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Abstract: In magnetic resonance imaging based brain morphometry, Gaussian smoothing is often
applied to increase the signal-to-noise ratio and to increase the detection power of statistical parametric
maps. However, most existing studies used a single smoothing filter without adequately justifying their
choices. In this article, we want to determine the extent for which performing a morphometry analysis
using multiple smoothing filters, namely conducting a scale space search, improves or decreases the
detection power. We first compared scale space search with single-filter analysis through a simulated
population study. The multiple comparisons in our four-dimensional scale space searches were corrected
for using a unified P-value approach. Our results illustrate that, compared with a single-filter analysis, a
scale space search analysis can properly capture the variations in analysis results caused by variations in
smoothing, and more importantly, it can obviously increase the sensitivity for detecting brain morpho-
metric changes. We also show that the cost of an increased critical threshold for conducting a scale space
search is very small. In the second experiment, we investigated age and gender effects on cortical vol-
ume, thickness, and surface area in 104 normal subjects using scale space search. The obtained results
provide a perspective of scale space theory on the morphological changes with age and gender. These
results suggest that, in exploratory studies of aging, gender, and disease, conducting a scale space search
is essential, if we are to produce a complete description of the structural changes or abnormalities associ-
ated with these dimensions. Hum Brain Mapp 34:2113–2128, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

In brain morphometric analyses [Mietchen and Gaser,
2009], it is the usual practice to smooth the image data
before statistical analysis so as to increase the signal-

to-noise ratio and to reduce the impact of misregistration.

The smoothing also increases the statistical normality of the

data and enhances the sensitivity of the analysis. These

improvements are obtained at the cost of spatial resolution,
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with a loss of local detail. The question arises: which

smoothing filter, often a Gaussian kernel, is optimal? The

matched filter theorem [Pratt, 1991] states that the size of

the optimal filter should match the size of the target signal.

However, this concept is only applicable when there is

prior information about the extent of the signal to be

detected. In general, such prior information is unknown in

exploratory studies. In practice, investigators commonly

choose a filter size based on a rough prior hypothesis about

the signal extent, or just simply following a choice previ-

ously reported in similar work, so that a significant degree

of arbitrariness is present in most imaging studies and the

filter sizes employed in existing brain morphometric studies

are often very different (Table I). It has been demonstrated

that variations in smoothing can produce very different

analysis results [Han et al., 2006; Jones et al., 2005]. Some

authors [Bernal-Rusiel et al., 2008; Lerch and Evans, 2005]

have sought to determine the optimal smoothing filter

through optimizing the statistical inference instead of trying

to match the signal extent directly. In these studies, investi-

gators, using simulated data, examined a range of filter

sizes and reported the one that best balanced the trade-off

between sensitivity (proportion of true positives) increase

and specificity (proportion of true negatives) reduction as

the optimal filter. However, results from these simulation

studies cannot be widely applied to real studies as the

numbers of true positives and true negatives can only be

known in simulations. More recently, Bernal-Rusiel et al.

[2010] proposed a hierarchical thresholding approach to

determine the optimal smoothing level by estimating the

trade off between the detection sensitivity and specificity,

which could be applied to real MRI data. However, this

method has some important limitations, e.g., it cannot cor-

rect for the multiple comparisons for testing a range of filter

sizes. More importantly, in its validation with simulated

data, the method failed to detect all of the simulated signals

across the whole brain, even with the optimal filter. This

means that even though one can successfully determine the

optimal filter for a specific signal, there is no guarantee that

this filter is also optimal for the other signals contained in

the image data, as there is no rationale for assuming that

all signals should be the same [Poline and Mazoyer, 1994b].

Therefore, single-filter approaches do not yield a full

description of the brain morphometric changes that exist at

different spatial scales.
The concept of scale space search in the context of voxel-

based analyses of functional brain imaging data has been
utilized to address the issue of smoothing filter choice in
brain activation detection. Poline and Mazoyer [1994a,b]
first introduced a four-dimensional (4D) search over a range
of filter sizes to find activations at different scales (filter
sizes) in positron emission tomography. Some exploratory
neuroanatomical studies [Han et al., 2006; Jones et al., 2005]
adopted this idea to illustrate the effect of variations in
Gaussian smoothing on structural change detection with
voxel-based morphometry (VBM). Although these multifil-
tering analyses produced more robust descriptions for the
signal detected than single-filter analyses, they did not fol-
low a true multiscale process because they considered dif-
ferent scales as independent images. To conduct a true
scale space search over scales as well as the spatial location,
Worsley et al. [1996a] refined Poline and Mazoyer
[1994a,b]’s approach and proposed a unified P-value
method based on the expected Euler characteristic (EC) of
the excursion set of a scale space statistical field [Siegmund
and Worsley, 1995]. This unified P-value method set a criti-
cal threshold for finding the 4D local maxima to control for
the false positive rate in the 4D search, considering the sta-
tistical behavior of the image data across scales.

In the current study, we investigated the influence of
scale space search on cortical structural change detection
with surface-based morphometry (SBM), using a MRI data-
base containing 104 normal subjects with ages ranging from
19 to 85 years. By utilizing the unified P-value, we adopt a
strategy of scale space search to generate hierarchical scale
space representations of the cortical morphometric changes
contained in the image data. First, we compared scale space
search and single-filter analysis through a simulated popu-
lation study, where the structural differences in cortical vol-
ume, thickness, and surface area between two groups
drawn from the employed database were artificially
induced. In the second experiment, we studied the effects of
normal aging and gender on the cortical volume, thickness,
and surface area in the 104 normal subjects with scale space
searches. The applicability of the unified P-value approach
to surface-based morphometric data was also validated by
comparing it against a nonparametric permutation test.

MATERIALS AND METHODS

Subjects

We studied the brains of 104 normal subjects ranging in
age from 19 to 85 years [mean age ¼ 45.7 years, standard

TABLE I. Examples of Gaussian smoothing kernel sizes

used in MRI-based brain morphometric analyses

References
Morphometry

technique
Filter

FWHM (mm)

Bennett and Baird [2006] VBM 4
Hutton et al. [2009] VBM 6
Guo et al. [2010] VBM 8
Keller et al. [2004] VBM 10
Good et al. [2001a,b] VBM 12
Sowell et al. [2003] SBM 15
Lerch et al. [2008] SBM 20
Shaw et al. [2006] SBM 30
Lyttelton et al. [2009] SBM 40

r Zhao et al. r

r 2114 r



deviation (SD) ¼ 18.0]. These subjects included 49 men
(mean age ¼ 45.4 years, SD ¼ 16.1) and 55 women (mean
age ¼ 45.9 years, SD ¼ 19.6). All subjects were recruited
for the International Consortium of Brain Mapping (ICBM)
dataset at Montreal Neurological Institute (MNI) and have
no history of neurological and psychiatric disorders. Each
subject gave written informed consent, and the Research
Ethics Committee of the Montreal Neurological Institute
and Hospital approved the study.

MRI Acquisition

All subjects were scanned with a Siemens Sonata 1.5 T MRI
scanner. Three-dimensional (3D) T1-weighted images with
high resolution were obtained by a 3D gradient echo sequence
with following parameters: voxel size ¼ 1 mm, isotropic; 117
sagittal slices; TR ¼ 22 ms; TE ¼ 9.2 ms; flip angle ¼ 30�; ac-
quisition matrix ¼ 256� 256; FOV ¼ 256� 256 mm2.

Image Processing

The MR images were processed with the CIVET MRI
analysis pipeline (version 1.1.9) [Ad-Dab’bagh et al., 2006]
developed at MNI to automatically extract and co-register
the cortical surfaces for each subject [Kim et al., 2005; Mac-
Donald et al., 2000]. The main pipeline processing steps are
as follows (Fig. 1). First, intensity non-uniformity in the raw
MR images was corrected using the N3 algorithm [Sled
et al., 1998], and images in the native space were linearly
registered into the ICBM152 space [Collins et al., 1994];
Next, each brain volume was classified into white matter
(WM), gray matter (GM), cerebrospinal fluid (CSF), and
background using the INSECT algorithm [Zijdenbos et al.,
1998], and then partial volume fractions of these tissue
types were computed in each brain voxel [Tohka et al.,
2004]. The inner (WM/GM interface) and outer (pial) corti-
cal surfaces were extracted from each brain volume using
the CLASP algorithm [Kim et al., 2005]. The hemispheric
inner and outer cortical surfaces were modeled with a de-
formable polygonal mesh consisted of 81,920 triangles
(40,962 vertices). To obtain accurate cross-subject corre-
spondences, the extracted hemispheric cortical surfaces
were nonlinearly aligned to a hemisphere-unbiased iterative
surface template [Lyttelton et al., 2007] using a depth-poten-
tial function [Boucher et al., 2009]. Finally, the aligned corti-
cal surfaces were rescaled back to native space dimension
using the inverse of the scaling parameters of the corre-
sponding linear volumetric transformation matrix. All mor-
phometric measures were thus made in native space.

Cortical Morphometric Measurements

The cortical volume was calculated using a tetrahedron-
based finite element method [Reddy, 2005]. Since, for a

Figure 1.

Procedure of MR image processing.

Figure 2.

Decomposing a prism into three tetrahedrons. (A–C) and (A0–C0) are the corresponding trian-

gles on the outer and inner cortical surfaces, respectively. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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single subject, the inner and outer cortical surfaces were
modeled with the same deformable polygonal mesh, the
space between them can be modeled as a tetrahedral mesh
[Maunder, 1996] by decomposing each of the prisms
defined by each pair of corresponding triangles, respec-
tively, on the inner and outer surfaces into three tetrahe-
drons (Fig. 2). The volume M of each of the tetrahedrons
was computed using a dot product and a cross product as

M ¼ jða� bÞ � ½ðb� dÞ � ðc� dÞ�j=6; (1)

where a, b, c, and d are the vertices of a tetrahedron.
Finally, the volume assigned to any cortical node was one
fourth of the total volume of all tetrahedrons adjoining the
vertex corresponded to it.

The cortical thickness was measured using the tlink met-
ric [Lerch and Evans, 2005] of computing the Euclidean
distance between linked vertices, respectively, on the inner
and outer cortical surfaces.

The cortical surface area was measured by calculating
the areas of the triangles adjoining each cortical vertex and
assigning a portion of each triangular area to the vertex
with the Voronoi’s method.

Scale Space Search

The scale space search analyses were implemented in
Matlab (the MathWorks, Inc., version 2010) using our Mul-
tivariate Surface Processing Toolbox, which was developed
based on the unified P-value algorithm [Worsley et al.,
1996a] and the SurfStat toolbox (http://www.math.mc-
gill.ca/keith/surfstat/). First, local cortical morphometric
measurements were smoothed using surface-based diffu-
sion [Meyer et al., 2003] with different diffusion times t.
This was equivalent to smoothing the data with Gaussian
smoothing kernels of full width half maximum (FWHM)

x ¼ 4ðlogð2ÞÞ1=2ðsÞ1=2: (2)

To acquire a ‘‘full’’ scale space search, based on the sug-
gestion in [Lindeberg, 1994], the scale interval was selected
to be delimited by the finest scale level x1 ¼ 1 mm (t ¼
0.1) corresponding to the resolution of the image and the
coarsest scale level x2 ¼ 256 mm (t ¼ 5,910) corresponding

to the size of the image. Since the scale space statistical
field is stationary in log(FWHM) [Siegmund and Worsley,
1995], we took 49 samples, equally spaced on the log
space, in the scale interval by sampling the diffusion time
interval as

sn ¼ expflogðs1Þ þ ððn� 1Þ=3Þlogð2Þg; (3)

where n ¼ 1, 2, : : : ,49 and t1 ¼ 0.1. At each scale, a linear
model was applied separately at each vertex t:

YðtÞ ¼ XbðtÞ þ eðtÞ; (4)

where Y(t) is the smoothed morphometric measure data,
X is the matrix of explanatory variables, b(t) represents
the regression coefficients to be computed for each explan-
atory variable, and e(t) is the error term. Surface maps of
t-statistics were generated by testing a null hypothesis for
a coefficient of interest at each scale. These t maps, to-
gether with the scale dimension, constructed a 4D scale
space. The unified P-value [Worsley et al., 1996a] defined
as

Pðtmax � taÞ ¼
X

RdðVÞqdðtaÞ (5)

where Rd(V) is the d-dimensional resel count of the search-
ing region V, d 0, 1, 2, and 3, qd(ta) is the d-dimensional
Euler characteristic (EC) density, was applied to set a criti-
cal threshold ta for the local maxima tmax in the scale space
for correcting the 4D multiple comparisons, so that the
probability of P(tmax � ta) \ a (detailed definitions and

Figure 3.

Cortical regions used for inducing cortical morphometric

changes in the artificial patient group shown on the cortical sur-

face template. The anatomical labels and sizes of each region are

given in the legend. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 4.

Synthetic population differences in cortical volume (t maps, RFT

thresholded with ta ¼ 0.05) detected with single-filter analyses.

The color bar encodes the t-statistics at each vertex. Bellow

each t map is the corresponding filter size. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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calculations of Rd(V) and qd(ta) are available in [Worsley
et al., 1996b]). Significant effects were detected at vertices
where t [ ta.

Comparison Between Scale Space Search and

Single-Filter Analysis

To investigate the difference between scale space search
and single-filter analysis in cortical morphometric analysis,
an artificial patient population was created. Fifty subjects
with ages ranging from 20 to 50 years were taken from the
employed database, and split into two groups of 25 sub-
jects (controls and patients). Gender and age were bal-
anced between the two groups (controls: 34.8 � 9.6 years,
13 men, 12 women; patients: 34.8 � 9.6 years, 14 men, 11
women). The two populations were compared in terms of
the original measures of cortical volume, thickness, and
surface area. No significant group differences were found.

To induce artificial group differences, for the patient
group, the measures of cortical volume, thickness, and sur-
face area were arbitrarily reduced by 25% in five cortical
regions, which, respectively, were randomly selected in
the left middle temporal gyrus (MTG.L), the left middle
frontal gyrus (MFG.L), the left supramarginal gyrus
(SMG.L), the left superior parietal gyrus (SPG.L), and the
left middle occipital gyrus (MOG.L), and, respectively,
with the sizes of about 100, 225, 400, 900, and 1,600 mm2

(see Fig. 3). The sizes of the cortical regions to induce cort-
ical morphometric changes were determined on the corti-

cal surface registration template by adding the area of all
triangle faces within the same region.

The synthetic population differences were first detected
using single-filter analyses separately with the filters of x
¼ 1, 5, 10, 15, 20, 25, 30, 35, and 40 mm, which covered
the range of filter sizes utilized in the reviewed single-
filter based studies (see Table I). Multiple comparisons in
single-filter analyses were corrected for using the random
field theory (RFT) [Worsley et al., 1996b]. Next, we
searched for the artificial cortical structural changes from
the starting scale x1 ¼ 1 mm (voxel size) to the end scale
x2 ¼ 256 mm (image size) with the unified P-value based
scale space search. Detection sensitivities and specificities
were computed for these single-filter and scale space
search analyses.

Moreover, we also computed the distributions of the
unified P-value threshold ta ¼ 0.05 for searching for the
local maxima in a 4D scale space and for searching at a
fixed scale to examine the difference between scale space
search and single-filter analysis with respect to the critical
threshold.

Scale Space Search for Aging and Gender Effects

To further reveal the impact of scale space search on
real exploratory SBM study, we detected the age- and gen-
der-related cortical morphometric changes in the total 104
normal subjects included in the employed database with
scale space searches. At each scale, the smoothed data
were regressed against age, gender, age–gender

Figure 5.

Synthetic population differences in cortical thickness (t maps,

RFT thresholded with ta ¼ 0.05) detected with single-filter analy-

ses. The color bar encodes the t-statistics at each vertex. Bellow

each t map is the corresponding filter size. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 6.

Synthetic population differences in cortical surface area (t maps,

RFT thresholded with ta ¼ 0.05) detected with single-filter analy-

ses. The color bar encodes the t-statistics at each vertex. Bellow

each t map is the corresponding filter size. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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interaction, and total cortical volume. Significant aging
and gender effects were detected in the t-statistic maps
generated from the linear regressions along the scale
dimension from x1 ¼ 1 to x2 ¼ 256 mm using the unified
P-value approach. The 4D multiple comparisons were also
separately corrected for using a nonparametric permuta-
tion test [Nichols and Holmes, 2002] with loose assump-
tions about the distribution of the data. Ten thousand null
scale spaces were generated by randomly assigning the
elements of a factor of interest (age or gender) to the sub-
jects. The critical threshold ta for the local maxima tmax in
the corresponding actual scale space was found as the
[floor(10,000a) þ 1]th largest member of the permutation
distribution of the maximal t-statistic in each null scale
space (this assessment was not conducted in the simulated
population study due to the simulated data).

RESULTS

Scale Space Search versus Single Filter

The simulated population differences in cortical volume,
thickness, and surface area detected using single-filter

analyses are illustrated in Figures 4–6. It is clear to see
that, for the single-filter analyses, the variation in smooth-
ing filter size caused the variation in analysis results: focal
changes in MTG.L (induced size of 100 mm2) and MFG.L
(induced size of 225 mm2) were only well detected by
analyses with small smoothing filters (x < 15 mm);
whereas, analyses with larger filters (x > 30 mm) only
captured regional changes in SPG.L (induced size of 900
mm2) and MOG.L (induced size of 1,600 mm2).

In Figures 7A, 8A, and 9A, we selectively present the
synthetic structural changes detected with scale space
search at the scale levels, which are equal or close to the
filter sizes used in the single-filter analyses, among the 49
scale samples equally spaced on the log space. The full
results of scale space search analyses are shown in the
Movies 1–3 in the Supporting Information. These visual-
ized results show that the scale space search properly cap-
tured the variations of detected structural changes caused
by the variations in smoothing. Furthermore, at a single
scale, the scale space search sometimes captured relatively
less or smaller patterns of structural change than the sin-
gle-filter approach with that filter size, due to the
increased critical threshold for a 4D search. For example,
at x ¼ 25 mm, the scale space search analysis did not
detected the small patterns of induced cortical thinning in
MTG.L and SMG.L, which, whereas, were detected by the
single-filter analysis with the filter of x ¼ 25 mm. How-
ever, the full results of a scale space search always identi-
fied more signals than a single-filter analysis. In Figures
7B, 8B, and 9B, we synthesized the spatial locations of the
structural changes detected at all the 49 scales for the scale
space search analyses. These show that the induced corti-
cal structural changes with different shapes and sizes,
especially the cortical thinning, were appropriately
detected by the scale space search analyses.

The computed detection sensitivities and specificities of
the single-filter analyses and scale space searches (Fig. 10)
quantitatively demonstrate the superiorities of the scale
space search. As we expected, with the increase of the fil-
ter size, the sensitivities of the single-filter analyses first
increased to a maximum (volume at x ¼ 10 mm, thickness
at x ¼ 20 mm, and surface area at x ¼10 mm) and then
decreased; the specificities of the single-filter analyses
reduced continuously. In all the three analyses for the
induced structural changes in cortical volume, thickness,
and surface area, the sensitivities of the scale space
searches were always higher than the ones of the single-fil-
ter analyses. Moreover, the specificities of the scale space
searches were slightly lower than the ones of the single-fil-
ter analyses with small smoothing filters, but they were
still at an excellent level (>0.99).

Figure 11 shows the distributions of the critical threshold
ta ¼ 0.05 computed with the unified P-value and RFT, respec-
tively. As the scale x1 increased, the thresholds for both the
scale space search and single-filter analysis decreased. The
threshold for scale space search was always slightly higher
than that for the single-filter approach, except with x1 ¼ x2

Figure 7.

Synthetic population differences in cortical volume detected

with scale space search. A: Unified P-value thresholded t maps

of selected scales that were equal or close to the filters used in

the single-filter analyses (full results are available in Movie 1

included in the Supporting Information). B: Spatial locations of

the detected volume changes integrated over the scale dimen-

sion. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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where the 4D search is equivalent to the single-filter analy-
sis. The largest t-statistic difference between the two distri-
butions was only about 0.02.

Aging Effects on Cortical Morphometric

Measures

The scale space search analyses identified varying pat-
terns of age-related changes of cortical volume and thick-
ness along the scale dimension (see Figs. 12 and 13; full
results are available in Movies 4 and 5 in the Supporting In-
formation), however, did not detect any significant aging
effect on cortical surface area. At the finer scales of x < 10
mm, only a few small foci of volume reduction were
observed respectively in the right insula, the medial supe-
rior frontal gyri, the left lingual gyrus, the right gyrus rec-
tus, and the right temporal pole. As the scale further
increased, these small foci disappeared, except the one in
the right temporal pole, which continually increased in size
and then disappeared when the scale reached x > 64 mm.
At the coarser scales of x > 64 mm, the age-related cortical
volume reductions showed as larger regional patterns in the
prefrontal cortex and the inferior temporal lobe.

At the finer scales of x < 10 mm, cortical thickness
showed more foci of age-related reduction than cortical
volume, which were detected in the prefrontal lobe, the
superior and inferior temporal gyri, the medial occipital
lobe, and the central gyri. These aging effects on cortical
thickness increased in size when the scale further
increased, finally covering the entire cortex at a scale of x
> 160 mm.

Gender Differences on Cortical Morphometric

Measures

We did not find any significant vertex-wise gender dif-
ference in cortical volume and surface area by controlling
the total cortical volume in the linear regressions. The
scale space search analysis revealed only small foci of sig-
nificantly increased cortical thickness in women compared
with men at scales of x < 35 mm (Fig. 14). At the finest
scale of x ¼ 1 mm, the foci of cortical thickening in
women were located in the superior parietal gyri, the mid-
dle frontal gyri, the left angular gyrus, the left posterior
temporal lobe, the right anterior temporal lobe, and the
right anterior occipital lobe. As the scale increased, most
of these foci did not survive for long, except the ones
located in the superior parietal gyri. Especially, the foci of
cortical thickening in women in the left superior parietal
gyri first increased in size, next merged into a bigger
region, and then this region shrank, and finally, it disap-
peared when the scale exceeded x ¼ 32 mm.

Unified P-value versus Permutation Test

Figure 15 displays the distributions of the critical thresh-
old ta, computed using the unified P-value method and the
permutation test, for the scale space search analyses for the
effects of age and gender on the cortical volume, thickness,
and surface area. It can be seen that, the unified P-value
threshold was always lower than that for the permutation
test, except at the extreme tail (a > 0.9). However, the per-
formances of the unified P-value method and the permuta-
tion test were generally very similar. In all six analyses
shown, the difference between the thresholds for the t-sta-
tistic significance level a ¼ 0.05 set by the two approaches
was only about 0.3. The t maps thresholded with permuta-
tion test were not presented here, because they were very
similar to those for the unified P-value method.

DISCUSSION

The goal of this article is to show the superiority of scale
space search to single-filter analysis and to reveal the
impact of scale space search on exploratory studies of cort-
ical morphometric changes. First, we conducted a simu-
lated population study to compare scale space search and
single-filtering analysis. Then, we applied the unified P-
value based scale space search to examine the aging and

Figure 8.

Synthetic population differences in cortical thickness detected

with scale space search. A: Unified P-value thresholded t maps

of selected scales that were equal or close to the filters used in

the single-filter analyses (full results are available in Movie 2

included in the Supporting Information). B: Spatial locations of

the detected thickness changes integrated over the scale dimen-

sion. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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gender effects on cortical volume, thickness, and surface
area in 104 normal subjects. In addition, we compared the
unified P-value against a nonparametric permutation test
to evaluate its validity for structural MRI data. The
obtained results and observations in the presented work
are summarized and discussed in this section.

Advantages of Scale Space Search

The artificial population differences detected using sin-
gle-filter analyses, respectively, with filters of x ¼ 1, 5, : : : ,40
mm were different from each other. This confirmed the
statement that variations in smoothing will produce varia-
tions in analysis results [Han et al., 2006; Jones et al., 2005].
The scale space searches in our experiments captured these
variations along the scale dimension appropriately, which
cannot be identified with a single-filter analysis. Further-
more, a single-filter analysis always failed to simultaneously
capture all the five simulated population difference patterns
with different sizes optimally. Whereas, the scale space
search analyses properly detected the smaller patterns of
structural changes at finer scales and the larger patterns at
coarser scales. Therefore, a scale space search can produce

more complete description for the signals contained in the
image data than a single-filter analysis.

We also noticed that smaller patterns of synthetic struc-
tural changes, such as the ones in MTG.L and MFG.L,
appearing at finer scales disappeared at coarser scales; dif-
ferently, larger patterns, such as the ones in SPG.L and
MOG.L, appeared not only at coarser scales but also at
finer scales, although they only appeared as some small
foci within the corresponding regions at finer scales. Thus,
as we did in this work, it is important to start a scale
space search from a very small scale level to a large scale
level to ensure a full scale space search, especially for the
small patterns of signal. In addition, according to the
matched filter theorem, the optimal detections of the five
patterns of induced group differences, respectively, with
the sizes of 100, 225, 400, 900, and 1,600 mm2, are expected
to be acquired, respectively, with filers of x ¼ 10, 15, 20,
30, and 40 mm. However, in the presented results, the
optimal detections were obtained with filters that, in gen-
eral, were smaller than the expected ones. This is probably
because that the cortical surface smoothing [Meyer et al.,
2003] employed in this work was isotropic, but the
induced structural changes were somehow anisotropic.

The superiority of scale space search was also numeri-
cally demonstrated by the greater detection sensitivities of
scale space search analyses than the single-filter analyses.
In addition, the filter size where the single-filter analysis
obtained the highest sensitivity was not constant for differ-
ent morphometric measurements (x ¼ 10 mm for volume,
x ¼ 20 mm for thickness, and x ¼ 10 mm for surface
area). This implies that a smoothing filter that is ‘‘optimal"
for the analysis of a given morphometric measurement
may be not also applicable to other measurements. More-
over, we observed that the specificities of our scale space
search analyses were very high (>0.99), even though the
searched scale spaces covered a very wide range of scales
from x ¼ 1 to 256 mm. This indicated that the unified P-
value approach we utilized controlled for the increased
false positive rate in the 4D multiple comparisons appro-
priately (specificity ¼ 1 - false positive rate).

The comparison between the distributions of the critical
threshold computed with the unified P-value and RFT
illustrates that the cost of an increased critical threshold
must be paid for implementing a scale space search com-
pared with implementing a single-filter analysis. However,
this cost is very small. The above discussed advantages of
scale space search are beneficial to practical exploratory
studies, especially for disease studies, where very little is
known about the brain structural changes or abnormalities
to be investigated.

Scale Space Search for Aging and Gender Effects

Our scale space search analyses revealed age-related
changes in either cortical volume or thickness, which are
consistent with the previously reported vulnerabilities of

Figure 9.

Synthetic population differences in cortical surface area detected

with scale space search. A: Unified P-value thresholded t maps

of selected scales that were equal or close to the filters used in

the single-filter analyses (full results are available in Movie 3

included in the Supporting Information). B: Spatial locations of

the detected surface area changes integrated over the scale

dimension. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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the cerebral cortex to aging [Fjell et al., 2009; Good et al.,
2001b; Lemaitre et al., 2005; Salat et al., 2004; Sowell et al.,
2003; Tisserand et al., 2002]. Differently, our results sup-
port the ‘‘last in, first out’’ hypothesis of aging [Raz and
Rodrigue, 2006], i.e., brain regions that are the last to de-
velop are the first to be affected by aging, from the per-
spective of scale space theory. According to the scale
space theory [Lindeberg, 1994; Lindeberg et al., 1999], a
region having larger spatial extent, higher intensity and
longer lifetime in the scale space may be treated as more
significant. Therefore, aging effects on cortical volume and
thickness observed in the prefrontal cortex are the most
strongest across the entire cortex. Based on the Flechsig’s
myelination precedence (a metric of developmental myeli-
nation of intracortical fibers), the prefrontal cortex is one
of the last regions to undergo complete maturation. More-

over, like many existing cortical thickness studies [e.g.,
Fjell et al., 2009; Lemaitre et al., 2005; Salat et al., 2004], we
also found significant cortical thinning in or around the
primary visual cortex and motor cortex, which develop
early. These findings were previously reported as contra-
dictory to the ‘‘first in, last out’’ theory. However, our
results from scale space search analysis suggested that
these areas should be considered as less significant than
the prefrontal cortex because of their relatively smaller
sizes, lower t values and shorter lifetime along the scale
dimension.

It is not very surprising that there is no age-related
change in cortical surface area was detected in our study.
In [Kochunov et al., 2005], investigators found that the
age-related increase in the sulcal width was inversely cor-
related with the decrease in the sulcal depth. Thus,

Figure 10.

Detection sensitivities and specificities for detecting the synthetic population differences of sin-

gle-filter analyses, respectively, with filters of x ¼ 1, 5, : : : ,40 mm and the scale space search

from x1 ¼ 1 to x2 ¼ 256 mm.
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atrophied brains may exhibit a change in gyral complexity
but not a change in surface area [Narr et al., 2004]. This
indicates that cortical volume and thickness are more in-
formative for detecting age-related morphometric changes
than surface area. Moreover, compared with cortical vol-
ume, cortical thickness always showed a more diffuse
range of significant age-related reduction. These distinc-
tions between cortical volume, thickness, and surface area
in aging observed here are well in line with the results
reported by the existing studies [Im et al., 2008; Lemaitre
et al., 2010; Rettmann et al., 2006].

In addition, we also observed striking asymmetric pat-
terns of age-related reduction in either cortical volume or
thickness in the inferior temporal lobe at certain coarse
scales. Although, by far, there is no clear evidence of
asymmetric aging of the brain, lateralized patterns of corti-
cal atrophy in aging have been observed in a number of
studies [e.g., Gur et al., 1991; Raz et al., 2004; Thambisetty
et al., 2010].

For the gender differences, only cortical thickness
showed significant gender differences in this work. There-
fore, cortical thickness is more sensitive than cortical vol-
ume and surface area to the local structural changes
related to gender, as in the analyses of aging effects. The
failure of detecting gender differences in volume and sur-
face area, and the failure of detecting large regions of gen-
der differences in thickness were primarily attributable to
that we used unscaled measures and controlled for the
total cortical volume. It has been demonstrated that exam-
ining the brain with unscaled data will find less pro-
nounced gender differences than with stereotaxic-scaled
measures, as stereotaxic-scaling may lead to disproportion-
ate increases of cortical morphometric measures and con-
sequently lead to exaggerated structural changes [Im et al.,
2006; Luders et al., 2006]. Furthermore, the observed corti-

cal thickening in women support the previously reported
higher GM concentration [Good et al., 2001a] and GM/
WM ratio [Gur et al., 1999] in women than men, and the
hypothesis of sexual dimorphism. According to the scale
space theory, the patterns of cortical thickening in women
in the superior parietal gyri are the most significant
because of their larger size, higher t values and longer life-
time in the scale space. This finding is consistent with the
results reported in [Im et al., 2006; Luders et al., 2006].

Validity of Unified P-value

The unified P-value method was originally developed
for functional brain image analysis [Worsley et al., 1996a],
and it depends on certain assumptions about the distribu-
tion of the data, e.g., Gaussian distribution. There is no
guarantee that an algorithm developed for functional neu-
roimaging data should be universal, and in particular
should apply to brain morphometric measure data. There-
fore, we separately applied a nonparametric permutation
test to correct for the multiple comparisons in the scale
space search. The thresholds set using the unified P-value
method were slightly lower than those of the permutation
test. In general, however, the performances of the unified
P-value method and the permutation test were similar,
especially when a < 0.05. Thus, the assumptions of the
unified P-value method that was originally developed for
volume-based functional neuroimaging data were accepta-
ble for our surface-based cortical morphometric data.

Further Considerations and Future Work

A possible disadvantage of the scale space search is the
complicated interpretation and understanding of the

Figure 11.

Distributions of critical thresholds ta ¼ 0.05 for single-filter analysis at a fixed scale x1 (computed

with RFT), and for scale space search from different x1 to the end scale of x2 ¼ 256 mm (com-

puted with unified P-value).
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Figure 12.

Age-related cortical volume reduction detected with scale space

search (t maps thresholded with unified P-value, ta ¼ 0.05 ¼ 4.7) at

selected scales (full results are available in Movie 4 included in the

Supporting Information). At fine scales, aging effects on cortical

volume appeared as a few foci, which are rather difficult to see in

the small visualizations here. The spatial locations of these foci are

highlighted with red circles. With the increase of the scale, some

of these foci extended and merged into large regions, some disap-

peared and new ones appeared. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 13.

Age-related cortical thickness reduction detected with scale space

search (t maps thresholded with unified P-value, ta ¼ 0.05 ¼ 4.8) at

selected scales (full results are available in Movie 5 included in the

Supporting Information). At fine scales, aging effects on cortical

thickness showed in small regions, which are rather difficult to see

in the small visualizations here. The spatial locations of these foci

are highlighted with red circles. With the increase of the scale,

most these foci extended and merged into large regions. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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hierarchical representations of the detected signals. In Fig-
ures 7B, 8B, and 9B, we integrated the spatial locations of
the simulated structural changes detected at different
scales into a single image to illustrate the detection
capacity of a scale space search to the induced patterns.
However, this type of synthesized visualizations cannot be
used to replace the hierarchical representations in practical
applications, as the essential aim of conducting a scale
space search is to capture the signals with different shapes
and sizes that appear differently at different scales.
Recently, an approach, named threshold free cluster
enhancement (TFCE), has been proposed by Smith and
Nichols [2009], which can be considered as an alternative
to scale space search. TFCE modulates the raw statistic

map by the height of each voxel/vertex along with its
base of support, and then produces a single output image
where the voxel/vertex-wise values represent the amount
of cluster-like local spatial support. The output of TFCE is
easy to interpret and contains rich spatial information
about the signals to detect. TFCE can identify the region of
support without any assistance from spatial smoothing;
however, data smoothing are still required prior to imple-
menting TFCE to suppress the image noise and, more
importantly, to reduce the impact of misregistration.
Although Smith and Nichols [2009] tried to find an opti-
mal smoothing filter for their experiments, they suggested
that it would be valuable to integrate the TFCE measure
over a range of smoothing filters based on the concept of
scale space. The scale space search approach presented in
this article is applicable for this purpose.

Furthermore, in this article, we theoretically inter-
preted the results of our scale space search analyses
based on the scale space theory. A meaningful future
work is to quantitatively determine the significance of
the detected signals in the scale space utilizing the tech-
nique such as scale-space primal sketch [Lindeberg,
1994], which has been applied to studies of brain activa-
tion patterns in functional neuroimaging [Lindeberg
et al., 1999; Operto et al., 2008]. In addition, the statistical
inferences in this work were based on vertex-wise thresh-
olding. Extending the study with cluster-wise inferences
will enhance our understanding about the impact of scale
space search on brain morphometric analyses, although
the presented results are already enough to demonstrate
the superiorities of the scale space search to the single-fil-
ter analysis and comparing different critical thresholding
methods is out of the scope of this article. Moreover, like
most of the existing brain morphometric studies, the sur-
face diffusion employed in this work was isotropic
[Meyer et al., 2003]. Isotropic diffusion may be undesir-
able when the signal to detect follows the direction of
cortical folds [Boucher et al., 2011]. Therefore, it is also
desirable to apply the concept of scale space search to
investigate the impact of anisotropic surface diffusion
with different anisotropic factors on the surface-based
cortical morphometry.

CONCLUSION

The fact that variations in smoothing affects the analysis
results is an issue, while not new in volumetric analysis,
has not been thoroughly addressed in MRI based brain
morphometry. Theoretically, the optimal smoothing kernel
should match the spatial extent of the target signal. How-
ever, prior information about the signal extent, in general,
is unknown in exploratory studies. Therefore, cortical
structural changes previously reported using single-filter
approaches and without giving sufficiently justified reason
for the choice of smoothing filter may need to be
reconsidered.

Figure 14.

Gender difference (female–male) in cortical thickness detected

with scale space search (t maps thresholded with unified P-value,

ta ¼ 0.05 ¼ 4.8). Significant cortical thickening in women was

only found as a few small foci (emphasized with red circles, and

the most prominent ones are magnified) at fine scales (x < 35

mm). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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In this article, we first illustrated the superiorities of
scale space search to single-filter analysis for brain mor-
phometric studies through a simulated population study.
Then, we showed the effects of scale space search on
detections of age- and gender-related cortical morpho-
metric changes. Our results illustrated that, when the sig-
nal extent is unknown, searching scale space can increase
the detection sensitivity and produce a relatively com-
plete description of the structural changes, with just a
small cost of the increase of the critical threshold. There-
fore, it is essential to conduct a scale space search to
fully understand the changes in morphology that vary
with age, gender, and disease. Moreover, the presented
results also demonstrated the ability of the unified P-
value to control for the false positive rate for 4D scale
space search and its validity to our surface-based cortical
morphometric data.
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