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Abstract: This study aimed to identify subunits of the basal ganglia and thalamus and to investigate
the functional connectivity among these anatomically segregated subdivisions and the cerebral cortex
in healthy subjects. For this purpose, we introduced multilevel independent component analysis (ICA)
of the resting-state functional magnetic resonance imaging (fMRI). After applying ICA to the whole
brain gray matter, we applied second-level ICA restrictively to the basal ganglia and the thalamus area
to identify discrete functional subunits of those regions. As a result, the basal ganglia and the thalamus
were parcelled into 31 functional subdivisions according to their temporal activity patterns. The
extracted parcels showed functional network connectivity between hemispheres, between subdivisions
of the basal ganglia and thalamus, and between the extracted subdivisions and cerebral functional
components. Grossly, these findings correspond to cortico-striato-thalamo-cortical circuits in the brain.
This study also showed the utility of multilevel ICA of resting state fMRI in brain network research.
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INTRODUCTION

The basal ganglia and the thalamus are subcortical
structures with integral roles in both normal brain function
and disease and are accordingly heterogeneous in struc-
ture [Morel, 1997]. The main components of the basal gan-
glia are the striatum (which includes the caudate nucleus
and putamen), pallidum, substantia nigra, and subthala-
mic nucleus, each of which is subdivided further into
several nuclei based on neuronal types and their patterns
of connection. The thalamus also includes eight or nine
subnuclei [Morel et al., 1997], which may be categorized
according to their connectivity with other subcortical
or cortical areas. The parcellation of subnuclei may yield
clues to the pathology of Parkinson’s disease, schizophrenia,
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and other neurological disorders; thus, the technique
attracts research attention [Henderson et al., 2000; Kim
et al., 2007; Kreczmanski et al., 2007].

Current techniques for morphometric neuroimaging ena-
ble whole brain parcellation using anatomical landmarks
of the cerebral cortex [Collins et al., 1995; Fischl et al.,
2004; Tzourio-Mazoyer et al., 2002]. These techniques have
limitations in identifying subnuclei in the basal ganglia
and the thalamus, which inspired new parcellation techni-
ques based on anatomical connectivity as defined by diffu-
sion tensor imaging (DTI). Fiber tractography was shown
to be useful especially in parcellation of thalamic nuclei
based on thalamo-cortical connectivity [Behrens et al.,
2003a; Johansen-Berg et al., 2005]. The probabilistic fiber
tractography was also used to parcel the discrete subnuclei
of the basal ganglia according to anatomical connectivity
patterns [Draganski et al., 2008].

In parallel with these parcellation approaches based on
the anatomical connectivity, functional connectivity-based
parcellation receives a wide attention because anatomical
connectivity may not necessarily explain functional con-
nectivity [Buckner et al., 2008; Honey et al., 2010; Van Dijk
et al., 2010]. The functional parcellation techniques for the
brain have been promoted by the researches on spontane-
ous functional network using resting-state functional mag-
netic resonance imaging (rs-fMRI), which does not depend
on performance of specific tasks [Biswal et al., 1995, 1997;
Greicius et al., 2003; Lowe et al., 1998; McGuire et al.,
1996; Raichle and Snyder, 2007]. Functional approaches
parcel brain regions according to the temporal correlation
of activities between regions [Cohen et al., 2008]. Several
parcellation techniques based on rs-fMRI have been sug-
gested to subdivide the cerebral cortex into functional sub-
units. These include hierarchical clustering [Achard et al.,
2006], the Gaussian mixture model [Golland et al., 2008],
graph theory [Shen et al., 2010], and independent compo-
nent analysis (ICA) [Ji et al., 2009].

Despite many studies on the cortical parcellation, rela-
tively few methods to subdivide subcortical brain regions
have been proposed. Zhang et al. [2008] parcelled thalamic
nuclei by the winner-take-all method, which labels each
voxel in the thalamus with the most probable site of func-
tional connectivity in the cortex. Barnes et al. [2010] gener-
ated discrete sub-regions of the basal ganglia using the
similarity patterns of functional connectivity defined by
voxel-wise correlations between the basal ganglia and
whole brain. To identify basal ganglia voxels, they also
used a network analysis based on graph theory that used
the modularity optimization technique [Newman 2006].

In contrast to the univariate voxel-by-voxel approaches
of Zhang and Barnes, ICA, a multivariate blind source sep-
aration method, has been used to decompose spontaneous
brain activity into maximally independent functional com-
ponents, each composed of anatomically segregated but
functionally relevant regions. The functional components
driven by ICA, however, depend on selection of the
model order, i.e., the number of meaningful components.

Abou-Elseoud et al. [2010] reported that model orders of
70–80 separate subcortical signal sources sufficiently with-
out over-fitting the data. Indeed, Ystad et al. [2010] used
ICA with a high order model (n ¼ 72) to identify region-spe-
cific functional components of subcortical nuclei. In that
study, they identified only five subunits among the whole
basal ganglia and thalamus, and they did not parcel the sub-
nuclei in detail. For more detailed separation of subnuclei
within the basal ganglia and thalamus, increasing model
order may not be a solution because the increased model
order may induce over-fitting problems in other brain
structures [Beckmann and Smith, 2004, 2005].

In this study, we introduced a multilevel ICA—initially
proposed in the analysis of the microarray gene data [Chen
et al., 2009]—of resting state fMRI, which applies ICAs
consecutively to the whole brain and subcortical regions, to
parcel subdivisions in the basal ganglia and thalamus. The
aims of this study were to show (1) the advantages of multi-
level ICA in identifying subdivisions of the basal ganglia
and thalamus, (2) the detailed inter-regional connectivity
among subdivisions of the basal ganglia and thalamus, and
(3) the validity of the proposed method, by determining the
inter-individual variability in the parcellation of subdivi-
sions of basal ganglia and thalamus.

METHODS

Participants

This study followed the guidelines for use of human
subjects established by the Institutional Review Board of
Yonsei University School of Medicine. Twenty-one healthy
righted-handed volunteers (10 male and 11 female, mean
age ¼ 21.14 � 6.95 years) participated in this study. All
participants were screened for past or present history of
medical, neurological, and psychiatric illnesses according
to self-reports. Handedness was assessed with a Korean
version of the Annett handedness questionnaire [Annett,
1970]. After we provided a complete description of the
study, all participants gave their written informed consent.

Imaging Parameters

All scans were acquired using a Philips 3.0-T scanner
(Philips Intera Achieva, Philips Medical System; Best, The
Netherlands) with a Sensitivity Encoding (SENSE) head coil
(SENSE factor ¼ 2). Functional scans based on echo-planar
imaging (EPI) consisted of 160 axial volumes with the
following parameters: 80 � 80 acquisition matrix with 31
slices, field-of-view 220 � 210 � 140 mm3, 2.75 � 2.75 � 4.5
mm3 voxels, echo time 30 ms, repetition time 2,000 ms, and
no slice gap. All subjects were asked to lie in the scanner
with their eyes closed and to relax but not sleep. They were
not given any task. For registration purposes, high-resolu-
tion T1-weighted coronal MRI volumes were acquired using
a fast spin echo (FSE) sequence with the following parame-
ters: 256 � 256 image matrix with 182 slices, field-of-view
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220 � 220 � 218 mm3, 0.859 � 0.859 � 1.2 mm3 voxels, echo
time 4.6 ms, and repetition time 9.7 ms.

Preprocessing

All acquired images were preprocessed using the SPM8
software package (http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm8/). The preprocessing steps are (1) a slice-tim-
ing correction; (2) 3D rigid-body co-registration to the first
volume of each subject’s session for head motion correc-
tion; (3) nonlinear spatial normalization into the standard
Montreal Neurological Institute (MNI) space, and subsam-
pling to 2 � 2 � 2 mm3 resulting in 79 � 95 � 69 isocubic
voxels; (4) spatial smoothing with a Gaussian kernel of
8-mm FWHM. The first 10 volumes in each subject’s scan

were excluded because of the T1-equilibrium magnetiza-
tion effect. The data was analyzed at voxels within the
whole intracranial space in regions empirically defined by
SPM a priori maps as areas where at least one of the gray
matter, white matter, or cerebrospinal fluid (CSF) probabil-
ity was higher than 0.2 (Fig. 2b). This mask covers the
whole brain, including cortical and subcortical gray mat-
ter, white matter, and CSF but excluding non-brain regions
and skull. The slight inclusion of white matter and CSF
due to a lower threshold would raise no significant effect
in the second-level analysis, since the first-level ICA may
extract the component of these regions as artifacts (e.g.,
see IC46-IC50 in Fig. 1).

Each dataset was corrected by (1) removal of linear
intensity trends; (2) normalization of within-run intensity

Figure 1.

Independent component (IC) maps from the first-level ICA. ICs containing white matter regions

were represented by green color font (IC5, IC6, IC16, IC17, IC27, IC37, and IC45). We

regarded IC46–50 (yellow) as the artifactural components from head motion, physiological noise,

registration and segmentation error, and CSF fluctuations. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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using Fisher’s z-transformation; (3) regression of the mean
white matter signal and the mean CSF signal averaged
over the respective regions where tissue probability of ei-
ther white matter or CSF is higher than 0.5; and (4) a tem-
poral band-pass filtering (0.01 < f < 0.08 Hz).

First-Level ICA of fMRI Data

Using GIFT software (http://icatb.sourceforge.net), we
applied group ICA to the preprocessed fMRI scans to
decompose the resting-state data of the group into com-
mon spatially-independent components. In this approach,
the temporal redundancy of group fMRI data was reduced
through two steps using a principal component analysis
(PCA) before ICA [Calhoun et al., 2009].

At the subject level, we reduced the temporal dimension
of the observed fMRI data matrix, Yi, using PCA, i.e., Xi ¼
Fi

�1Yi where Xi is the Nc1 � v reduced data matrix for sub-
ject i (where Nc1 is the number of first-reduced dimensions
for each subject, and v is the number of voxels), Fi

�1 the
Nc1 � t reducing matrix resulting from the subject’s PCA
decomposition (where t is the number of time points), and
Yi the t � v observed fMRI data matrix. PCA has been used
to reduce data dimension and thus to decrease computa-
tional load, because the size of fMRI dataset is typically
large and the most of information usually exist in the lower
dimensional subspace [Calhoun et al., 2009]. Reduced data
from each subject were concatenated temporally at the
group level, and PCA decomposition was applied again,
i.e., XG ¼ G�1YG ¼ G�1[F1

�1Y1 F2
�1Y2 : : : FN

�1YN]
t where

XG is the Nc2 � v reduced data matrix for all N subjects
(where Nc2 is the number of second-reduced dimensions for
the group), G�1 the Nc2 � N�Nc1 reducing matrix obtained
from the group’s PCA decomposition, and YG the N�Nc1 � v
concatenated data matrix from each subject. According to
ICA decomposition, we can express the reduced data for the
group XG as XG ¼ AS where A is the Nc2 � Nc2 mixing ma-
trix, and S the Nc2 � v maps of independent spatial
components.

In this study, independent components were estimated
from the temporally reduced data matrix using the info-
max approach [Bell and Sejnowski, 1995]. The number of
components was determined to be sufficiently large (Nc1 ¼
30, Nc2 ¼ 50) based on the minimum description length
criteria [Li et al., 2007].

From the final 50 group components (Nc2 ¼ 50), we
excluded five artifactual components that were apparently
associated with head motion, physiological noise, registra-
tion error or CSF fluctuations (Fig. 1). Some IC maps con-
taining white matter regions were not excluded since they
extended into the cortical regions. Finally, 45 anatomically
relevant IC maps except for the distinct artifactual compo-
nents were selected as the functional subunits for further
analysis.

Second-Level ICA for the Basal Ganglia and

the Thalamus Subvolume

We applied a second-level ICA to sub-volume data from
the basal ganglia and thalamus. To localize a sub-volume

Figure 2.

Three selected independent component (IC) maps of the basal

ganglia and thalamus from the first-level ICA and masks for the

first- and second-level ICA. The whole brain mask (b) for the

first-level ICA was defined with an area where at least one of the

gray matter, white matter, or cerebrospinal fluid probability (from

a priori maps in SPM8) was higher than 0.2. The subcortical

regions from first-level ICA (a) consisted of thalamus (Th), cau-

date nucleus (Ca), pallidum (Pa), and putamen (Pu). The final ROI

for the second-level ICA was determined as the union of the IC

maps and the anatomical regions corresponding to the basal gan-

glia and thalamus in AAL map (c). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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in the subcortical area, we converted each IC spatial map
value to z-score to improve the normality and selected the
components that overlapped sufficiently (>30%) with the
basal ganglia or thalamus region defined in the automated
anatomical labeling (AAL) map [Tzourio-Mazoyer et al.,
2002]. This referential subcortical region consisted of thala-
mus (Th), caudate nucleus (Ca), pallidum (Pa), and puta-
men (Pu; Fig. 2a).

Because these three IC maps did not completely cover
the whole basal ganglia and thalamus, we used the union
of the AAL subcortical mask and three IC maps of sub-
cortical regions. The final ROI (vnew) for the second-level
ICA was determined as the combination of the IC maps
and the anatomical regions corresponding to the basal
ganglia and thalamus components (BGT) as ROI (vnew) ¼
ROIfunc | ROIanat ¼ (ICBGT1 | ICBGT1 | : : : | ICBGTn)
| (AALTh | AALCa | AALPa | AALPu). Second-level
group ICA was applied to this sub-volume region (Fig.
2c). The number of components was found to be the same
as that of the first-level (Nc2 ¼ 50).

From these group components, we again excluded non-
basal ganglia and nonthalamic components using the
above overlap strategy (<10%). Finally, the functional sub-
units of the basal ganglia and thalamus were selected
from 31 anatomically relevant IC maps.

Generation of a Map of Subdivisions in Basal

Ganglia and Thalamus

We assumed that measured blood oxygenation level-de-
pendent (BOLD) signals mixed in a linear manner with
spatially independent components and the corresponding
time series. Thus, the time series at a voxel v can be
rewritten as xv ¼ Ran�sv,n where xv is the Nc2 � 1 signal
vector at a voxel v of XG; an is the nth column of mixing
matrix A whose size is Nc2 � 1; and sv,n is the nth IC value
at the voxel v of S. We defined Cv,n as the contribution of
the nth IC to the measured data at a voxel v as Cv,n :
an�sv,n. We assigned each voxel v to the functional label Lv
corresponding to the IC with the maximum absolute con-
tribution to the signal in the voxel v, i.e., Lv ¼ arg
maxn(|xv�Cv,n|).

To generate the map of subdivisions, each voxel within
the basal ganglia and thalamus was assigned the maxi-
mally contributed IC label—i.e., winner-take-all strategy.
Theoretically, this parcellation technique is a type of the
most widely used ‘‘winner-take-all" methods [e.g., Behrens
et al., 2003a; Zhang et al., 2008]. The primary difference of
the current method from the previous methods, however,
is that the current method is a data-driven analysis, which
does not require any a priori and restricted target ROIs to
define probability of connectivity. Anatomical correspon-
dence of each parceled subdivisions was visually identi-
fied according to previous researches [Behrens et al.,
2003a; Draganski et al., 2008; Leh et al., 2007; Niemann
et al., 2000].

Functional Network Connectivity Among ICs of

Subdivisions in Basal Ganglia and Thalamus

As an index of functional network connectivity among ICs,
correlation coefficients (r) were calculated for the time-series
of all ICs of each individual. This functional network connec-
tivity analysis was performed in previous studies [Andrews-
Hanna et al., 2007; Jafri et al., 2008]. The mixing matrix for
ICs in the individual subject was calculated using a back-pro-
jection method [Calhoun et al., 2009] formulated as Ãi ¼
FiGiA where Ãi is the t � Nc2 matrix for ith subject whose
column is the time-series of each IC. We evaluated the func-
tional connectivity between the functional ICs of the cortex
from the first-level ICA, and the ICs matching to the subdivi-
sions of the basal ganglia and thalamus driven in the second-
level ICA. We also conducted functional connectivity analy-
sis among ICs corresponding to subdivisions of the basal
ganglia and thalamus derived in the second-level ICA. After
Fisher’s z-transformation of the correlation coefficient r, a
one-sample t-test was applied. We considered the functional
connectivity of ICs to be functionally relevant if the correla-
tion was confirmed by a false discovery rate (FDR) q < 0.05.

Reproducibility Across Individual Parcellations

We evaluated the presence or absence of each subnu-
cleus (i.e., ICs corresponding to the nucleus) at each voxel
within the basal ganglia and thalamus at subject level, as
in Draganski et al. [2008]. To do this, we compared indi-
vidual parcellation maps with the group parcellation map.
The number of subjects having a given combination of
nuclei was counted as a consistency measure.

RESULTS

The Basal Ganglia and the Thalamus From the

First-Level ICA

Among 45 nonartifactual ICs, excluding five noise com-
ponents from 50 ICs (Fig. 1), three components (IC7/10/36)
corresponding to the basal ganglia and thalamus (threshold
z > 3) had a relatively high overlap with the basal ganglia
and thalamus regions as defined anatomically on the AAL
map (Table I). Specifically, IC7 was associated with the
bilateral thalamic area with almost full coverage of the
thalamic region on the AAL map. IC10 was located in
the whole basal ganglia area with its maximum value at the
putamen. IC36 was centered at the caudate and extended
over the pallidum and putamen (Fig. 2).

Subdivisions in the Basal Ganglia and Thalamus

From the Second-Level ICA

Second-level ICA with a subvolume gave a more precise
subdivision of basal ganglia and thalamus. Using the vol-
ume defined by basal ganglia and thalamic regions
derived from the first-level ICA and the AAL map (see
‘‘Methods’’ section), the second-level ICA identified 31 ICs
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corresponding to basal ganglia and thalamus, and 17 ICs
for nonbasal ganglia and nonthalamus from 48 nonartifac-
tural ICs (Fig. 3). The ICs with at least 10% overlap with
the basal ganglia and thalamus regions in the AAL map
were considered to be anatomically relevant regions.

Subdivisions Parcellation Maps of the Basal

Ganglia and Thalamus

Figure 4 shows the parcellation maps for subdivisions of
the thalamus and basal ganglia derived from the second-
level ICA.

Thalamus

Thalamic parcellation revealed anatomically distinct
nuclei in the thalamus. Ventral-anterior (VA) and ventral-
lateral (VL), including ventral-medial (VM) nuclei, were
found in IC24/33/37 and IC15/23. Pulvinar (PU) and ante-
rior (AN) nuclei were also found in IC30 and IC22. The
medial-dorsal (MD) nucleus was partitioned into three sub-
regions—IC8 (anterior), IC14 (middle), and IC9 (posterior).

Caudate nucleus

The head of the caudate consisted of IC40 (bilateral), IC46
(left), and IC48 (right). A bilateral component (IC40) was
located toward the medial side in the head of the caudate.
The tail of the caudate was found in IC11. The body of the
caudate comprised several distinct regions, i.e., IC47 (the
major part of the body of caudate), IC39 (located more to-
ward the posterior than IC47), IC28 (left), and IC4/21 (right).

Pallidum and Putamen

Even though the given IC maps did not clearly separate
the pallidum and the putamen (i.e., some ICs covered both

Figure 3.

Independent component (IC) maps from the second-level ICA. The nonbasal ganglia and nontha-

lamic ICs were presented in the Supporting Information Figure S1. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. Percentage of spatial overlap of selected ICs

(z > 3) with basal ganglia regions on the AAL map

IC

Thalamus Caudate Pallidum Putamen

Left Right Left Right Left Right Left Right

7 99.64 99.90 17.78 17.40 30.72 10.71 11.69 8.93
10 25.09 26.58 52.18 72.74 74.74 97.86 95.34 98.21
36 0 0 57.38 57.24 53.92 35.71 40.04 31.58
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the pallidum and putamen as in Fig. 4), the rostral and
caudal portions of these structures were distinguished rel-
atively well. IC1/3/6/7/23/31/32 comprised the caudal
portion, and IC13/17/26/27/28/35/36 the rostral part.
IC13 and IC36 covered most portions of the pallidum and
the putamen.

Functional Network Connectivity Within the

Basal Ganglia and Thalamus Components

Among the 31 meaningful ICs of the basal ganglia and
thalamus selected from the second-level ICA, we found
significant functional network connectivity; i.e., a signifi-
cant correlation coefficient for the time-series of these com-
ponents (FDR q < 0.05; Fig. 5).

IC37 and IC33, corresponding to the left and right ven-
tral-anterior nuclei, had the highest functional connectivity
(r ¼ 0.35, P ¼ 2.75 � 10�7). Although IC14/22/30 also
identified bilateral thalamic regions, the greater part of

each thalamus was partitioned into the left and right sub-
regions (IC37/33). Likewise, the putamen (IC6/31: r ¼
0.30, P ¼ 5.46 � 10�6 and IC13/36: r ¼ 0.30, P ¼ 4.33 �
10�6), the thalamus (IC23/15: r ¼ 0.33, P ¼ 1.13 � 10�6),
and the caudate (IC46/48: r ¼ 0.36, P ¼ 2.53 � 10�6)
regions had high inter-hemispheric connectivity. In addi-
tion, IC6/23 (r ¼ 0.40, P ¼ 7.79 � 10�9) and IC31/36 (r ¼
0.37, P ¼ 2.69 � 10�7) showed functional connectivity near
the left and right posterior parts of the putamen, whereas
IC6 and IC36 were located in the more anterior side.
Significant functional network connectivity was found
between the right ventro-anterior (IC33) and ventro-poste-
rior (IC15) thalamus (r ¼ 0.29, P ¼ 2.06 � 10�6) and left
ventral-anterior (IC24) and pulvinar (IC30) thalamus (r ¼
0.20, P ¼ 1.87 � 10�6). The medial-dorsal (IC8) nucleus of
the thalamus was correlated with regions of the bilateral
pallidum (IC35/26, r > 0.16, P < 0.004). The right pal-
lidum (IC26) was also functionally connected with the
right caudate (IC4/21/48, r > 0.14, P < 0.003).

Figure 4.

Functional segmentation map of thalamus, caudate, putamen, and

pallidum using multilevel ICA. The volumes of subdivisions are IC1

(760 mm2), IC3 (1144 mm2), IC4 (1704 mm2), IC6 (1880 mm2),

IC7 (656 mm2), IC8 (568 mm2), IC9 (712 mm2), IC11 (1760 mm2),

IC13 (3672 mm2), IC14 (2912 mm2), IC15 (1232 mm2), IC17 (744

mm2), IC21 (2120 mm2), IC22 (472 mm2), IC23 (720 mm2), IC24

(1520 mm2), IC26 (1328 mm2), IC27 (584 mm2), IC28 (2768 mm2),

IC30 (1888 mm2), IC31 (792 mm2), IC32 (1064 mm2), IC33 (3568

mm2), IC35 (1608 mm2), IC36 (3224 mm2), IC37 (3224 mm2), IC39

(2384 mm2), IC40 (1376 mm2), IC46 (1288 mm2), IC47 (3264

mm2), and IC48 (3136 mm2). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Functional Network Connectivity Between the

Basal Ganglia, Thalamus, and Cerebral Cortex

Thalamo-cortical functional network connectivity

The thalamic subdivisions driven at the second-level
ICA and the cortical regions driven at the first-level ICA
showed significant functional network connectivity. Specif-
ically, the medial-dorsal nuclei (IC8/9/14) of the thalamus
were correlated with regions of the dorsolateral prefrontal
(r ¼ �0.19, P ¼ 1.80 � 10�6), orbito-frontal (r ¼ �0.25, P ¼
1.96 � 10�6), and premotor/SMA (r ¼ �0.16, P < 0.004)
cortices. The ventral nuclei (VA/VL/VM: IC15/33/23/37)
were functionally interconnected with the precentral cortex
and the inferior-, middle-, and orbito-frontal cortex. The
anterior nuclei (AN: IC22) were interconnected with the
posterior cingulate (Fig. 5). The pulvinar (IC30) of the thal-
amus was functionally connected with the occipital cortex
(see Fig. 5).

Functional network connectivity between striatum

and cortex

Time series in the nuclei (IC6/31/32) of the putamen
were highly correlated with those of the medial-frontal,
postcentral cortex, and cerebellum (IC34/41/11 from the
first ICA, respectively; FDR q < 0.0001; Fig. 5). However,
no significant correlations were found between ICs in the
caudate and cortex.

Reproducibility Across Individual Parcellations

Subdivisions of the basal ganglia and thalamus at the indi-
vidual level were highly correlated with corresponding
regions in the group parcellation map (Fig. 6). For example,
in the thalamic parcellation, we detected MD and VA (or VL)
nuclei bilaterally in all subjects. PU was found in 16 out of 21
(17 in the left hemisphere and 16 in the right hemisphere)

Figure 5.

Functional interconnections between regions of basal ganglia subdi-

visions and the cerebral cortex. Dashed line represents the bilat-

eral connectivity, and solid line represents the connection between

subdivisions of the basal ganglia (red) and cortical areas (blue).

Abbreviations: hC, head of caudate; bC, body of caudate; rPa, ros-

tral part of pallidum; rP, rostral part of putamen; cP, caudal part of

putamen; AN, anterior nucleus of thalamus; MD, medial dorsal

nucleus of thalamus; VA, ventral anterior nucleus of thalamus; VL,

ventral lateral nucleus of thalamus; PU, pulvinar of thalamus; IFC,

inferior frontal cortex; PCC, posterior cingulate cortex; MFC, mid-

dle frontal cortex; OFC, orbito frontal cortex; M1, primary motor

area; PMA, premotor area; FC, frontal cortex; L, lobe. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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subjects. Also, we found AN in 12 (15 in the left hemisphere
and 12 in the right hemisphere) of 21 subjects. In the caudate
parcellation, we found the bilateral and lateral head nuclei in
20 (21 in the left hemisphere and 20 in the right hemisphere)
subjects, and the tail nuclei in 12 (17 in the left hemisphere
and 12 in the right hemisphere) subjects. Most parts in the
body of the caudate were found in 19 of 21 subjects.

DISCUSSION

Using multilevel spatial ICA of resting-state fMRI, we
identified the subdivisions of the basal ganglia and thala-
mus as functionally connected structures. Small but inde-
pendent subdivisions in the basal ganglia and thalamus,

which the conventional ICA did not detect, were clearly
identified. The parcellation schemes for these subdivisions
were grossly consistent with those in previous anatomical
studies of the basal ganglia and thalamus [Morel, 1997;
Morel et al., 1997]. Furthermore, functional network
analysis showed the association of subdivisions in the
striatum and thalamus with the cortical network driven by
multilevel IC.

Parcellation of the Thalamus and

the Basal Ganglia

The parcellation of the thalamus and basal ganglia has
been performed using DTI fiber tractography by a winner-

Figure 6.

Individual parcellation maps of basal ganglia and thalamus for the complete group of 21 subjects.

Color label is the same with Figure 4. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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take-all approach, i.e., labeling each voxel with the corre-
sponding cortical area based on the highest anatomical con-
nectivity with the voxel [Behrens et al., 2003a,b; Draganski
et al., 2008; Johansen-Berg et al., 2005]. Another winner-
take-all approach for the subcortical parcellation is based on
functional connectivity defined by rs-fMRI. Zhang et al.
[2008] assigned the cortical label with the highest functional
connectivity to the voxel in the thalamus.

As a data-driven approach, we assumed that several
functional components may be linearly combined to gener-
ate BOLD signals at each voxel of the basal ganglia and
the thalamus and that ICA could effectively separate these
functional components. The functional label at each voxel
was determined by assigning to the voxel the IC that
makes the maximal contribution. In contrast to the previ-
ous winner-take-all parcellation methods, the proposed
ICA method does not require any predefined cortical tar-
gets to parcel subdivisions of the thalamus and the basal
ganglia. This is an important property in the parcellation
of subcortical brain structures, such as the basal ganglia,
that may not have specific or easily identified target corti-
cal regions, as in the thalamus.

The spatial pattern of thalamic subdivisions observed in
our study corresponds grossly to the previous cytoarchitec-
tonic study [Morel et al., 1997] and the rs-fMRI study
[Zhang et al., 2008]. Particularly, the identified thalamic sub-
regions—AN(IC22), PU(IC30), VL/VA(IC15/23/33/24/37),
and MD(IC8/14/9)—may suggest the reliability of this
method. However, the accurate one-to-one mapping
between the cytoarchitectonic subnuclei and our functional
subdivisions may not be possible since there may exist a dis-
crepancy between the subcortical function and anatomy.
Also, the comparison of our results with those of Zhang
et al. [2008] is limited since the functional subunit may be
depending on the various factors such as the applied target
masks—e.g., five cortical targets in Zhang et al. [2008].

Although further studies are required to examine how
the functional subdivision is related with the cytoatchitec-
tonic subnuclei, the functional component found in the
ICA represents temporal coactivation among voxels within
the component and act as a functional subunit during rest-
ing state.

Functional Network Connectivity of the Basal

Ganglia and Thalamus

The multilevel ICA method for parcellation has an addi-
tional advantage in evaluating functional network connec-
tivity among subcortical subdivisions and cortical
components by using weight matrix. In this study, we cal-
culated bivariate correlation coefficients for evaluating
functional network connectivity instead of partial correla-
tion coefficients because it is not clear whether time series
of a IC, i.e., a column of the mixing matrix, is affected by
activities of other ICs.

We found a high-bilateral functional connectivity among
nuclei of the basal ganglia and thalamus (Fig. 5). Studies
of the cat [Fisher et al., 1984; Nieoullon et al., 1978]
revealed inter-hemispheric cortico-caudate neural connec-
tions that may explain functional coupling between right
and left basal ganglia. In addition to bilateral connectivity,
we found the thalamo-cortical connectivity between the
medial-dorsal nuclei (IC8) of the thalamus and dorsolateral
prefrontal cortex (DLPFC), and thalamo-striatal functional
connectivity among the thalamus (IC8), the globus pallidus
(IC26/35), and the caudate (IC4/21/48). The thalamo-
striatal and thalamo-cortical functional connectivity can be
explained by a parallel loop model of Alexander et al.
[1986], composed of five segregated cortico-striatal connec-
tions, or alternatively of Lawrence et al. [1998], comprised
of four functional loops. Our network connectivity results
suggested that the medial-dorsal nucleus (IC8) of the thal-
amus was functionally connected with the right pallidum
(IC26) mediating the right caudate nucleus (IC48) and the
bilateral DLPFC (Fig. 5). This result is grossly consistent
with the parallel loop model, wherein the DLPFC and pos-
terior cingulate cortex constitute a cognitive functional cir-
cuit with the head of caudate, the substantia nigra and
globus pallidus, and the ventral-anterior and medial-dor-
sal nucleus of the thalamus. A meta-analysis of 126 func-
tional neuroimaging studies found that the right caudate
nucleus coactivates with the bilateral medial-dorsal nuclei
of the thalamus and the right globus pallidus [Postuma
and Dagher, 2006]. Using a very large dataset (¼ 1,000
subjects), a recent study also showed cortico-striatal con-
nectivity [Buckner et al., 2010]. As they showed thalamic
connections from the pulvinar to the visual cortex, and
from the anterior and medial nuclei to the fronto-parietal
networks [Buckner et al., 2010], we found consistent con-
nectivity from the pulvinar nuclei of the thalamus (IC30)
to the occipital lobe and from the medial-dorsal nuclei of
the thalamus to a number of frontal regions including
DLFPC (see Fig. 5). Thus, we confirmed the existence of
the cortico-striato-thalamo-cortical circuit, which is func-
tionally connected among the segregated subdivisions and
cortical regions.

The putamen is a major motor-related area in the stria-
tum that is associated with cortical motor areas such as
the primary motor cortex and supplementary motor area
[Di Martino et al., 2008]. Regarding functional connectivity
of the putamen, this study produced two interesting find-
ings. First, we did not find any correlations between activ-
ities of the putamen and the motor-related cortical areas.
Second, the right caudal nucleus (IC32) of the putamen
was functionally interconnected with the cerebellum,
which is consistent with previous findings showing ana-
tomical connectivity between them via the thalamus
[Bostan et al., 2010; Hoshi et al., 2005]. The first finding,
i.e., the absence of the functional connectivity for well-
known neural circuits, may be another example of the
inconsistency between anatomical and functional connec-
tivity as discussed in the reviews of Buckner et al. [2008],
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Honey et al. [2010] and Van Dijk et al. [2010]. For example,
the medial-dorsal nucleus of the thalamus shows func-
tional connectivity to the motor and premotor cortex in
the resting-state fMRI, but is anatomically connected to the
prefrontal cortex as shown by DTI tractography [Zhang
et al., 2010]. This discrepancy may arise from technical
limitations, which include the low spatial resolution and
errors in the fiber tractography. Functional connectivity
also exists between the right and left primary visual cortex
[Vincent et al., 2007], which do not have direct anatomic
connectivity, and similarly, in cerebro-cerebellar circuits
[Krienen and Buckner, 2009]. Functional connectivity with-
out apparent anatomical basis might also be explained by
polysynaptic connections or common feed-forward
projections via the thalamus [Van Dijk et al., 2010]. Con-
versely, the absence of functional connectivity between the
putamen and the motor cortex in this study does not
imply a lack of anatomical connectivity between these
regions. Functional connectivity can be modulated in spite
of stable anatomical connectivity [Buckner et al., 2009;
Fransson, 2006]; e.g., task performance can induce changes
in functional connectivity strength [Albert et al., 2009; Has-
son et al., 2009; Lewis et al., 2009; Waites et al., 2005].
Thus, the absence of significant functional connectivity
between the putamen and motor cortical areas may stem
from reduced connectivity strength during the resting
state. However, we cannot rule out the possibility that the
putamen receives many inputs from motor-associated
cortices such as the supplementary motor area, accurate
premotor area, primary motor cortex, and primary somato-
sensory cortex [Alexander et al., 1986] and ICA of BOLD
signals did not clearly identify neural synchronization
between these areas.

Finally, this study detected the negative thalamo-frontal
functional connectivity, which was unexpected. Because
negative correlations have been found as nonartifactural
relationships in brain [Di Martino et al., 2008; Kelly et al.,
2008], further studies are also required to clarify these
phenomena.

In summary, this method served not only to parcel sub-
divisions of the basal ganglia and thalamus, according to
the temporal profiles within subdivisions, but also to trace
functional network connectivity among subdivisions.

Multilevel ICA Versus a General ICA

ICA is a blind source separation method widely used in
fMRI analysis [McKeown et al., 1998] to identify brain net-
works such as the default mode network in the resting state
in fMRI time-series [Beckmann et al., 2005; De Luca et al.,
2006]. ICA decomposes mixtures of time-series signals from
unknown sources into maximally independent components.
Despite its wide acceptance in fMRI analysis, ICA is limited
in that it cannot identify the number of intrinsic source sig-
nals. Furthermore, because ICA optimizes the mixing matrix
toward the criterion of maximal independence among a set

of source signals, the optimal ICA solutions for the whole
brain may not be optimal to extract detailed information
from sources within smaller restricted spaces as in the basal
ganglia and thalamus. In this study, the conventional ICA
(i.e., first-level ICA) found only three ICs, corresponding
grossly to the basal ganglia and thalamus. This is consistent
with previous findings that relatively low order (� 50) ICA
can extract components that are large and fused [Jafri et al.,
2008; Smith et al., 2009]. A recent study showed that ICA
with a model order of about 70 can extract the subcortical
components in sufficient detail without over-fitting the data
[Abou-Elseoud et al., 2010]. Indeed, Ystad et al. [2010]
applied a model order of 72 to extract 49 functional compo-
nents and identified some components corresponding to ba-
sal ganglia and thalamus. In contrast to this study, that study
grossly identified only five sub-regions: the main thalamus,
medial-dorsal nucleus of the thalamus, superior and inferior
putamen, and head of the caudate. Increasing the model
order to detect more detailed subdivisions within the basal
ganglia and the thalamus may not be a solution, because it
may result in over-fitting problems with other components.
Therefore, we proposed a multilevel ICA, which allows more
freedom for specific brain regions without changing other
functional components. By applying the second-level ICA to
sub-volume space, we eventually derived 31 spatial compo-
nents in the basal ganglia and thalamus.

Reproducibility and Individual Variability

For individual subjects, our method to parcel functional
nuclei of the basal ganglia and thalamus appeared to be
highly reproducible, especially in some regions of the thal-
amus and caudate. In particular, the medial-dorsal and
ventral-anterior (or ventral-lateral) nuclei of the thalamus
were found in all subjects, while the pulvinar (�76%) and
anterior nuclei (�57%) were less consistently identified
across subjects. Also, the head and body of the caudate
were found in over 90% of the subjects, even though the
corresponding tail of the caudate nucleus was found less
consistently (�57%).

One plausible explanation for relatively low reproducibil-
ity in some specific subdivisions may be the high between-
subjects variation in the extent of nuclei within basal gan-
glia. Some small nuclei with large variation in size and posi-
tion across individuals could be difficult to extract from the
group-specific parcellation data, which are based on the
assumption that individual subregions do not vary in size
or position between subjects [Aron et al., 2007].

The dependency of reproducibility on anatomical proper-
ties of each subdivision was found in an anatomical atlas
map study [Park et al., 2004], which showed that the subre-
gions located medially, with their simpler structure and big-
ger size, will have higher probability of anatomical overlap
across subjects. In this context, the low reproducibility of
the tail of the caudate (IC11) may be attributable to its thin
and narrow shape near the large ventricular regions.
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In line with our results, an anatomical parcellation study
of individual variability based on probabilistic tractogra-
phy found a reproducibility rate of 62–100% for subcortical
regions, including the basal ganglia and thalamus [Dra-
ganski et al., 2008]. Therefore, the anatomy of subdivisions
in the basal ganglia and thalamus may not be identical
across individuals, even though we applied spatial nor-
malization to the individual data set [Traynor et al., 2010].

When we generated statistical probabilistic atlas maps
for each subdivision by counting overlap frequencies of
individual subdivisions at each voxel across subjects using
individual parcellation maps in Figure 6 (see Supporting
Information Fig. S3), some ICs (IC24, IC32, IC35, and
more) appeared to be widely distributed, and a certain
subdivision (IC36) showed very low spatial overlap across
subjects, although most probability atlas maps represented
similar patterns with group ICA maps. These differences
of the probability map distribution may possibly be due to
the differences in the inter-individual variations of the
functional anatomy or imperfect parcellation due to lim-
ited number of data sets and noise in individual space. In
contrast to the parcellation in the individual space that is
less stable due to noise and small data size, group ICA is
considered to be more stable because it parcellates subdi-
visions using the data that averages these variabilities.

Methodological Issues and Limitations

There are some methodological issues to be considered.
In determining the subvolume area for the second-level
ICA, we used a subcortical atlas (AAL map) as a comple-
mentary to subcortical ICs found in the first-level ICA,
which showed a limitation in completely covering subcort-
ical regions. Indeed, we could apply second-level ICA to 3
subcortical IC maps without using AAL map. However,
the first-level ICA of the whole brain is imperfect in the
identification of the subcortical regions for the second-level
analysis due to several potential factors as discussed previ-
ously. It could also be possible to apply a single ICA
directly to the basal ganglia and thalamus defined by the
AAL map. In this case, we could not associate the subdivi-
sion of the basal ganglia and thalamus with cortical com-
ponents found in the first-level analysis without a priori
cortical target mask. Therefore, we decided to combine
both anatomically and functionally defined subcortical
regions to extend the initial mask as much as possible con-
sidering a ‘‘potential discrepancy" between functional and
structure ROIs.

Regardless of methods to define subcortical mask,
applying ICA to the restricted area provided better separa-
tion of subdivisions than applying ICA to the whole brain,
which is the strong feature of the current method. The cur-
rent multilevel ICA, separately applied to cortical and sub-
cortical regions, enables us to associate the subcortical
components of the second-level ICA with cortical compo-
nents found in the first-level analysis.

The effect of Gaussian smoothing kernel size on ICA is
not fully understood. Ideally, as a linear filtering, Gaussian
smoothing can spread out functional components spatially
while leaving mixing matrix without major changes. In
other words, for measured images X, estimated source S
and Gaussian kernel K, it can be represented as X ¼ AS,
KX ¼ KAS ¼ AKS ¼ ASk, where Sk is smoothed source
images. If so, the relative contribution of each IC to a voxel
will remain unchanged and the resulting parcellation map
will not be significantly altered. In practice, however, the
infomax optimization algorithm may be affected by the
noise and probability distribution of training data sets.
Generally speaking, when a larger smoothing kernel is
applied, the signals of neighboring voxels tend to be de-
pendent on each other and results in degradation of spa-
tial resolution. On the other hand, with a smaller
smoothing kernel, the noise would not be suppressed suf-
ficiently. For group analysis, smoothing is also needed to
minimize effects of spatial normalization errors that could
result from misregistration between T1-weighted image
and fMRI data, imperfect registration algorithms, and high
inter-individual variability in the brain topology. Thus, the
optimal size of smoothing kernel is a trade-off between the
loss of spatial information and the suppression of noise and
spatial normalization errors. In this study, we applied rela-
tively large smoothing kernel (¼ 8 mm) to parcellate sub-
cortical subdivisions in consideration of noise suppression
and spatial normalization errors. We presented a parcella-
tion result with a lower-sized smoothing kernel (¼ 4 mm) in
Supporting Information Figure S2, but it is not clear which
smoothing kernel is the better choice. Further, evaluation
should be needed to test the effect of smoothing kernel on
the ICA and to determine the optimal kernel size.

A methodological limitation of our technique inherits
the limitation of ICA. Although ICA can maximally esti-
mate ICs equal to sample size in principle, some of esti-
mated ICs can be just random effects due to noise,
violations of model, or algorithmic problems such as local
maxima [Hyvarinen, 2011].

For all resulting ICs, we cannot clearly decide which ICs
are noise and which are desirable ICs. To date, selecting
ICs has been also decided by a priori information of the
researcher [Calhoun et al., 2009]. In the first-level ICA, we
visually identified the artifactual IC maps that appeared to
be associated with head motion, physiological noise, regis-
tration error or CSF fluctuations. We excluded these arti-
facts in the further analysis. Some IC maps containing
white matter regions were not excluded since they
extended into the cortical regions. In the second-level anal-
ysis, we confined IC maps within the basal and thalamus
regions and excluded nonbasal ganglia and nonthalamic
components in the parcellation process.

Some functional components found in the second-level
ICA were not locally segregated, but rather distributed
over two or more anatomical regions. For example, IC23
in Figure 3 overlapped both with the thalamic ventro-lat-
eral nuclei and the caudal part of the putamen. This is
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consistent with previous functional imaging studies that
the ventro-lateral thalamus co-activates with the left puta-
men [e.g., Postuma and Dagher, 2006]. This distributed
but co-activated clusters in a component in the ICA of
rs-fMRI indicates the mismatch between the functional
segregation and anatomical segregation, which is a well-
known issue nowadays.

Of note, some small subdivisions of basal ganglia (e.g.,
tail of caudate and dorso-lateral putamen) were indistinct,
possibly because we used a relatively large voxel, which
was used to achieve higher SNR and shorter TR, to
analyze the resting-state fMRI dataset. Further study using
a smaller voxel with high SNR, in combination with trac-
tography of DTI, may provide more exact information on
the subcortical structure.

In this study, we did not cover the basal ganglia areas
that are relatively difficult to localize by anatomical atlas;
these included the substantia nigra, subthalamic nucleus,
and nucleus accumbens. It will of course be worthwhile to
investigate those subcortical areas.

CONCLUSIONS

Multilevel ICA of resting-state fMRI revealed in detail
the component subdivisions of the basal ganglia and thala-
mus. The extracted subdivisions showed bilateral func-
tional connectivity between hemispheres, and functional
connectivity between subregions of the basal ganglia and
thalamus. In addition, functional regions of the cerebral
cortex were highly correlated with the extracted subdivi-
sions. These findings reflected the cortico-striato-thalamo-
cortical circuits in the brain. This study also showed the
usefulness of multilevel ICA in brain network research.
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