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Abstract: Eye movements, comprising predominantly fixations and saccades, are known to reveal informa-
tion about perception and cognition, and they provide an explicit measure of attention. Nevertheless, fixa-
tions have not been considered as events in the analyses of data obtained during functional magnetic
resonance imaging (fMRI) experiments. Most likely, this is due to their brevity and statistical properties. De-
spite these limitations, we used fixations as events to model brain activation in a free viewing experiment
with standard fMRI scanning parameters. First, we found that fixations on different objects in different task
contexts resulted in distinct cortical patterns of activation. Second, using multivariate pattern analysis, we
showed that the BOLD signal revealed meaningful information about the task context of individual fixa-
tions and about the object being inspected during these fixations. We conclude that fixation-based event-
related (FIBER) fMRI analysis creates new pathways for studying human brain function by enabling

researchers to explore natural viewing behavior. Hum Brain Mapp 33:307-318, 2012.
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INTRODUCTION

One of the most apparent characteristics of natural vis-
ual behavior in humans is the frequent shifting of eye
position. During natural viewing behavior, observers shift
their eyes about 3-4 times per second. We make such
rapid shifts, called saccades, because only the central part
of our visual field, the fovea, has the resolution to scruti-
nize objects in detail. In between saccades, our eyes tend
to dwell for brief periods at nearly fixed positions. During
these events, called fixations, the visual system extracts in-
formation from the environment for subsequent analysis.
It also gathers information from the periphery of our
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visual field for planning a saccade to the next relevant
location. Fixations are therefore intimately linked to visual
information processing, and in our view, these could be
considered “units of information.” Indeed, since the pio-
neering work of Yarbus [1967], many behavioral studies
have demonstrated that fixations are important events
which reveal information about perception and cognition
not only in healthy participants [Martinez-Conde et al.,
2004] but also in patients (e.g., [Dalton et al., 2005]). In
addition, fixations provide an explicit measure of atten-
tion. Hence, it is desirable to incorporate natural viewing
behavior into the design of neuroimaging studies that aim
to examine cognitive processing in natural situations.

Functional MRI (fMRI) is a popular and powerful tool
to study human brain function. During the past decade,
fMRI paradigms have advanced from block designs—
involving monotonic stimulation that typically lasts
between 10 and 30 s—to rapid event-related designs—
using relatively brief stimulation that typically lasts
between 0.5 and 3 s [Birn et al., 2002; Buckner, 1998; Bur-
ock et al., 1998; Dale and Buckner, 1997; Friston et al.,
1998b; Hinrichs et al., 2000]. Conceptually, the develop-
ment of such rapid event-related designs was important. It
enabled stimulation that much more closely resembles
stimulation during natural visual behavior. However,
when studying cortical processing during natural behav-
ior, the analysis of such designs still lacks a very impor-
tant aspect: it is driven by external events, which are
related to stimulus presentation, rather than by internal
events, which are generated by the brain itself.

Saccades and fixations are measurable events that are
generated by the brain of the observer and are therefore
closely related to the processing going on in the brain.
Hence, a logical next step in the event-related analysis of
brain activity would be to use fixations as events in stud-
ies on vision and cognition.

To the authors” knowledge, fixations have not yet been
used as events in fMRI analysis. There are a number of rea-
sons why fixations were probably deemed unsuitable for
use as events in fMRI These are related to temporal and
statistical properties of fixations, which led to our research
topic. We will consider these properties in more detail.

Fixations may have been considered too brief to serve as
events. During natural viewing behavior, observers make
about 34 fixations per second, on average. These fixations
are separated by saccades that are even shorter in duration
(in the order of 20-40 ms). FMRI relies on the blood oxy-
genation-level dependent (BOLD) signal to indirectly mea-
sure the activity of neurons. The BOLD response is
sluggish, and two separate events can only be distin-
guished in the fMRI signal when these evoke a sufficiently
large response and are well separated in time [Friston
et al., 1998b; Glover, 1999].

Fixations may not last long enough to evoke a BOLD
response that is large enough. However, many experi-
ments have elicited fMRI responses using very brief stim-
uli—such as tone pips or noise bursts and visual flashes—

that lasted only 50 ms or less [Burock et al., 1998; Josephs
et al., 1997; Kim et al., 1997; Rosen et al., 1998]. Moreover,
the relationship between stimulus duration and the magni-
tude of the BOLD response is nonlinear [Birn et al., 2001;
Boynton et al., 1996; Friston et al., 1998a]. If fixations are
selected that exceed a certain threshold (for example 80
ms), we may expect that the event’s duration would come
within a range suitable for evoking a BOLD response.

Additionally, due to the brevity of fixations, their tem-
poral separation may be inadequate. Consequently, the
haemodynamic responses to fixation events may overlap,
reducing the detectability of the individual responses.
Nonetheless, previous studies did successfully use brief
interstimulus intervals [Saad et al., 2003]. These experi-
ments were controlled and their design optimized using a
random interstimulus interval [Dale, 1999].

However, eye movements are driven by task demands
[Yarbus, 1967] and sudden salient events, and not by these
design considerations. This results in nonrandom behavior
that could cause problems when deconvolving the fMRI
response. Nevertheless, fixations are primarily nonrandom
with respect to their spatial locations (for example due to
refixations). Presumably, they are sufficiently random with
respect to both onset time and interevent time.

Despite the aforementioned concerns, we considered the
use of fixations as events to model brain activation in an
experiment using standard scanning parameters.

We also applied multivariate pattern analysis to the
brain activity (for a review, see [Haynes and Rees, 2006] to
predict where observers had been looking during selected
individual fixations. This analysis allowed us to determine
the feasibility of using fMRI to decode momentary brain
states near the temporal resolution of individual fixations.

We conducted a free viewing experiment in which
observers inspected a display containing three house and
three face objects, while they were instructed to memorize
houses, faces, or both. Using an eye tracker, fixations were
recorded and categorized according to the type of object
inspected and the task at hand. Using this information as
parameters for the fMRI analysis, we showed that the
fMRI signal contains sufficient information to reliably
identify the task executed by the subject. Moreover, in
some regions-of-interest, even the type of object inspected
could be reliably identified.

In short, even though fixations are brief and semiran-
dom at best, we found that fixation-based event-related
(FIBER) analysis of fMRI signals can reveal meaningful
spatiotemporal patterns of activation. This type of analysis
opens up new pathways for understanding brain function
by exploring natural viewing behavior.

METHODS
Subjects

The participants in the study were 20 healthy, right-
handed observers (5 female, 15 male, age 19-25 years)
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who reported normal or corrected-to-normal vision.
Although we initially scanned 24 observers, four were
excluded due to calibration issues of the eye tracker. All
observers gave informed consent before participation. Ethi-
cal approval was provided by the medical ethical commit-
tee of the University Medical Center Groningen.

Procedure

Scanning was performed using a 3.0 T MRI Scanner (Phi-
lips, Best, The Netherlands) with an 8-channel SENSE head
coil. During a scanning session, we first collected functional
data in a localizer and a free-viewing experiment, each
described in more detail below. This was followed by re-
cording a high-resolution anatomical scan. Subsequently,
the localizer and free-viewing experiments were repeated.

Scanning Parameters

Functional recordings (axial slices recorded in a de-
scending manner) were made using the following parame-
ter settings: flip angle: 70° echo time (TE): 28 ms;
repetition time (TR): 2.0 s, field of view (FOV): 224 x 156
x 224 mm; 39 slices were acquired (slice thickness of 4
mm, in-plane resolution of 3.5 mm). Each localizer experi-
ment consisted of recording 160 functional volumes,
whereas each free viewing experiment consisted of 460
functional volumes. The anatomical T1 volume was made
with an in-plane resolution of 2 x 2 mm and contained
160 slices, recorded transversal.

Stimuli, Task, and Design

Stimuli were created using the Psychtoolbox [Brainard,
1997] in Matlab (version 7.4, MathWorks, Natick, MA).
The size of all stimuli was 1,024 x 768 pixels, displayed
using a Barco LCD Projector G300 (Barco, Kortrijk, Bel-
gium) on a translucent display with a resolution of 1,024
x 768 pixels.

The dimensions of the translucent display were 44 by 34
cm. This subtends a visual angle of 32 x 25.5° for the
entire screen. The house and face objects inside the stimuli
covered ~150 x 150 pixels (4.7 x 4.9°). An Apple Mac-
Book Pro (Apple, Cupertino, USA) was used to drive the
stimulus display.

Eye-Tracking

Gaze behavior was recorded using a 50 Hz MR compati-
ble eye tracker (SMI, Teltow, Germany), connected via
fiber optics to a dedicated PC (Pentium 600 MHz, 256 MB
RAM) running IViewX software (version 1.0, SMI, Teltow,
Germany). Communication between this PC and the stim-
ulus PC took place using Ethernet (UDP) via the Eyelink-
toolbox [Cornelissen et al., 2002]. Via a 45°-tilted mirror,
placed on top of the head coil, the subject was able to see

the entire presentation display. The distance from the eyes
to the screen (via the mirror) was 75 cm. A second mirror
relayed the image of the eye to the infrared camera of the
eye tracker mounted at the foot of the scanner bed. Before
the experiment, the eye tracking system was calibrated
using a standard nine-point calibration technique. Before
the second free viewing experiment, the accuracy of the
eye tracking was verified. If necessary, the system was
recalibrated.

Localizer Experiment

A standard, passive viewing (fixation) experiment was
conducted to locate face and place responsive areas (FFA
and PPA, respectively) in the visual cortex [Epstein and
Kanwisher, 1998; Kanwisher et al., 1997]. The experiment
used a blocked design with 8 stimulus blocks in which 15
digitized house images and 8 stimulus blocks of 15 front-
view face images were shown. Each image was presented
centrally for 750 ms; blocks lasted 11.25 s. In between stim-
ulus blocks, a fixation cross was displayed for 10 s. House
and face objects used in this localizer experiment were of
the same size as those used in the free viewing
experiment.

Free Viewing Experiment

In this experiment, observers inspected house and face
objects that were presented on the screen. Stimuli con-
sisted of three house and three face objects, equidistantly
arranged on six fixed possible positions on a circle (Fig.
1a). The distribution of the different items over these posi-
tions in a stimulus was randomized. Stimulus duration
was pseudorandom' and was between 8 and 18 s. After
each stimulus, the subject was quizzed whether a single
object was visible in the stimulus screen (a Sternberg
memory task). This single item was shown in the middle
of the screen for 3 s. During the presentation of this item,
observers had to respond by pressing a button on a fiber
optics response box (Current Design, Philadelphia).

Three different tasks could be given to the observer:
“Look at faces” (Face Task, FT), “Look at houses” (House
Task, HT), or “Free viewing” (All Task, AT). A task block
started with an instruction screen (10 s), followed by four
repetitions of stimulus screens (each with different stimuli
and varying presentation time) and a quiz screen. A task
block ended with a fixation cross (10 s) (Fig. 1b). Due to
the varying duration of the presentation time of individual
stimuli, the blocks also varied in their total duration. Dur-
ing the house task, subjects were quizzed only on house
items. During the face task, only face items were tested. In
the all task, subjects could be asked about the presence of
both types of objects.

'Presentation time of each stimulus was defined by transforming
random variable x (uniformly distributed) using t(x) =10 e * + 8, at
the interval of x [0, 10].
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Figure 1.

a: The layout of a task block in the free viewing experiment: A
block consists of four stimuli, whose durations are determined
pseudorandomly between 8 and |8 s, composed of house and
face objects, each followed by a quiz item (3 s). A block starts
with an instruction (10 s), indicating the task condition, and
ends with a fixation cross (10 s). b: Schematic representation of

In total, we recorded eye movements for 32 stimuli per
task condition per subject (2 (free viewing experiments) x
4 (stimuli per task block) x 4 (iterations of a task block)).
Although observers could be instructed to look at specific
items, the order in which they chose to do so was left
entirely to the subject (and they could make errors).
Hence, viewing behavior in all tasks was unrestricted.

Eye-Tracking Analysis

Fixations were calculated based on the recorded gaze
behavior using IViewX software (SMI, Teltow, Germany). A
fixation duration threshold of 80 ms was used. Fixations
having the same position and separated by a short blink
were concatenated. Subsequently, using in-house developed
software, each fixation was labeled according to the
inspected object and the task of the trial. The possible fixa-
tion labels are shown in Table I. To label fixations, six circu-
lar areas of interest (110 pixel radius) were defined and
placed on the location of each object (objects covered ~150
x 150 pixels each). In the remainder of the analysis, only
fixations made during the presentation of a stimulus were
taken into account. We excluded fixations falling outside
the areas of interest. This removed ~15% of the fixations
made during the stimulus presentations. These were almost
entirely fixations directed at the centre of the screen.

Histograms and density histograms were constructed
for all fixations grouped per fixation type. In addition, the
same graphs were constructed for target fixations, where
dwell times were concatenated for subsequent fixations at

the free viewing experiment. HT, FT, and AT denote the presen-
tation of the instruction screens for House Task, Face Task, and
All Task, respectively; s represents stimulus presentation (with
varying duration); q represents the presentation of the quiz
item; r represents a resting period with the presentation of a
fixation cross.

the same target type. To further investigate the temporal
characteristics of the eye movement data, we created an
autocorrelation plot of all eye movements for each task.
Sequences of inspected object types were extracted and
concatenated per task type. Autocorrelation values were
calculated using a lag of 1-500 time points (i.e., 10 s).

FMRI Analysis

All fMRI analyses were performed using SPM5 (Well-
come Trust Centre for Neuroimaging, London, UK) in
Matlab (Mathworks, Natick, MA). Preprocessing consisted
of realignment to correct for subject movement, coregistra-
tion to align all functional data to subject’s anatomical

TABLE I. Summary statistics of fixations used in the
fMRI analysis (i.e., made toward an object
during the presentation of a stimulus)

Fixated Mean Total number
Task object  Condition  percentage (SD) of fixations
All House H-AT 18.3 (£3.0) 4,059
House  House H-HT 254 (5.0) 5,691
Face House H-FT 10.2 (4.0) 2,039
All Face F-AT 16.2 (3.3) 3,496
House Face F-HT 12.7 (5.1) 2,593
Face Face F-FT 17.1 (4.8) 3,854
Total 99.9 21,732

Results are totals for all 20 subjects. Total in column Mean per-
centage does not sum up to 100% due to rounding errors.
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volume, normalization to convert all images to Montreal
Neurological Institute (MNI) space, and spatial smoothing
with a Gaussian kernel of 8 mm (full width at half maxi-
mum). No slice timing correction was applied.

Localizer Experiment

After convolution with the informed basis set [Friston
et al., 1998a], standard univariate t-tests were used to cal-
culate differences between house and face conditions (con-
trast “face > house,” amplitude component only). These
contrasts were fed into a second level random-effect analy-
sis using a one-way ANOVA. The resulting T-map of this
statistical analysis was used to create regions-of-interest
masks applied in the analysis of the free viewing
experiment.

Free Viewing Experiment

We modeled all six categories of both face fixations (F-
FT, F-HT, and F-AT) and house fixations (H-FT, H-HT,
and H-AT), using the same analysis as in the localizer
experiment. Standard univariate t-tests were created for
each component individually against baseline and resulted
in three parameter estimates for each fixation category.

Estimation Efficiency

To assess the estimation efficiency of each design, we
calculated the ratio between the biased efficiency and the
optimal efficiency term, using the mean corrected design
matrix after convolution and high-pass filtering [Dale,
1999; Liu et al., 2001].

ROI Analysis

Four regions of interest were defined from the T-maps
of the localizer experiment, using MarsBar [Brett et al.,
2002]. Left and right Fusiform Face Area (FFA) and bilat-
eral Parahippocampal Place Area (PPA) were drawn using
uncorrected P-values of 0.01 (Fig. 5). The coordinates of all
four areas were in accordance with the relevant literature
[Grill-Spector et al., 2004; Kanwisher et al., 1997] (centres
in MNI coordinates are as follows: left FFA —40.4 x —50.1
y —19.4 z; right FFA 42.7 x —49 y —17.2 z; left PPA —24.4 x
—49.3 y —9.23 z; and right PPA 26.6 x —47.1 y —10.6 z).
Furthermore, a spherical region in the early visual cortex
of each hemisphere was defined with a radius of 10 mm
around the centre locations 28.0 x —71.0 y —16.0 z (right
hemisphere) and —34.0 x —71.0 y —16.0 z (left hemisphere)
(Supporting Information, Fig. 1).

Differences in the BOLD responses evoked by each fixa-
tion class were investigated by modeling their associated
haemodynamic responses. At the single subject level, a
model was defined using both the onsets and durations of
fixations of all fixation categories. These models were esti-

mated in SPM5 (Restricted Maximum Likelihood estima-
tion) using the informed basis set (represented by an
amplitude, derivative, and dispersed parameter) [Friston
et al., 1998b]. For each individual observer within the six
ROIs, we obtained the parameter estimates. Next, these
individual parameter estimates were averaged across
observers, resulting in three estimates per ROI per fixation
category. Consequently, summing the three parameter esti-
mates multiplied with their basis function (from the
informed basis set) provided a haemodynamic response.

The procedure described above was repeated using a
Fourier basis set with five components filtered with a Han-
ning window. For both basis sets, we assumed that the
event-related response started and ended at zero signal in-
tensity. Furthermore, two F-tests were performed for each
ROI in SPM5 after applying the small volume correction in
SPM with a False Discovery Rate correction of P < 0.05.
First, an F-test was performed to investigate a main effect
of the task on haemodynamic responses. The second F-test
was performed to test for differences between house and
face fixations. Finally, F-tests were performed to investi-
gate group differences of combined shape/amplitude
response between each possible pairing of conditions for
each ROI, small volume corrected at P < 0.001.

Multivariate Analysis

This second experiment entailed multivariate classifica-
tion based on fixations. We extracted the BOLD voxelwise
time course (32 s, 16 data points) following each fixation
within the ROIs of unsmoothed fMRI data. These time
courses (for each voxel) were concatenated into a single
feature vector (hereinafter called “example”) and labeled
according to the fixation class. Since fixations were gener-
ally shorter than the duration of a single volume, there
were usually multiple fixations within the recording of
one time point (i.e., volume). To overcome this problem,
the labeling for an example was based on the class of the
longest fixation during a TR. Next, we used support vector
machines (LibSVM, [Chang and Lin, 2001]) within a Mat-
lab environment (version 7.4) to calculate a high-dimen-
sional plane that separates the fixations based on the
feature differences between the classes. A linear kernel
was used, since we had relatively few examples and a
large number of dimensions [Mourao-Miranda et al,
2005].

Three classification analyses were performed. The first
used labels of each fixation category, including task and
inspected object. To investigate task and object inspected
component separately, we performed similar classification
analyses, where labeling was based only on either
component.

For each classification analysis, we obtained a minimum
of 10 and maximum of 25 examples for each condition. To
determine the significance of the resulting classification
performance, we compared it with classification
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TABLE Il. Classification scores for longest fixations during a TR [Color table can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

House Task (HT

True label
Face Task (FT)

All Task (AT)

IN()BJE(!T . m
(0.32, p=0.0001) (0.27, p=0.014) 014  (0.27, p=0.86) 013 (029, p=081) (0.29, p=0.91) 011  (0.28, p=0.91)
e (0.10, p=0.3) (0.12, p=0.043) 001 (0.11, p=99) 0 (0.08p=1) 0.01  (0.10, p=0.96) 0.01  (0.12, p=0.96)
8 (0.09, p=1) (0.10, p=0.6) (0.12, p=0.008) (0.08, p=0.32) 0 (0.09,p=1) 0 (0.10,p=1)
§ (0.18, p=1) (0.17, p=1) (0.15, p=0.3) (0.21, p=0.006) 0 (0.18,p=1) 0 (047, p=1)
g 0.01  (0.19, p=0.99) 001  (0.20,p=0.99) 002  (0.20, p=0.95) 001  (0.20, p=0.99) 0.68  (0.20, p=0.05)
(0.13, p=1) (0.14, p=1) (0.14, p=1) (0.13, p=1) 024 (013, p=0.44) 0.50  (0.14, p=0.44)

Correct scores are displayed on the diagonal. Chance levels are based on 1000 permutations (displayed between brackets). P-values rep-
resent the fraction of permuted classifications that score higher than the correctly labeled dataset.

performance from random permutations. Permutation test-
ing was done by randomly permuting the class labels of
the examples and measuring the classifier performance
across 1,000 iterations to obtain chance levels and confi-
dence intervals [Nichols and Holmes, 2001]. Significance
levels of the true classification scores were determined by
investigating the distribution of the permutation test,
resulting in a P-value for each classification score (Table
). All classifications were run within observer. To assure
independence, training and test sets were obtained from
separate free viewing experiments.

RESULTS
Fixation Distributions

Figure 2a shows the distributions of all fixation dura-
tions in each category. Compared with those made during
instructed viewing (HT and FT), fixation durations for the
“all” task (AT) were slightly shorter (confirmed by a two-
sample t-test, P-value: 2.2e '®). Figure 2b shows dwell
times per fixation category. To calculate dwell time, con-
secutive fixations on the same type of object were con-
catenated. In addition, Figure 3 shows distributions of
interfixation intervals per fixation category. Interfixation
intervals were defined as the difference between onsets of
two subsequent fixations within the same category. Figure
4 shows the autocorrelation of the eye movement signal,
indicating that autocorrelation values of all three tasks are
highly similar and nonzero.

Localizer Experiment

Figure 5 shows the locations of the left and right PPA
and FFA, as found on the group-normalized brain
using the localizer experiment. Together with the two
control regions in the early visual cortex (Supporting
Information), these areas were subsequently used as
regions-of-interest to investigate fixation-related brain
activity.

Fixation-Related Brain Activity

To make sure that the subjects performed the required
tasks, we examined their scores on the Sternberg memory
task. Average performance was 75% (+11% SD) correct for
both the HT and FT and 40% (+£11% SD) for the AT,
which is not surprising given that the AT requires remem-
bering double the number of items. We conclude that sub-
jects performed the tasks appropriately. These scores were
not used in the further fMRI analyses.

To investigate the pattern of activity within the three
pairs of ROIs, we modeled the haemodynamic responses
associated with each type of fixation. Figure 6 depicts aver-
age modeled responses for left and right FFA, PPA and the
early visual cortex, and split according to ROI, task, and
object inspected using the informed basis set (Fig. 3 in the
Supporting Information shows results for the models esti-
mated using the Fourier basis set with a Hanning window).

Figure 6 shows that BOLD activations differ most nota-
bly for the different ROIs. In particular in the PPA, but also
in early visual cortex, the type of task shows a marked
effect. Again in the PPA, relatively marked differences in
modeled BOLD response can be noted for the two types of
fixations (house or face fixation). These observations were
confirmed by statistical tests that were performed inde-
pendently for the ROIs in each hemisphere. An F-test
revealed a main effect of task in both left and right PPA
(F(3,357) values: 84.5 (P < 0.001) and 136.8 (P-value <
0.001), respectively) and left and right visual areas (F(3,357)
values: 182.6 (P-value < 0.001) and 191.9 (P-value < 0.001),
respectively), but not in the FFA. A main effect of fixation
type was found in both left and right PPA (F(3,342) values:
44.0 and 69.9, respectively (P-value < 0.001). No significant
effect of fixation type was found in either FFA or the early
visual regions. The estimation efficiency—averaged across
subjects—was 0.16 (range 0.11-0.25).

Classification of Fixation Types

Using fixations as events, we found BOLD responses
that differed to various extents depending on RO, task,
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[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

and type of fixated object. Hence, this suggests it may
be possible to “read” the BOLD response following an
individual fixation. Using SVMs, we therefore classified
the BOLD responses following longest fixations, in order
to determine the associated task and object inspected.
Furthermore, in two separate experiments, we investi-
gated the possibility of classifying based on task only
and object inspected only. Table II shows the classifica-

tion based on the combination of task and object 0.8
inspected. These scores indicate that we can use the 0.7
BOLD responses associated with fixations to classify s
with above chance performance task, and in some cases = 08
the inspected object. To make it easier to read the table, g 0.5
we have provided an example. Of all actual fixations I+ Bt
made toward a house object during the house task (i.e., 2
the first column from Table II), 87% were correctly clas- 0.3f

sified (i.e., as a house fixation made during the house
task). When we randomly permuted the labels for this
same dataset, the score was 32%, thus indicating chance
level performance. The P-value (shown in brackets in
each table cell) indicates the fraction of permuted classi-
fications that scored higher than the correctly labeled
dataset. In the house task, 11% of the house fixations
were classified as face fixations; so, in these cases, only
the task was correctly classified. Note that even in the
All task (AT), we could still classify above chance that
an observer was inspecting a house picture.

Tables III and IV show classifications that were re-
stricted to either task (Table III) or fixation type (Table IV).
Task classification showed a better performance compared
with inspected object classification.

Lag (s)

Figure 4.
Autocorrelation plot of object inspected per task for lags up to
10 s. HT, FT, and AT denote House Task, Face Task, and All
Task, respectively. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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Figure 5.
Axial (left) and coronal (right) views of regions of interest. Red
indicates Parahippocampal Place Area (PPA) and blue denotes
Fusiform Face Area (FFA). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

DISCUSSION

The main finding of this study is that fixation-based
event-related (FIBER) analysis of fMRI signals reveals
meaningful spatiotemporal patterns of activation. We have
shown that FIBER is feasible, despite the nonrandom prop-
erties and relatively brief duration of fixation events, and
using relatively standard fMRI scan parameters. Therefore,
the FIBER approach allows natural viewing behavior to be
incorporated in the analysis of future fMRI experiments. A
second finding is that this type of analysis can also reveal
the context in which a fixation occurred (in our specific
experiment, the task situation).

PPA FFA EARLY VISUAL

House 0.1 0.15 |
Task
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Figure 6.

Modeled haemodynamic responses following house fixations
(red) and face fixations (blue) in three task conditions for FFA,
PPA, and early visual regions of interest (averaged across left
and right hemispheres). Modeling is based on the informed basis
set with three components (HRF, derivative, and the dispersed
of the HRF). Dashed lines indicate standard error of the mean.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

TABLE Ill. Classification scores for task using longest
fixations during a TR

Random permutation

Type Score (%)  P-value baseline (%)
House task (HT) 80 0.05 40
Face task (FT) 64.5 0.045 40
All task (AT) 89.5 0.04 26

Chance levels are based on 1,000 permutations (displayed
between brackets). P-values represent the fraction of permuted
classifications that score higher than the correctly labeled dataset.

We have demonstrated the feasibility of FIBER in two
ways. First, in two brain areas (PPA and early visual
areas), we have shown that fMRI signals following fixa-
tions have a distinct task-dependent shape and amplitude.
In the PPA regions, the fMRI responses also differed for
the type of object inspected. Second, using multivariate
analysis to classify the longer duration fixations, we have
shown that the BOLD response contains the information
necessary to deduce the object inspected for individual fix-
ations as well as their task context. We will now discuss
these results and approaches in more detail.

The first question is, why does FIBER actually work?
When participants perform a task, for example the house
task, they repeatedly fixate houses. Their eyes probably
dwell for a while on a particular house (Fig. 2a,b), even
fixating different aspects of that stimulus and then move
on to another house stimulus. Occasionally, they may
glance at a face target. Consequently, participants spend
long enough periods of time on distinct target types (me-
dian dwell time on type of object) to allow estimation of
the brain response associated with task and object
inspected. This can be quantified by calculating the “esti-
mation efficiency” for the experiment [Dale, 1999; Liu
et al., 2001]. For the first-level models, the average estima-
tion efficiency was 0.16, with a range (0.11-0.25). This is
comparable to efficiencies for other, self-paced, event-
related experiments previously performed at our institute
(0.05-0.6) [Demenescu et al., 2009; Meppelink et al., 2009].
This quantification of the estimation efficiency thus con-
firms that FIBER analysis can work.

TABLE IV. Classification scores for object inspected
using longest fixations during a TR

Random permutation

Type Score (%) P-value baseline (%)
House fixations 78.6 0.03 50
Face fixations 61.7 0.025 50

Chance levels are based on 1,000 permutations (displayed
between brackets). P-values represent the fraction of permuted
classifications that score higher than the correctly labeled dataset.
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Fixation-Related Brain Activity

To assess the feasibility of using FIBER, we first mod-
eled haemodynamic responses for the PPA, FFA, and the
early visual areas using the informed basis set (Fig. 6). We
found that responses in the PPA and the early visual areas
were significantly different for each task. So, even though
participants gazed at the same type of objects, responses
were different depending on the task. For the PPA, this
could indicate that attention to houses (rather than faces)
modulates its response [O’Craven et al., 1999]. The fact
that this also occurs in the early visual cortex is more sur-
prising and indicates that responses in this region do not
simply reflect stimulus content.

Activation patterns in PPA and FFA do not simply
reflect responses in the early visual cortex. For example, in
the early visual cortex, responses did not differ for fixation
category, whereas this was the case in the PPA (most
prominent in the All Task). Hence, as the fixation-related
activity propagates from the early visual to higher order
regions, specificity in the response increases. This confirms
that fixation-based event-related responses reveal mean-
ingful activation patterns. In summary, our analysis of fix-
ation-related brain activity reveals that responses
associated with fixations can carry a unique BOLD “finger-
print,” i.e., they can be distinctive.

However, the specificity and distinctiveness of these
responses varies per region and may even differ for differ-
ent tasks within a region. Unlike those in the PPA,
responses in the FFA were not significantly modulated by
task or fixated object. This was somewhat unexpected. An
explanation could be that the FFA location shows more vari-
ation between participants. The FFA mask was based on a
second level analysis. It may therefore not capture the most
sensitive region in each participant. Another explanation
could be that the FFA is also responsive to face stimuli in
the peripheral visual field. The stimuli in our study always
contained faces. If the presence of a face in peripheral view
were sufficient to activate the FFA to near its maximum
level, this would reduce the attainable modulation.

We previously referred to the finding that each condi-
tion has a distinct response (this is shown in Fig. 6). Nei-
ther the autocorrelation plots nor the histograms of
fixation durations and interfixation intervals showed a
marked difference in temporal behavior for the fixations
under these different conditions. Hence, the differences in
the BOLD responses following fixations are not related to
the eye movement dynamics. To assess whether the differ-
ences in response are a consequence of the HRF model
used, responses were also modeled using a Fourier basis
set (Fig. 3 in the Supporting Information). This confirmed

Even though the FFA responses were not significantly different,
classification performance in experiments that excluded the FFA
were degraded (results not reported). This indicates the responses of
the FFA did contain information for the classifier (Kriegeskorte,
2007).

the differences in the response of the PPA (Tables I and II
in the Supporting Information) for the task conditions. In
the PPA, responses following fixations on different objects
within a task were also significantly different’. Hence, we
conclude that the differences in the BOLD responses fol-
lowing fixations are not only related to the task but also to
the object inspected.

There are a number of ways in which task-related differ-
ences could affect fixation-related responses. Extraction of
information from the retinal image is only one aspect of
the processing taking place during and following a fixa-
tion. For example, subsequent saccade planning also influ-
ences cortical activity and may influence the fixation-
associated response in a task-dependent manner. For exam-
ple in the house task, one expects subjects to use their pe-
ripheral vision to localize potential house targets. In the all
task condition, this aspect is irrelevant and the participant
can simply saccade to any object. In addition, the memory
component of the delayed-match-to-sample test, which
obviously exceeds the duration of a fixation, could affect
the BOLD response in a task-dependent manner.

On the basis of earlier reports on the optimality of event
timings for maximal detection and estimation in fMRI [Birn
et al., 2002], we inferred that fixations would be suboptimal
for rapid event-related designs. Despite these suboptimal
characteristics, we ascertained clear fixation-related activa-
tions. In general, we found that the peak of the activation
occurred at around 4 s postevent. While this is shorter than
the more generally assumed peak at 5 to 6 s postevent, it
closely matches earlier reports on reduced peak latencies in
case of brief events in rapid event-related designs [Hinrichs
et al., 2000; Kim et al., 1997; Liu et al., 2000].

Classification of Fixations

Using multivariate pattern analysis (MVPA), we have
shown that the nature of longer fixations can be decoded
from the brain response. On the basis of the BOLD
response following longer fixations, we could fairly suc-
cessfully decode the object that observers gazed at during
an individual fixation as well as the task context in which
this occurred. Table IV shows that classification of both
task and object inspected was successful (i.e., scores on the
diagonal are well above chance). This behavior was
expected, given the differences in results for the average
modeled HRF (i.e., each fixation class was associated with
a distinct HRF pattern). Still, this additional result is im-
portant, as the SVMs only have the data and not the mod-
eled responses available for training and classification.
Moreover, the successful decoding efforts support our idea
that a fixation can be seen as a unit of information.

Hence, our work suggests that FIBER analysis of fMRI
data is viable and is able to provide information about
cortical processing in different contexts and with configu-
rations of stimuli. At present, and with the standard scan-
ning parameters used here, FIBER still has some
limitations. We envision a number of options to improve
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on the present approach. First, FIBER analysis will pre-
sumably improve when applied in combination with an
fMRI acquisition using higher temporal resolutions [Saba-
tinelli et al., 2009]. Second, for the current task and stimuli,
FIBER appears to work better in some regions (PPA) than
others (FFA, early visual cortex). Therefore, studies intend-
ing to apply the method may choose to first use FIBER in
a localizer experiment to select regions-of-interest that dis-
tinguish between the given tasks or stimuli. The use of
more specific localizers and individually determined ROIs
may also help improve the sensitivity for differentiating
fixation-related responses. Likewise, in this study, we
chose functionally defined regions over anatomically
defined regions, expecting higher sensitivity.

CONCLUSIONS

We have shown that event-related fMRI analysis based
on fixations is viable, despite the less favorable temporal
and statistical characteristics of fixations. The present
experiment used standard scanning parameters, which
resulted in temporal undersampling. Nevertheless, the av-
erage haemodynamic responses revealed distinct fixation-
related cortical activation patterns for each task. Further-
more, within specific regions, we could even significantly
differentiate the responses for different objects inspected.
Using multivariate pattern recognition, we have also
shown that, at the level of individual fixations, cortical
activation patterns can be used to classify the object
inspected and the task context. Thus, by using FIBER anal-
yses, paradigms can be envisaged that allow unrestrained,
natural viewing behavior in fMRI research.
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