grova et al. [2006]
to obtain less biased AUC values. Briefly, a set of simu-
lated inactive elements, which has the same number as

simulated active elements, was randomly selected from
the total number of inactive elements to compute the
AUC. The random selection process was repeated 50 times
to reduce the bias caused by a specific set selected in one
realization. Furthermore, since it is well known that spuri-
ous sources from most inverse solutions usually happen in
the neighboring elements around simulated active ele-
ments, we thus split the inactive elements into two groups,
ie., elements within the 10th neighborhood (in terms of
triangular elements) of simulated active elements, and ele-
ments beyond the 10th neighborhood. AUC values were
computed separately for inactive elements from these two
groups using the random process described above and
then averaged [see details in Ding, 2009]. Although most
previous studies reporting ROC metrics for EEG/MEG
allow certain source localization bias within a pre-defined
acceptable distance of active sources [Darvas et al., 2004;
Grova et al, 2006], in the present study, we used the
“hard” AUC metric that allows no such bias. To achieve
high AUC values, estimations of locations and cortical
extents of sources must be accurate.

Experimental Protocol and Data Analysis

To evaluate the performance of the proposed approach
with empirical data, we performed an analysis of the face
processing event-related potentials (ERPs) and fields
(ERFs) data obtained from the EEG and MEG, respec-
tively. Details of the experimental paradigm as well as the
full dataset can be found at www.fil.ion.ac.ik/spm/data/
mmfaces.html. Briefly, EEG and MEG data were recorded
in a subject performing a face perception task [Henson
et al., 2003]. The subject made symmetry judgments on
faces and scrambled faces. Stimuli of faces and scrambled
faces were presented every 3.6 s and each stimulus lasted
0.6 s. EEG data were acquired on a 128-channel ActiveTwo
system, sampled at 2,048 Hz, whereas MEG data were
sampled at 625 Hz from a 151-channel CTF Omega sys-
tem. Both EEG and MEG data were subsequently down-
sampled to 200 Hz and interpolated to align EEG and
MEG samples in the time domain. Epochs were created
from —200 ms to 600 ms for both EEG and MEG. These
epochs were then detrended and examined for artifacts.
The epochs were averaged according to the two trial types:
faces (F) and scrambled faces (S), to produce type-specific
ERPs and ERFs. Note that face stimuli included both fa-
miliar and unfamiliar faces, and both were combined to
create event-related data.

The subject’s Tl-weighted MRI was obtained from a
1.5T Siemens Sonata via an MDEFT sequence with resolu-
tion 1 x 1 x 1 mm® voxels, using a whole body coil for RF
transmission and an 8-element phased array head coil for
signal reception. The CCD source model and BEM volume
conductor were built using BrainSuite software. The corti-
cal surface was triangulated into a high-resolution mesh
with 63,820 triangles (triangle area: 2.78 + 2.11 mm?;
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Fig. 9). The subject’s head shape (including nasion, left,
and right preauricular fiducial points) was digitized (Pol-
hemus, Inc., Colchester, VT). In EEG recordings, electrode
locations were also digitized. We first co-registered the
EEG, MEG, and BEM mesh using a rigid transformation
based on the location of the three fiducial points. We then
refined this registration using a surface-fitting algorithm
[Towle et al., 2003] via minimizing the fitting errors
between the BEM meshes and digitized electrode positions
for EEG, and the digitized head shape for MEG.

RESULTS
Reconstruction of Multiple Cortical Sources

Figure 2 shows the AUC values for simulations under
different conditions, such as the number of sources, num-
ber of electrodes, and EEG/MEG modalities from simu-
lated cortical sources of small sizes. We first investigated
the performance of the integrative approach in reconstruct-
ing multiple cortical sources (i.e., 1, 2, 5, and 10). As indi-
cated by the general trend in Figure 2, when the number
of sources increased, the AUC metric decreased for EEG,
MEG, and EEG+MEG, and for different number of chan-
nels. For example, when examining the MEG+EEG
(120+151) conditions from one to ten sources, we can
observe that their median AUC values slowly decrease
from above 0.95 to slightly higher than 0.8. However, it is
worthwhile to note that the overall reconstruction accuracy
in these conditions is considered high since most of AUC
values are higher than 0.8 [Grova et al., 2006], even when
there are ten simultaneously activated and randomly
located sources. This observation can be generalized to
other EEG+MEG conditions (i.e., first nine columns in Fig.
2). Generally, the median AUCs in simulations using up to
five sources are higher than 0.8, and in the conditions of
10 sources, they are around 0.8 (depending on the number
of EEG and MEG channels used). The performance of the
integrative approach is also reflected in variations of 200
random repeats. We used the difference between the 25th
and 75th percentiles of data (i.e., the length of the boxes in
Whisker plots) as a measure of variation. From one to ten
sources, we observed that this measure increased for all
EEG+MEG conditions no matter how many channels were
used. This suggests that performance decreases as the
number of sources increases, while the general perform-
ance is reasonably good as indicated by the median AUCs.
However, this measure shows an opposite general trend in
the EEG or MEG alone data, where its values decrease as
the number of sources increase, and are found to be con-
siderably larger than those from EEG+MEG. This phe-
nomenon can be explained by large sensitivity variations
of EEG or MEG in different source configurations, which
will be discussed in details below.

Although Whisker plots of AUC values provide an over-
all picture of performance of the integrative approach, Fig-
ures 3 (for 1, 2, and 10 sources) and 4b (for 5 sources)

allow us to directly visualize the reconstructed extended
cortical sources from the best five examples in reference to
corresponding simulated ones. These reconstructed distri-
butions were uniformly thresholded at 20% of their own
global maximal values. When there are only a few simu-
lated sources (i.e., 1 or 2), the reconstructed distributions
are almost exactly recovered in terms of location and spa-
tial extent (Fig. 3ab). When the number of sources
increases to five, all cortical sources can still be resolved,
and their localizations are accurate. For example, in the
case of #5 (Fig. 4b), all five reconstructed cortical sources
on the same hemisphere are well reconstructed, and, in
the case of #3, four sources (marked by a, ¢, d, and e)
within a close neighborhood are well resolved. At the
same time, these sources start to exhibit larger extents
than simulated ones under 20% thresholding. Notably,
when the number of sources to be reconstructed is ten
(Fig. 3c), the reconstructed cortical sources have consistent
distributions and many closely located sources are still
able to be resolved, while more cortical sources have
enlarged spatial extents. Since the chance for randomly
selected sources being close becomes higher when the
number of sources increases, some of the closely located
sources are fused. In summary, these examples demon-
strate the remarkable resolvability of the integrative
approach in localizing multiple sources (up to 10). Of
course, the reduced performance for an increased number
of sources is also suggested in these examples as shown in
Whisker plots of AUC values.

Reconstructed Cortical Distributions at Different
Levels of Performance

In the above section, we discussed the performance of
the integrative approach in conditions with different num-
ber of sources using the best five examples. Here, we
show examples of reconstructed source distributions at
different levels of performance as indexed by AUC values
from simulations of five sources as a representative case
for multiple sources. We selected five examples at each
quartile of AUC values [i.e., the 100th (highest), 75th, 50th,
25th, and or Oth (lowest percentile). These are illustrated
in Figures 4 and 5.

Generally, the pattern of reconstruction accuracy from
the best (Fig. 4b) to the worst (Fig. 5a) is consistent with
the pattern of the AUC metric. The variation of reconstruc-
tion accuracy is mainly caused by the locations of simu-
lated sources since other influential factors, such as
number of sources, extent, and SNR are the same or very
similar. In order to further discuss the location-dependent
performance of the proposed integrative approach, we
examined three types of distortions in reconstructed
source distributions, which affect the AUC value: enlarged
extent, fused source distribution, and missing sources.
Both enlarged extent and fused distribution have been
observed in Figure 3 and they are related since closely
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Figure 2.

Whisker plots of AUC metric values for VB-SCCD using EEG
(black), MEG (orange), and EEG+MEG (blue) with different
numbers of channels (from right to left: 30, 63, and 120 for
EEG; 47, 100, and 151 for MEG; and 30447, 63+47, 100430,
120+47, 63+100, 30+151, 1204100, 63+151, and 120+151 for

located sources with enlarged extent tend to fuse together.
It is obvious that these three types of distortions are pres-
ent at different AUC values. The phenomenon of enlarged
spatial extent starts to appear in examples with the highest
AUC values (Fig. 4b), such as cases #4 and #5, and

EEG+MEG) and with different source configurations (I, 2, 5,
and 10 sources) from simulated sources of smaller sizes. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

becomes significant in examples at the 75th percentile (Fig.
4a). The phenomenon of fused distribution starts from the
75th percentile (Fig. 4a), as in case #4, and appears more
at the 50th and 25th percentiles (Fig. 5b,c). The missing
source mainly appears in the 25th percentile and lowest
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Figure 3.

lllustration of the five best reconstructions (from #| to #5) from
different source configuration: (a) | source; (b) 2 sources; and (c)
10 sources. First rows: simulated cortical maps with each source
marked by a letter; second row: reconstructed cortical maps by
VB-SCCD. One or two views were used to show all randomly
generated sources. When two views were not enough, transpar-

ent cortical models were used and capital letters L (left), R (right),
and F (front) were used to mark the orientation of cortical mod-
els. For illustration purposes, the simulated sources were marked
by letters and some reconstructed sources were circled. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

o 783 o



¢ Ding and Yuan ¢

<0.4

— -Highsest
é ©TTT75M percentile

max

20%*max

Reconstructed Simulated

Simulated

Reconstructed

Simulated

Reconstructed

Figure 4.
lllustration of five reconstructions with five simulated sources at different percentiles of AUC values
from 200 repeats: (a) highest or 100th percentile; (b) 75th percentile. Same display conventions as in
Figure 3. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

portion of AUC values. Among them, the missing source
represents the most significant problem in source identifi-
cation. While the problem of enlarged extent leads to
smooth reconstructions, fused distributions occur when
reconstructions are further smoothed, which leads to
reduced spatial resolvability of sources. It is also worth-
while to note that these three distortions affect the AUC
metric differently. Both the enlarged extent and fused dis-
tribution problems have increased FP values, which
decrease the specificity of detection and lead to low AUC
values. On the other hand, missing sources increase FN
values, which decrease the sensitivity of detection and
lead to low AUC values.

In addition, it is interesting to note that both enlarged
extent and fused distribution problems are not as evident
as the missing source problem at the lowest and 25th per-

centile of AUC values. This indicates that the missing
source problem biases the AUC metric more significantly.
We observed that most missing sources are located either
on median walls of both hemispheres or within deep
structures, where both EEG and MEG have low sensitivity
to detect them. It is also important to note that the per-
formance in reconstructing other cortical sources is not
obviously influenced by the existence of these missing
sources and their unaccounted residual fields (due to the
fact that these sources are not reconstructed; Fig. 5a,b).

Performance of EEG, MEG, and EEG+MEG

Figure 2 also illustrates the large difference observed
between EEG alone, MEG alone, and EEG+MEG. Any
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Figure 5.
lllustration of five reconstructions with five simulated sources at different percentiles of AUC
values from 200 repeats (continue): (a) median or 50th percentile; (b) 25th percentile; (c) Low-
est or Oth percentile. Same display conventions as in Figure 3. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

combination of EEG and MEG has better performance (i.e.,
higher median AUC values) than EEG or MEG alone in all
conditions (i.e., from 1 to 10 sources). For example, the com-
bination of low-density (30 channels) EEG and low-density
(47 channels) MEG (total 77 channels) has better AUC val-
ues than high-density EEG alone (120 channels) or high-
density MEG alone (151 channels). This effect was statisti-
cally significant across most conditions with different num-
bers of sources (p < 0.05). This indicates that the
complementary nature of EEG and MEG improves the
source reconstruction performance much more significantly
than simply adding more EEG electrodes or MEG sensors.
This observation is also collaboratively supported by rela-
tively smaller variations (as indicated by the length of box
in Whisker plots) in EEG+MEG than EEG or MEG alone.
The large variations in EEG or MEG alone are due to largely
varying sensitivity of EEG or MEG to differently configured
cortical sources (i.e., from different locations). These large

variations cannot be significantly reduced with increased
number of channels in a single modality since it does not
significantly enhance the sensitivity profile. Meanwhile,
since EEG and MEG have different sensitivity profiles for
differently configured sources, the variation dependent on
locations can be reduced by combining them.

As indicated by the AUC data, there is no obvious differ-
ence between the performance of EEG and MEG alone.
EEG performs better in terms of AUC than high-density
MEG measurements (120 EEG channels and 151 MEG chan-
nels), whereas MEG performs better in low density (47
channels) than EEG (30 channels). However, such differen-
ces are not as large as the difference between EEG+MEG
and EEG or MEG alone. Both EEG and MEG have large var-
iations of AUC values in simulations of one source and rela-
tively low variations of AUC values in simulations of five
or ten sources. Since the performance of EEG or MEG alone
is highly dependent on location, some sources are relatively
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Figure 6.
Comparison between EEG (120 channels), MEG (151 channels), and EEG+MEG (1204151 chan-
nels) in reconstructing five sources. (a) The Ist example; (b) the 2nd example. Same display con-
ventions as in Figure 3. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

more difficult to be reconstructed than others. When such a
source occurs in simulations of only one source, it influen-
ces the entire distribution and leads to extremely low AUC
values (thus large variation in AUC values). However,
when it occurs in simulations of five sources or ten sources,
it only disturbs ~ 20% or 10% of distributions and does not
produce extremely low AUC values (thus relatively small
variation in AUC values).

Figure 6 illustrates the difference of EEG, MEG, and
EEG+MEG in two examples from simulations of five sour-
ces. It is obvious that the improvement of EEG+MEG in
localizing extended cortical sources and reconstructing their
spatial extents is significant compared to EEG or MEG
alone. For example, in Figure 6a, the result from EEG+MEG
resolves two closely located sources (marked as a and b) in
the left front area which could not be separated using EEG.

Furthermore, the reconstructed distributions of five sources
from EEG+MEG are much more consistent with simulated
distributions compared to EEG. As compared with MEG,
EEG+MEG identifies missing sources in MEG (two in
Fig. 6a, marked as c and e, and one in Fig. 6b, marked as b).
It is also notable that EEG+MEG can significantly correct
the localization bias. For example, in Figure 6b all five sour-
ces identified by EEG are significantly biased from their
simulated sites (although still in the neighborhoods) and
two sources identified by MEG (marked as ¢ and d) are also
shifted, whereas the same five sources are all correctly
located using EEG+MEG. The largest distortion in the dis-
tribution from EEG+MEG, in the second example, is that it
indicates an enlarged spatial extent of source b located in
the deep structure. However, the same source is either
missing in MEG or significantly biased in EEG.
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Figure 7.

Whisker plots of AUC metric values for VB-SCCD using EEG (120 channels), MEG (151 chan-
nels), and EEG+MEG (1204151 channels) with different source configurations (I, 2, 5, and 10
sources) from simulated sources of larger sizes. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Number of Electrodes/Sensors

The influence of the number of electrodes/sensors on
the performance of the integrative approach, as indicated
by the AUC metric (Fig. 2), is not as significant as the
influence of modality. In the single modality analysis (i.e.,
EEG or MEG), the AUC metric decreased as the number
of electrodes/sensors decreased, and these reductions
become statistically significant between high-density (>100
channels) recordings and low-density (<50 channels)
recordings. This general trend is common and similar for
both EEG and MEG and for all simulations with different
numbers of sources. While the performance for combined
MEG and EEG data is better when more electrodes and
sensors are used, this influence is not as significant as in a
single data modality, and the resulted differences are not
statistically significant in most cases. Although such differ-
ences are not quite visible in simulations with few num-
bers of sources (i.e., 1 and 2), high-density data showed
significantly better performance as the number of simu-
lated sources increased (i.e., 5 and 10).

Size of Cortical Sources

Figure 7 shows the AUC values for simulated cortical
sources of larger sizes. Only results from EEG+MEG
(1204151 channels), EEG (120 channels), and MEG (151
channels) for one, two, five, and ten sources are presented
here, whereas other data share the similar pattern. Com-
pared to the results from the simulated cortical sources of
smaller sizes shown in Figure 2, there were no significant
changes in AUC values for both EEG+MEG and EEG
alone across conditions with different numbers of sources.
We observed a significant decrease of AUC values for
MEG alone in all conditions. Such a reduction was prob-

ably caused by the increased radial components in simu-
lated sources when their spatial sizes over the cortical
surface increased. Since MEG is insensitive to radial sour-
ces [Baule and McFee, 1965], the radial components in
extended cortical sources might be underestimated and
thus impact the value of AUC metric.

Comparison of External EEG/MEG Recordings
and Reconstructed Cortical Maps

Figure 8 illustrates four examples of external EEG (120
channels) and MEG (151 channels) recordings together
with their reconstructed cortical maps (un-thresholded)
with one, two, five, and ten sources. These EEG and MEG
maps generally have limited spatial resolution due to the
so-called volume conductor effect. Moreover, the underly-
ing cortical generators behind them are not well defined
spatially since both EEG and MEG have limited spatial
penetration, and their distributions depend on the orienta-
tions of current flows. Additionally, cortically recon-
structed source distribution maps gain spatial penetration,
which avoids the complications from the volume conduc-
tor effect, and further enhances the spatial resolution. In
the cases with few sources (i.e., 1 and 2; Fig. 8ab), EEG
and MEG are able to provide non-overlapped (or not sig-
nificantly overlapped) field maps (if sources are not too
close to each other in cases with more than one source),
even though the signals have smooth spatial distributions.
It is thus possible to use EEG and MEG signals directly
when assessing underlying activity and the major function
of ESI (or sESI) is to accurately locate the activity on corre-
sponding anatomic structures and precisely estimate their
spatial extents. In the cases with more sources (i.e., 5 and
10; Fig. 8c,d), both EEG and MEG field maps are
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Figure 8.
lllustrations of spatial localization and resolvability of sources at different levels via comparing
scalp EEG (120 channels), scalp MEG (151 channels), and cortical maps reconstructed from
EEG+MEG (120151 channels). (a) One source; (b) two sources; (c) five sources; and (d) 10

sources. [Color figure can be viewed
wileyonlinelibrary.com.]

significantly overlapped (either enhanced or canceled) and
it is thus difficult or almost impossible to perform direct
interpretations. VB-SCCD thus performs spatial de-convo-
lutions on EEG and MEG maps when reconstructing
source locations and extents. While the mathematical prob-
lem becomes more challenging, the gain by performing
sESI increases more significantly. Examples in Figure 8c,d
demonstrate how much spatial information can be gained
by reconstructing sources from surface EEG and MEG.

in the online

issue, which is available at

Cortical Sources for Face Perception and
Recognition

Source imaging results from multiple time points for
face perception and recognition are illustrated in Figures
9-11, which used the same pseudo-color representations to
make brain activations at different time points comparable.
Each individual cortical map was uniformly thresholded
at 30% of its own maximal value. The difference maps in
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Figure 9.

Dynamic patterns of source reconstructions within PI100/M100
and P170/M170 components from a face recognition task. (a)
An EEG waveform from one channel (red electrode shown reg-
istered with the head) and a MEG waveform from one channel
(green sensor), both of which show the maximal difference

Figure 10 were created by subtracting source maps for
scrambled faces from those for faces and then thresholded
at 30%. Figure 9a shows the cortical sources from
EEG+MEG for P100/M100 components in both conditions
of faces and scrambled faces. Large activities are shown in
the primary and associated visual cortices. The spatial dis-
tributions of these cortical sources and their temporal dy-
namics (i.e., their changing spatial patterns within
multiple time points) are consistent between faces and
scrambled faces, which indicates no obvious difference of
brain computations in processing both stimuli during the
time window for 100/M100.

The difference between faces and scrambled faces has
been reported in EEG/MEG at the N170/M170 component
and has also been studied with fMRI data using the same
protocol from the research group [Henson et al., 2003]
who shared the EEG/MEG dataset utilized in our present
study. We shall discuss our findings using the proposed
integrative analysis approach with reference to their find-

between faces and scrambled faces. (b) Cortical current density
maps reconstructed within PI00/M100. (c) Cortical current den-
sity maps reconstructed within PI170/M170. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]

ings from the fMRI data [Henson et al., 2003]. During
N170/M170, it was observed that bilateral fusiform (i.e.,
150-160 ms) and lateral ventral occipital regions (i.e., 160—
175 ms) were more active for faces compared to scrambled
faces (Fig. 9c). A similar difference was observed in fMRI
activation maps [Fig. 5A and Table 3 in Henson et al.,
2003]. Furthermore, posterior occipital regions, as indi-
cated in the difference maps (Fig. 10), were more active
for scrambled faces during the early phase of N170/M170
(e.g., 150 ms) and P100/M100 (data not shown here), and
became less active during the late phase of N170/M170
(e.g., 170-175 ms). The same area appeared more active in
the scrambled faces than in faces, as suggested by fMRI
data [Fig. 5A and Table 3 in Henson et al., 2003], which
reflected summed brain activity within the entire studied
time window (including N170/M170 and P100/M100) due
to the low temporal resolution of the hemodynamic
response. Other notable areas, which are more active for
normal faces, included the right superior temporal sulcus
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Figure 10.
Difference maps obtained via subtracting cortical current density
maps of scrambled faces from maps of faces within P100/M100.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

EEG

MEG

(STS; e.g., 160 ms marked by a circle) and right lateral
temporal gyrus, which also happened to be consistent
with the fMRI data [Fig. 5A and Table 3 in Henson et al.,
2003].

Brain areas showing significant activity within the fron-
tal lobe to face stimuli included the medial superior frontal
gyrus, the orbital part of inferior frontal gyrus, and the
medial orbitofrontal gyrus (e.g., 175 ms marked by a circle;
Fig. 9c). These observations were in line with the fMRI
data [Fig. 6A and Table 4 in Henson et al., 2003]. The dif-
ference in activation between familiar faces and unfamiliar
faces suggests that these regions are involved in face rec-
ognition. However, EEG/MEG trials for both familiar and
unfamiliar faces were averaged during the creation of
ERP/ERF and thus these activities reflected the overall
brain responses to both conditions. Similar activity in these
brain areas was also observed for scrambled face stimuli,
which appeared to be more localized before 160 ms and
much more spread from 170 ms. At the time points
around 170 ms (or 175 ms), EEG/MEG signals were
observed to be much smaller for scrambled faces than
those for faces and resulted in low SNRs, which might be
the reason why less reliable and smooth reconstructions
were produced. In Figure 10, the difference between faces
and scrambled faces were found in the occipital and tem-
poral cortices but could not be identified in the frontal cor-
tex. This might be caused by averaging brain responses to
familiar and unfamiliar faces which smears the contrast.
However, sources within the frontal cortex for face stimuli
are much more localized than responses for scrambled
faces during N170/M170 (especially its late phase) due to
the higher SNR.

Figure 11 illustrates the EEG and MEG results for faces
during both P100/M100 and N170/M170, and compares

170 ms

Figure 11.
Comparison between EEG, MEG, and EEGH+MEG (shown in Fig. 8) in reconstructing sources
within both P100/M100 and P170/M170 components of faces. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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the results for the combined EEG+MEG shown in Figure
9. Sources reconstructed from EEG or MEG are generally
consistent with those from EEG+MEG, but with degrada-
tions. Bilateral fusiform activations appear unilateral in
both EEG alone and MEG alone, which is similar to source
localization results from another study using the same
MEG dataset [Henson et al., 2005]. Specifically, fusiform
activations from EEG are only reconstructed at one time
point (i.e., 150 ms). Meanwhile, EEG has much better accu-
racy in reconstructing sources within the frontal cortex
(e.g., 170 ms). MEG has better resolutions in occipital and
temporal cortices while it totally loses sources within the
frontal cortex. Furthermore, sources reconstructed from
MEG seem much more localized compared with sources
reconstructed from EEG (e.g., 120 ms and 135 ms), which
is also observed in simulations (Fig. 6).

DISCUSSION

In the present study, we demonstrated that a novel
sparse ESI technology (i.e., VB-SCCD) is able to recon-
struct complicated brain activations (up to 10 simultaneous
activations as in current simulations) via integrating EEG
and MEG data. Reconstructed cortical brain activations
from both simulations and experimental data provided
precise source localizations as well as accurate estimation
of source spatial extents. The performance of VB-SCCD is
significantly improved with combined EEG and MEG as
compared with EEG or MEG alone. We further demon-
strated that, with VB-SCCD and combined EEG and MEG,
it is promising to noninvasively estimate the spatiotempo-
ral dynamics of complex brain activations in real data (i.e.,
a face recognition task).

In our simulations, a Monte Carlo protocol was imple-
mented with the number of sources up to 10, which is one
of the few EEG/MEG studies, to our knowledge, using
randomly generated multiple source (more than five)
schemes [Liu et al., 1998]. We evaluated the simulation
results with the AUC metric [Grova et al., 2006] (Fig. 2). In
the design of the AUC metric, we implemented a random
selection process by balancing the sizes of active and inac-
tive elements to reduce the bias on the calculation of AUC
metric due to large number of inactive elements. We also
adopted a strategy of computing AUC values by splitting
inactive elements into two groups, which are either close
to or far away from simulated sources, in order to correct
the underestimation of false positives due to the non-uni-
form distributions of spurious sources [Grova et al., 2006].
As a result, the adopted AUC metric is sensitive to both
localization biases and estimation errors of source extents
[Ding, 2009]. Meanwhile, the evaluation metric (i.e., AUC)
and its statistics (i.e., Whisker plots of AUC) are not
straightforward in revealing how a real inverse solution
looks like. We thus further accessed the simulation results
by directly inspecting reconstructed source maps (Figs.
3-5). Overall, our simulation data suggest that the VB-

SCCD technique is capable of reconstructing complicated
cortical activation maps (i.e., of multiple randomly located
sources). The reconstructed cortical maps are accurate in
terms of localization and extent estimation with few num-
bers of sources (i.e., 1 or 2). In conditions with five or ten
sources, reconstructed sources are accurate in terms of
localization in most cases whereas their extent estimations
are degraded because of smeared spatial distributions or
multiple fused activities. In some extreme cases, there are
missing sources (Fig. 5). The present results also suggest
the robustness of VB-SCCD in reconstructing extended
cortical sources with different spatial sizes (Fig. 7). Gener-
ally, our data indicate that VB-SCCD using combined EEG
and MEG is able to significantly enhance the spatial
resolvability on cortical sources when it is compared with
surface EEG and MEG (Fig. 8), especially in cases with
multiple sources (five sources in Fig. 8c and ten sources in
Fig. 8d).

Our present study also investigated the performance of
VB-SCCD using experimentally recorded EEG and MEG
data from a face recognition task [Henson et al., 2003]. We
conducted source analysis using ERP and ERF data during
both P100/M100 and N170/M170 components. The corti-
cal source maps from faces and scrambled faces during
P100/M100 are almost identical, whereas the most signifi-
cant difference between cortical maps for faces and
scrambled faces appears during N170/M170 (Fig. 10). This
observation is consistent with our physiological under-
standing that the same brain process should occur during
P100/M100 since both faces and scrambled faces are visual
stimuli. However, different brain processes are expected to
be observed since face stimulus is supposed to provoke
the brain response for face recognition while scrambled
faces are not. Within N170/M170, an extensive brain net-
work, involving bilateral fusiform, posterior occipital
regions, STS, right lateral temporal gyrus, medial superior
frontal gyrus, and inferior and medial orbitofrontal gyri,
was recovered and its spatiotemporal dynamics were
reconstructed (Fig. 9). We compared our findings with
findings from an fMRI study using the same protocol
[Henson et al., 2003] and indicated that all observations
were consistent and a complete cortical network underly-
ing face recognition as reconstructed by fMRI can be simi-
larly recovered by VB-SCCD with the combined EEG and
MEG, which has much higher temporal resolutions to fur-
ther resolve the temporal sequence of activation incidence.
Furthermore, our observations were also consistent with
findings related to face recognition from other studies
[Hasselmo et al., 1989; Haxby et al., 2000; Scalaidhe et al.,
1999]. For example, bilateral activations of fusiform areas
have been identified in association with face-processing
[Haxby et al., 2000] and have been similarly recovered by
another study using same EEG dataset [Friston et al.,
2008]. Another example is that the neurons in STS are sus-
pected of being sensitive to face expression [Hasselmo
et al.,, 1989]. At each instant in time, reconstructions of
multiple brain activations distributed over multiple
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Figure 12.

An example to illustrate the sensitivity of surface EEG and MEG
in responding to spatial extent changes of cortical sources from
the same location. First row: surface MEG distributions gener-
ated by simulated sources. Second row: simulated sources with
varying extents from the same location. Third row: surface EEG
distributions generated by simulated sources. [Color figure can
be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

cortices (e.g., eight spatially distinct activations at 160 ms
from faces stimulus, Fig. 9) demonstrate the excellent
capability of the proposed novel integrative approach in
investigating complicated brain processes. Figures 9 and
10 further indicate the stable temporal dynamic patterns
and consistent temporal dynamic difference patterns
between faces and scrambled faces, respectively, revealed
by the source analysis.

The novel L1-norm regularization scheme proposed in
sESI (e.g., VB-SCCD) addresses the fundamental mathe-
matical challenges of EEG/MEG inverse problems, i.e., the
non-uniqueness, in a new perspective. According to infor-
mation theory [Candes and Tao, 2005], the L1-norm regu-
larized optimization problems can be solved with exact
solutions if the number of sparseness (i.e., the number of
non-zero coefficients if in a transformed domain) is small
enough compared with the number of measurements.
From this new perspective, the severity of underdeter-
mined problem of EEG/MEG inverse problems is not
determined by the ratio between the number of sources
and the number of measurements (e.g., 50,000:200), but by
the ratio between the number of sparseness and the num-
ber of measurements. In VB-SCCD, the sparse feature is
characterized in the variation domain and its effectiveness
in reconstructing extended cortical sources has been stud-
ied with EEG [Ding, 2009] and MEG data [Ding et al.,
2010]. In the current study, we increased the number of
measurements by changing the number of electrodes/sen-
sors, and by using single modality data (EEG or MEG) or
multiple modality data (EEG+MEG). Our current results
suggest that data from multiple imaging modalities (i.e.,

EEG and MEG) are more effective in improving the per-
formance of VB-SCCD than increasing number of channels
from a single modality. This is due to the fact that EEG or
MEG recordings are structurally constrained to the head
surface and their measurements can be highly correlated
(i.e., interdependent). Meanwhile, the significant improve-
ment of performance in VB-SCCD with the combined EEG
and MEG is due to the fact that EEG and MEG have dif-
ferent sensitivity profiles to brain sources, and thus pro-
vide more independent information. This is consistent
with the CS theory that orthogonal measurements are
needed to achieve exact solutions in L1-norm regularized
optimization problems with less number of measurements
[Candes and Tao, 2005].

Our current results from both simulations (Figs. 2 and
6) and experimental data (Fig. 11) suggest high levels of
accuracy of EEG in source reconstruction when realistic
volume conductors (i.e., BE models in the current study)
are used. The inaccuracy of EEG forward modeling has
been reported as the major reason for large source localiza-
tion errors in EEG [Liu et al., 2002]. The use of more com-
plicated volume conductor model, such as FE models
[Zhang et al., 2006] or a model incorporating anisotropic
conductivity profiles [Wolters et al., 2006], which can be
obtained from the diffusion tensor imaging (DTI) tech-
nique, can further improve the accuracy of EEG forward
modeling and, thus, reduce the propagation of modeling
errors into inverse solutions. However, EEG tends to pro-
duce smeared reconstructions, whereas sources identified
from MEG appear more localized but sometimes mislo-
cated or even missed (Figs. 6 and 11). Furthermore, when
SNR is low, sources from combined EEG and MEG have
the tendency to become smooth (e.g., 170 ms and 175 ms
for scrambled faces in Fig. 8). EEG and low SNR data both
have relatively low spatial gradients due to the low-con-
ductive skull and noise contaminations, which might
explain smeared solutions from them. Another possible
factor causing smeared distributions in EEG is that EEG is
less sensitive to spatial extent changes of cortical sources
than MEG as illustrated in Figure 12. Figure 12 also sug-
gests the sensitivity of MEG to the change of spatial
extents of cortical sources, which might explain its supe-
rior capability in reconstructed more localized sources.

Although it is of critical significance when combining
EEG and MEG to improve the performance of source
reconstructions, as suggested by the simulation studies
(Figs. 2-7), the practical issue in real data analysis is how
to unify EEG and MEG data to a common ground in
which both types of data can be appropriately handled in
solving mathematical optimization problems as stated in
Eq. 7. In the present study, we used the SNR transforma-
tion [Fucks et al., 1998; Greenblatt, 1995] in the data analy-
sis, which made EEG and MEG data unit-free and
normalized in reference to the standard deviations of
noise. There are still multiple factors, such as the accuracy
of noise estimations and the accuracy of volume conduc-
tors, which might impact the effective combination of EEG
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and MEG real data and cannot be addressed by simulation
data. Furthermore, separate EEG and MEG recording ses-
sions with the same stimulus protocol might generate dif-
ferences, especially when not assessing time-locked or
phase-locked EEG/MEG components [Yuan et al., 2010].
Considering the cost for simultaneous recordings, MEG
systems are much more expensive than EEG systems,
making it relatively easy to upgrade MEG facilities with
additional EEG systems, but not vice versa. As a matter of
fact, most MEG systems are already equipped with low-
density EEG systems (such as 20-30 electrodes). In clinical
epilepsy management centers equipped with MEG sys-
tems, low density EEGs are also routinely recorded to help
in the identification of interictal spikes in MEG from epi-
lepsy patients. Despite these complexities, our results from
the combined high-density EEG and MEG data from the
face recognition task demonstrate that the proposed inte-
grative approach can successfully reveal more reliable and
consistent brain activations, which are validated by our
current neurophysiological knowledge and other inde-
pendent measurements (i.e., fMRI). Its performance can be
further improved with more sophisticated volume conduc-
tor models (e.g., FE models with anisotropy) and simulta-
neous EEG and MEG recordings [de Munck et al., 2007].
Thus, due to its significantly improved performance, the
combined use of EEG and MEG in VB-SCCD will be
highly favored in many fields. For example, while early
brain responses can be studied by simple models [Elbert
et al,, 1995], multiple cortical activations are expected in
later latencies of brain responses, which requires more in-
dependent measurements to better characterize them. The
combined EEG and MEG system will also be needed to
overcome the limitations of single modality using either
EEG or MEG as discussed above, such as for conditions in
which accuracy and spatial resolution are of importance
[Sharon et al., 2007], and when a unitary signal modality
is not sensitive to brain sources [Bast et al., 2005].

It is also suggested by our simulation data that VB-
SCCD has better performance in reconstructing superficial
sources than deep sources (Figs. 3-5) when both types of
sources exist simultaneously in simulations. A major rea-
son for this is that deep sources generate weaker electrical
or magnetic fields compared to superficial sources when
both have similar current moments. Consequently, EEG/
MEG data from deep sources have lower SNRs than su-
perficial sources since noise levels in simulations were
chosen based on superposed EEG/MEG signals from mul-
tiple sources. This can lead to the degradation of localizing
deep sources from multiple sources. While such simulation
studies mimic realistic situations in which sources from
deep brain structures might need stronger amplitudes to
be identified compared to sources from epicortical struc-
tures, it does not necessarily mean that VB-SCCD lacks the
capability in reconstructing deep sources from real data.
Large synchronized neural currents from deep brain parts,
which can generate observable EEG/MEG signals with
enough SNRs, are expected to be reconstructed as well.

To better interpret EEG and MEG source reconstruction
results, statistical thresholding techniques have been pro-
posed [Barnes and Hillebrand, 2003; Pantazis et al., 2005].
In the present study we only used a simple unified thresh-
old to visualize all data, which might not be the best
option in evaluating either simulated and or real data.
Since EEG and MEG have different sensitivities to differ-
ently configured cortical sources, such a unified criterion
might over-emphasize or underestimate some sources.
Although it provides a straightforward way for evaluating
raw data directly from reconstructions, the integration
with statistical test methods [Pantazis et al., 2005] can
potentially further improve the interpretation of results.

In summary, we evaluated the performance of a novel
sparse ESI technology, i.e., VB-SCCD, using multiple mo-
dality data from EEG and MEG. Our data demonstrated
that the proposed integrative approach was able to recon-
struct complex brain activations supported by data from
Monte Carlo simulations and experimental studies. This
was achieved via the integration of independent and com-
plimentary EEG and MEG information regarding common
underlying brain sources and, mathematically, is congru-
ent with compressive sensing theory, which happens to be
the basis of our proposed sparse ESI technology. It is
promising that sparse ESI technology using combined EEG
and MEG can probe detailed spatiotemporal processes
from complex and dynamic brain activity, and can be
applied noninvasively to study large-scale brain networks
of high clinical and scientific significance.
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