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Abstract: We propose a novel approach for evaluating the performance of activation detection in real (ex-
perimental) datasets using a new mutual information (MI)-based metric and compare its sensitivity to
several existing performance metrics in both simulated and real datasets. The proposed approach is based
on measuring the approximate MI between the fMRI time-series of a validation dataset and a calculated
activation map (thresholded label map or continuous map) from an independent training dataset. The MI
metric is used to measure the amount of information preserved during the extraction of an activation map
from experimentally related fMRI time-series. The processing method that preserves maximal informa-
tion between the maps and related time-series is proposed to be superior. The results on simulation data-
sets for multiple analysis models are consistent with the results of ROC curves, but are shown to have
lower information content than for real datasets, limiting their generalizability. In real datasets for group
analyses using the general linear model (GLM; FSL4 and SPM5), we show that MI values are (1) larger for
groups of 15 versus 10 subjects and (2) more sensitive measures than reproducibility (for continuous
maps) or Jaccard overlap metrics (for thresholded maps). We also show that (1) for an increasing fraction
of nominally active voxels, both MI and false discovery rate (FDR) increase, and (2) at a fixed FDR, GLM
using FSL4 tends to extract more voxels and more information than SPM5 using the default processing
techniques in each package. Hum Brain Mapp 32:699–715, 2011. VC 2010Wiley-Liss, Inc.

Keywords: functional magnetic resonance images (fMRI); mutual information; statistical parametric
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INTRODUCTION

In functional magnetic resonance imaging (fMRI), the
images undergo statistical analysis to localize sources of
activation within the brain. Many analysis techniques are
available to generate a statistical parametric map (SPM),
which shows the significance (existence) of task-dependent
blood-oxygen-level-dependent (BOLD) changes in each
voxel of the brain. Different methods generate different
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maps requiring that their performance be measured to
choose the optimal processing strategy.

A standard tool for evaluating the performance of acti-
vation detection methods is the receiver-operating charac-
teristic (ROC) curve, which can be estimated using a
simulated fMRI dataset where truly active voxels are
known. However, simulated datasets may not reflect all
aspects of real datasets and therefore produce analysis
results that are biased. Hence, performance measurement
using real-world datasets may be preferable to the stand-
ard ROC.

Several such methods estimate a reliability metric by
measuring the agreement between SPMs from independ-
ent repetitions of an fMRI experiment. Strother et al.
[1997] and Tegeler et al. [1999] propose a single summary
metric of whole-brain pattern reproducibility for pairs of
SPMs from independent datasets. Machielsen et al. [2000]
measured the reliability of a visual encoding task based on
the ratio of overlapping detected areas. McGonigle et al.
[2000] compared the detected areas calculated from a sin-
gle session, fixed-effect analysis and mixed-effect analysis
and showed that for single session analysis of repeated
sessions erroneous conclusions are possible. Genovese
et al. [1997] and Maitra et al. [2002] estimate a pseudo-
ROC curve and a reliability map from SPMs of repeated
trials of an fMRI experiment, based on a multinomial
model of individual voxels (see also Gullapalli et al.
[2005]). Chen and Small [2007] estimated pseudo-ROC
curves of multiple linear regression analysis applied to the
datasets of stroke patients and healthy participants. The
pseudocurve approach is implemented by obtaining a test
statistic and thresholding it at different levels. Maitra
[2009] reformulated the problem to eliminate the thresh-
olding requirement.

Reliability of fMRI results is also measured using the
intraclass correlation coefficient (ICC) of a number of
SPMs [Raemaekers et al., 2007; Shrout and Fleiss, 1979].
Friedman et al. [2008] estimated between-site reliability of
an fMRI experiment using ICC. Sprecht et al. [2003] used a
voxelwise ICC, correlation coefficient of contrast t-values
for pairs of activation maps, and the ratio of overlapping
detected areas to assess the reliability of a functional imag-
ing study. Wei et al. [2004] calculated the within-subject
ICC and between-subject ICC for some regions of interest
and compared them.

In addition to reliability measures for continuous SPMs,
there are measures for voxel-label maps produced by
thresholding an SPM and labeling voxels as active or non-
active. Le and Hu [1997] performed a reliability assess-
ment of binary maps using the ‘‘Kappa’’ statistic [Cohen,
1960]. Other measures of common agreement are the sim-
ple matching coefficient, the Jaccard coefficient [JC; Jac-
card, 1901], and the Dice coefficient [DC; Dice, 1945]. DC
has been commonly used for evaluation in functional neu-
roimaging [Raemaekers et al., 2007; Rombouts et al., 1998]
and has been shown to be asymptotically related to the
kappa statistic [Frackowiak et al., 2004; Zijdenbos et al.,

2002]. DC tends to overstate the degree of overlap, which
is given directly by JC as the ratio of intersection/union of
thresholded voxels, with DC ¼ 2JC/(JC þ 1) [Shattuck
et al., 2001]. A generalization of the JC is proposed by
Maitra [2010] to summarize the reliability of multiple fMRI
studies. For a comprehensive review of reliability metrics
of binary maps, see Colwell and Coddington [1994] and
Ruddell et al. [2007]. For measurement of reliability in
general medical informatics studies, see Hripcsak and
Heitjanb [2002].

All the abovementioned evaluation techniques measure
common agreement between the SPMs or label maps calcu-
lated from independent datasets of the same task. The proc-
essing method that generates more similar SPMs will
generate a larger area under its pseudo-ROC curve or a
larger reproducibility/reliability metric using the test–retest
approach. These methods are unable to detect a consistent,
model-dependent bias because they assume that fMRI analy-
sis techniques are making only random, independent errors
across independent datasets. For example, a method that
always declares some voxels as active independent of the
input dataset will have maximum reliability but very low ac-
curacy. While an extreme example, all models will have
some, possibly spatially dependent bias that will remain
undetected in finite samples using parameter estimation.

Other evaluation approaches provide the relative ranks
of the analysis techniques under evaluation. Williams’
index [Williams, 1976] uses a user-defined similarity mea-
sure (e.g., JC, DC, kappa, ICC, etc.) to compare label or
continuous maps. The analysis techniques are ranked by
their degrees of similarity to other methods. The method
more similar to the other methods gets the best rank. Mul-
tidimensional scaling [MDS; Borg and Groenen, 2005;
Bouix et al., 2007; Cox and Cox, 1994] is a visualization
technique that shows the relative distance of several analy-
sis techniques as well as their reliabilities on a 2D graph.
The distance is measured by any of the similarity meas-
ures mentioned above. STAPLE is a technique developed
by Warfield et al. [2004] to measure the relative quality of
multilabel maps from different analysis techniques with a
reference standard through an expectation maximization
framework. The methods are ranked by their similarity to
the estimated reference. To calculate the reference, STA-
PLE assumes different analysis techniques make inde-
pendent errors, which is not necessarily true. Generally, if
a method outperforms others and uniquely detects a cor-
rect brain region, this method might not be rated the best.
Therefore, an evaluation approach that provides an indi-
vidual metric for each method might be more useful (see
Bouix et al. [2007] for a comparison of Williams’ index,
STAPLE, and MDS).

Another category of evaluation methods measure the
prediction or generalization error of both labeled and unla-
beled datasets using a model [Hansen et al., 1999; LaConte
et al., 2005; Mørch et al., 1997; Strother et al., 2002]. These
evaluation methods divide a dataset into training and
test sets and fit a model to the training set. Some
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hyperparameters of the fitted training model are then tuned
to best predict the known scan labels or the probability den-
sity of the test dataset. The label prediction error depends
on how the training set model parameters generalize to the
test set. These measures may or may not reflect the quality
of preprocessing approaches that remove artifacts and noise
from the datasets [Chen et al., 2006; LaConte et al., 2003;
Strother et al., 2004; Zhang et al., 2008].

The NPAIRS method [Kjems et al., 2002; Strother et al.,
2002; Zhang et al., 2008] uses both reproducibility and predic-
tion metrics for quantitative evaluation of neuroimage analy-
sis techniques by simultaneously measuring test–retest
spatial pattern reproducibility and temporal prediction. They
argue that the prediction versus reproducibility curve can
capture the bias-variance trade off of a model. This approach
has been extended, to include a second-level canonical vari-
ates analysis (CVA) for comparing single-subject processing
pipelines [LaConte et al., 2003; Zhang et al., 2009], and to
allow comparison of non-linear BOLD hemodynamic models
estimated in a Bayesian framework using Markov Chain
Monte Carlo techniques with a Kullback-Leibler measure to
estimate reproducibility [Jacobsen et al., 2008].

We propose a new performance evaluation approach for
analysis techniques that analytically links the spatial SPM
and experimentally related temporal structures across in-
dependent datasets (i.e, crossvalidation training and test
sets) with a single mutual information (MI) metric. MI
generalizes the concept of a relationship between two ran-
dom variables from only linear Gaussian relationships cap-
tured by a correlation coefficient to arbitrary nonlinear
associations between Gaussian and non-Gaussian varia-
bles. In the Appendix we show the relationship between
Shannon entropy, which measures the amount of uncer-
tainty or lack of information of a variable [see Eq. (A1)],
and MI. Using this relationship involving the uncertainty
in random variables x and y, MI may be described as the
amount of uncertainty in x that is removed, or the infor-
mation gained about x, by knowing y, or vice-versa (see
the first paragraph under Methods section to know about
the bold formatting for variables mentioned in this sen-
tence). Our approach evaluates fMRI pipelines by assum-
ing that the data analysis goal is to produce a label map,
or a continuous SPM, with a quantifiable relationship to
the clustering/ordering of voxel-based time-series. This
relationship is quite likely to involve a nonlinear depend-
ence between non-Gaussian variables requiring the use of
MI. This new MI technique may be viewed as creating a
formal analytic link between the prediction (experimental
temporal domain) and reproducibility (spatial agreement)
metrics of the NPAIRS approach.

METHODS

In the following text and equations, bold variables (e.g.,
y, s, c) are random vectors (or variables) and normal varia-
bles with subscript i (e.g., yi, si, ci) are the time-series or
the calculated statistic of voxel i.

Theory

Assume a fMRI dataset consists of p scans of N intrace-
rebral voxels with the notation yi for a p-dimensional vec-
tor of the time-series of voxel i (1 � i � N) throughout the
article. A fMRI processing approach (f) compresses the
time-series of voxel i (yi) into a statistic [si ¼ f(yi)], which
can be thresholded using a function (g) to generate a bi-
nary label [ci ¼ g(si)] showing whether the voxel i is
detected as active (ci ¼ 1) or nonactive (ci ¼ 0). The binary
map (ci) typically depends on the threshold value we
choose in function g. This threshold value depends on the
distribution and dynamic range of the statistic (si), which
might be different for different analysis techniques. There-
fore, instead of a threshold value, we use the relative num-
ber of voxels declared active c ¼ PN

i¼1 ci=N to show the
dependence of the binary map on the chosen threshold.
We assume that the time-series of each voxel is an obser-
vation of a random vector y, the estimated statistics of
each voxel is an observation of a random variable s, and
the estimated voxels’ labels are observations of a random
variable c with P{c ¼ 1} ¼ c where distributions are
unknown and may vary across voxels. If at least two inde-
pendent repetitions of an experiment (e.g., repeat runs
within a scanning session, repeat sessions for a subject, or
multiple subjects) that are spatially aligned are available
(this is extended to more than two datasets later in the ar-
ticle), we call one of them the training dataset (yt) and the
other the validation dataset (yv). Therefore, using informa-
tion inequality, one can write [Cover and Thomas, 1991]

Iðyt;yvÞ � Iðst;yvÞ � Iðct; yvÞ (1)

where I(.,.) is any measure of information between two
random variables or vectors. We calculate the MI between
a continuous random variable st and a random vector yv

based on the Kullback–Leibler divergence between the
joint probability density function P(st, yv) and the product
of their marginal probability density functions P(st)P(yv):

Iðst; yvÞ ¼
Z
st

Z
yv

Pðst; yvÞ log Pðst; yvÞ
PðstÞPðyvÞdy

vdst (2)

The MI between a binary random variable ct and random
vector yv may also be calculated based on the Kullback–Lei-
bler divergence between the joint probability density func-
tion P(ct, yv) and the product of their marginal probability
density functions P(ct)P(yv), which is defined as follows:

Iðct;yvÞ ¼
X1
ct¼0

Z
yv

Pðct; yvÞ log Pðct; yvÞ
PðctÞPðyvÞdy

v (3)

If the goal is to evaluate a processing method that pro-
vides a continuous map, we can use MICONTINUOUS ¼ I(st,
yv) as a measure of performance. Below we describe how
we do this by measuring how much generalizable
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information of the similarity ordering of training time-se-
ries data yt is preserved in the interval ordering of voxels
in the SPM st. In the case that the goal is to evaluate analy-
sis techniques that provide a label for each voxel, we can
use MIBINARY ¼ I(ct, yv). We do this by measuring how
well the labels (ct) reflect separate clusters in the inde-
pendent temporal data (yv). For most analysis techniques,
f generates a continuous SPM that may be transformed to
a label map by thresholding the SPM. MIBINARY measures
the match between the thresholded voxel clusters from the
SPM and the related separating boundary between tempo-
ral clusters in the validation set. Furthermore, we may
plot I(ct, yv) = versus c to choose an optimal threshold set-
ting, which is a normalized variable that does not depend
on the dynamic range of the SPM.

Estimating the MI Metric

In fMRI experiments, more than 100 scans (i.e., p time
samples > 100) in each run are often acquired. Computing
MI in such a high-dimensional space is infeasible because
it is difficult to compute the integral in a moderate-dimen-
sional continuous space based on limited numbers of sam-
ples [(xi,yi), i ¼ 1, : : : ,N]. Here xi can be a binary label (ci)
or a statistic (si) and yi is the time-series of the validation
dataset. Therefore, a dimension reduction algorithm is
required before even approximate estimation of the MI.
Our goal here is not accurate estimation of the true MI as
it is unlikely that this is possible given such high-dimen-
sional temporal spaces. However, we show that a sensitive
approximation to MI changes may be obtained using the
techniques outlined below.

There are many approaches in the literature for the esti-
mation of MI that are applicable to our problem [Blinnikov
and Moessner, 1998; Cellucci et al., 2005; Darbellay and
Vajda, 1999; Daub et al., 2004; Khan et al., 2007; Moon
et al., 1995; Paninski, 2003]. In fMRI datasets, usually a
small number of voxels are active, located in the tails of
the probability density functions (pdf) of x, y, and (x,y).
Therefore, a MI estimation method must reliably estimate
the tails in the pdf(s) where only a few observations (active
voxels) are available. Kraskov et al. [2004] have proposed
an algorithm for MI estimation based on k-nearest neigh-
bor pdf estimation that is known to perform reliably in the
pdf locations where only a few observations (i.e., active
voxels) are available. By using some assumptions about
fMRI time-series, we have modified the Kraskov et al.
[2004] algorithm to combine dimension reduction and MI
estimation into one step. We briefly discuss the proposed
method below with further details in the Appendix.

Assume X and Y are two subspaces, and the MI
between their two random vectors (or variables) x and y is
desired using distance measures defined as dx(xi,xj) and
dy(yi,yj). Here, xi and xj are two observations of x in X and
yi and yj are two observations of y in Y. The space Z is

defined as Z ¼ (X, Y) and the distance measure in Z is
defined as

dzðzi; zjÞ ¼ maxðdxðxi; xjÞ; dyðyi; yjÞÞ (4)

Here, theoretically, any distance metrics can be used for
dx and dy, but only a few may be useful for approximate
estimation of MI.

For every voxel i, rank dz(zi, zj) from smallest to largest.
Then denote ez(i) as the distance from zi to its kth neighbor
where the kth neighbor is defined as the voxel with the
kth smallest dz(zi, zj) value in the list. In the k-nearest-
neighbor-based estimation algorithm for MI, we count the
number nx(i) of points xj whose distances from xi are
strictly less than ez(i), and similarly for y instead of x as
illustrated in Figure 1. The estimate for MI is then

Iðx;yÞ ¼wðkÞ� 1

N

XN
i¼1

ðwðnxðiÞþ 1ÞþwðnyðiÞþ 1ÞÞþwðNÞ (5)

where N is the number of observations (time-series)
indexed by i and w is the digamma function, w(a) = C(a)21

dC(a)/da. It satisfies the recursion w(a 1 1) = w(a) 1 1/a
and w(1) = 2C, where C � 0.5772156 is the Euler–Mascher-
oni constant [Davis, 1972]. The performance of Eq. (5) for
estimating MI was systematically studied by Kraskov et al.
[2004]. This algorithm estimates the Shannon entropy of x,
y, and (x, y) and then estimates MI by calculating the sum
of the estimated Shannon entropy of x and y followed by
subtracting the estimated Shannon entropy of (x, y) (see
Appendix for a brief review of the algorithm with related
pseudocode).

As shown in Eqs. (4) and (5), the MI estimator only
depends on the relative distance of the observations in X
and Y space. As the X space (xi is the estimated statistic or
label for voxel i) is a one-dimensional space, we use dx(xi,
xj) ¼ |xi � xj| (|x| stands for the absolute value of x).

With careful choice of the distance metric in the Y space,
we may combine the dimension reduction and MI estima-
tion in one step. In the original algorithm proposed by
Kraskov et al. [2004], the max norm is used as a distance
function in time-series space (Y) ðdyðyi; yjÞ ¼ max
yiðtÞ � yjðtÞ
�� ��� �

, where t is the index for the dimensions of
(Y)t. Using the max norm in time-series space, the search
space for the k nearest-neighbor of the voxel i is the p-
dimensional time-series and the one-dimensional SPM
space. Therefore, the estimated distance of voxel i from its
k-nearest neighbors in the joint space (ez(i)) will not be ro-
bust and MI estimation will have a very large variance in
such a high-dimensional space (see Results). Instead, we
assume that the connection between the time-series of vox-
els can be based on the idea from the literature for time-
series clustering that active voxels will tend to have larger
correlations with other active voxels compared to nonac-
tive voxels. Therefore, a correlation coefficient-based dis-
tance function is used to define the similarity between
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time-series of different voxels. A correlation-based metric
can be used to form a hyperbolic distance measure
dyðyi; yjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qijÞ=ð1þ qijÞ

q
, where qij is the correlation

coefficient between two time-series (yi, yj). This distance
measure has been shown to be robust to noise in fMRI
applications [Golay et al., 1998; Gomez-Laberge et al.,
2008]. The hyperbolic distance measure reduces the
dimensions of the kth nearest neighbor search space to
two dimensions while ignoring possible nonlinear connec-
tions between the voxels. To calculate qij, we used those
segments of the time-series where the subject was per-
forming the task of interest together with its adjacent fixa-
tion segments. This removed the effects of other tasks.

Figure 1 shows the MI estimation algorithm for k ¼ 1 in
the 2D joint space of validation time-series distance and
training SPM distance. The k-nearest neighbor of voxel i is
evaluated in the 2D space instead of a p þ 1-dimension
space. The MI increases when nx(i) and ny(i) are minimum
[see Eq. (5)]. If voxels have the same neighbors in the vali-
dation time-series space and training SPM space, MI
increases, and if they have different neighbors in the vali-
dation time-series and training SPM spaces, the MI will
decrease.

If several validation (sessions) fMRI datasets (1, : : : , Q)
are available (i.e., yv1, : : : ,yvQ), we first calculate the correla-
tion coefficient between time-series in a single dataset

ðqðqÞij ¼ ðyvqi ; y
vq
j Þ; 1 � q � QÞ and then calculate the average

correlation coefficient over the Q validation datasets

ð�qij ¼ 1
Q

PQ
q¼1

qðqÞij Þ. Therefore, the hyperbolic distance measure

becomes dyðyi; yjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �qijÞ=ð1þ �qijÞ

q
. This averaging

helps decrease the variance of MI estimation and conse-
quently increases the sensitivity of the MI metric.

Computing and Testing MI Versus Other

Performance Metrics

Assume that M independent datasets of an fMRI experi-
ment are available, denoted by random vectors
y(1), : : : ,y(M). The datasets are preprocessed including
motion correction and registration to a common atlas. The
goal is to evaluate a processing method, f or g, that maps
T training datasets (1 � T < M) to a single second-level
SPM (st ¼ f(yt1, : : : ,ytT)) or a label map (ct ¼ g(st)), using Q
¼ M � T validation datasets. We can calculate the evalua-
tion measure M!/T!Q! times using a crossvalidation frame-
work. Each time, we calculate a map from T of the
datasets using the processing method under evaluation
and compute its MI with the remaining Q validation
datasets.

Figure 1.

Assessing the neighborhood size and the estimation of nx(i) and

ny(i) in the k-nearest neighbor-based MI algorithm for k ¼ 1.

Left panel: The distance of the voxel i from other voxels in both

validation time-series space (dy(yi,yj)) and training SPM space

(dx(xi,xj)) is calculated. The distance in the joint space (dz) is

defined as the maximum of the distance in the time-series space

(dy) and the distance in the SPM statistic space (dx). For voxel i

rank dz from smallest to largest. Then denote ez(i) as the dis-

tance from zi to its kth neighbor where the kth neighbor is

defined as the voxel with the kth smallest dz(zi,zj) value in the

list. The voxel l is the first nearest voxel to the voxel i, and for

k ¼ 1, its distance from the voxel i defines the neighborhood

size; therefore, ez(i) ¼ 1.7. Right panel: nx(i) is defined as the

number of voxels whose distances from voxel i in statistic space

(X) is equal to or less than ez(i), which is nx(i) ¼ 3 in this exam-

ple. ny(i) is the number of voxels whose distances from voxel

i in time-series space (Y) is equal to or less thanez(i), which is

ny(i) ¼ 5 in this example. For each voxel (i ¼ 1, : : : , N), its kth

nearest voxel is found, ez(i)is estimated, and using the calculated

values of nx(i) and ny(i) the MI between the validation time-series

and SPM is estimated (see main text and Appendix for details).
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The values of Q and T depend on the problem. For eval-
uation of single subject analysis, T ¼ 1, and for evaluation
of group analysis methods, the number of training datasets
is usually set large enough to produce a robust estimate of
the activation map. Using a large number of validation
datasets (Q) decreases the MI estimation variance but
increases the computational cost. We used a leave-one out
crossvalidation approach, where for each of M splits we
chose a new one of the M subjects for validation and used
the other T ¼ (M � 1) subjects for training. The diagram
of the computational steps for evaluation of the MI metric
for two datasets is shown in Figure 2 with pseudo-code
outlining the calculation steps in the Appendix.

To evaluate the performance of the proposed metric, we
compare it with two common measures, asymmetric-split
reproducibility (r) and the JC. The asymmetric-split repro-
ducibility is defined as the correlation coefficient between
the SPMs calculated using T training datasets and the av-
erage of the first-level SPMs of Q � T validation datasets.
This measure is similar to the reproducibility metric pro-
posed by Strother et al. [1997, 2002] and ICCWITHIN used
by Raemaekers et al. [2007] using split-half resampling
(i.e., T ¼ Q). Our proposed MI metric represents a more
general measure between spatial maps and time-series that
can be applied to a general crossvalidation data split, with
T � Q. How such asymmetric splits relate to split-half
measures (e.g., as used in NPAIRS) and other possible

crossvalidation splits is an important one that we are cur-
rently investigating.

We use JC to measure the reliability of binary maps cal-
culated by thresholding the two SPMs acquired from T
training datasets and from the average of the first-level
SPMs of Q validation datasets. The threshold is chosen
such that the relative number of detected active voxels to
the total number of intracerebral voxels is c. JC is the rela-
tive number of voxels declared active in both binary maps
to the number of voxels detected in at least one binary
map. Below, we compare the MI and JC metrics using the
same c.

Simulated fMRI Data

Thirty pairs of simulated fMRI datasets were con-
structed to evaluate the MI measure and compare its
results with those of ROC curves. For each pair, one is
used as the training and the other as the validation data-
set. The time-series of the simulated datasets have 128
time points and represent the intensities of a volume with
64 � 64 � 20 voxels versus time. Each time-series is conta-
minated with Gaussian noise with the first-order autore-
gressive [AR(1)] correlation structure, generated as white
Gaussian noise with r2 ¼ 10 filtered by an AR filter

1�a
1�az�1

� �
with a randomly chosen pole (a) between [0.1, 0.9].

Figure 2.

A block diagram of the computational steps for evaluation of

the MI performance metric. Available independent datasets of an

fMRI experiment (y(1), : : : ,y(M)) are preprocessed and then split

into two crossvalidation groups for training and validation. Using

the training datasets a SPM, st, or a label map, ct, is estimated.

The MI between this estimated map and the validation datasets’

time-series is then calculated as an evaluation metric for the

analysis technique applied to the training set. The fixed parame-

ters dy and dx are distance metrics, respectively, between the

validation datasets’ high-dimensional time-series and the lower

dimensional SPM/label map spaces, that allow the MI to be cal-

culated. They are used together with a value of k in a k-nearest-

neighbor-based estimate of the MI (see text).
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In addition, white Gaussian noise with a variance of 1 was
added to the time-series of each voxel.

The task follows a block design that includes eight
blocks, and each block consists of eight active states to
eight rest states and the activation level varies between 0.5
and 2 for a maximum possible signal-to-noise ratio of
about 0.6. The presumed hemodynamic response [Knuth
et al., 2001] is given by

hðt; s;rÞ ¼ e�t=
ffiffiffiffi
rs

p
et
s

� � ffiffiffiffiffiffi
s=r

p
t > 0

0 t < 0

(
(6)

where s [ [0.05,0.21] and r [ [3,7] are randomly chosen for
each active voxel [Hossein-Zadeh et al., 2003a]. The pre-
sumed hemodynamic response is convolved with the
block-design box-car function and then added to the time-
series to create the active voxels with TR = 3. The total
number of intracerebral voxels is �20,480 of which 1,400
voxels are active voxels, all with amplitudes (activation
levels) greater than 0.5.

Real fMRI Data

Data were from an experiment designed to examine cog-
nitive function across several domains [Grady et al., in
press]. The stimuli were band-pass-filtered visual white
noise patches with different center frequencies. During the
scans, there were blocks of five conditions: (1) fixation
(FIX); (2) simple reaction time to stimulus detection (RT);
(3) perceptual matching (PMT); (4) attentional cueing
(ATT); and (5) memory (delayed match-to-sample, DMS).
Four runs were acquired for each subject using a block
design with eight alternating task-fixation conditions (FIX)
per run (20 scans/task-period alternating with 10 scans/
fixation-period, TR ¼ 2 s). Each task occurred twice in
each run. We have used one, PMT, to demonstrate the ini-
tial utility of the MI metric and then used all four tasks to
compare general linear model (GLM) analysis methods. In
the RT task, a single stimulus appeared for 1,000 ms in
one of three locations at the bottom of the display (left,
central, or right), and participants pressed one of three
buttons to indicate the location where the stimulus
appeared. There were 12 trials in each RT block. In PMT, a
sample stimulus appeared centrally in the upper portion
of the screen along with three choice stimuli located in the
lower part of the screen (for 4,000 ms). The task was to
indicate which of the three choice stimuli matched the
sample. Six such trials occurred in each PMT block. The
ATT task consisted of a sample stimulus appearing for
1,500 ms at the center of the upper part of the screen. Af-
ter an ISI of 500 ms, an arrow pointing either to the right
or to the left was presented for 1,500 ms in the lower part
of the screen. After another 500-ms interval, two stimuli
appeared in the right and left locations for 3,000 ms. The
task was to attend only to the cued location and press one
of two buttons to indicate whether or not the cued target

stimulus matched the sample. There were four trials in
each ATT block. Finally, in the DMS task, a sample stimu-
lus was presented for 1,500 ms at the center of the upper
portion of the screen followed by a delay of 2,500 ms
(blank screen). Then, three choice stimuli were presented
for 3,000 ms in the lower portion of the screen and the
participants had to press one of three buttons to indicate
which of the three stimuli matched the previously seen
sample. There were four trials in each DMS block. In all
tasks, the intertrial interval was 2,000 ms. We report
results using the data from the 19 young subjects (21–30
years) that were studied.

Images were acquired with a Siemens Trio 3T magnet.
A T1-weighted anatomical volume using SPGR (TE ¼ 2.6
ms, TR ¼ 2,000 ms, FOV ¼ 256 mm, slice thickness ¼ 1
mm) was also acquired for coregistration with the func-
tional images. T2* functional images (TE ¼ 30 ms, TR ¼
2,000 ms, flip angle ¼ 70	, FOV ¼ 200 mm) were obtained
using EPI acquisition. Each functional sequence consisted
of 28 5-mm-thick axial slices, positioned to image the
whole brain.

Preprocessing

We created an unbiased, nonlinear average anatomical
image [Kovacevic et al., 2005], the Common Template.
Functional data was slice-time-corrected using AFNI (afni.
nimh.nih.gov/afni) and motion-corrected using AIR [bish-
opw.loni.ucla.edu/AIR5/; Woods et al., 1998]. For each
run, the mean functional volume after motion correction
was registered with each subject’s structural volume using
a rigid body transformation. Transform concatenations
were performed: from the initial volume to the reference
volume within each run, from the mean-run volume to the
structural volume, and from the structural into the Com-
mon Template space. These concatenated transforms were
applied to register the data using a direct nonlinear trans-
form from each initial fMRI volume into the Common
Template space with a voxel size of 4 mm3. Finally, spatial
smoothing was performed on the registered data using a
3-D spatial Gaussian filter with full width half maximum
(FWHM) ¼ 7 mm.

RESULTS

Simulation Data

To evaluate our proposed method and its consistency
with ROC curves, we used the thirty training simulation
datasets to compare different processing approaches. We
derived the average ROC curves over thirty simulated
training datasets for canonical correlation analysis [CCA;
Friman et al., 2001] with a 3 � 3 neighborhood, the GLM
with a white Gaussian noise model [Friston et al., 1995],
GLM with an autoregressive noise model [GLM-AR; Bull-
more et al., 2001], CVA [Neilsen et al., 1998; Strother et al.,
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1997], a time-invariant wavelet transform (TIWT) method
using Daubechies wavelet with four vanishing moments
[Hossein-Zadeh et al., 2003b]. The CVA used a singular
value decomposition (SVD) to reduce the simulated data
dimension by calculating the CVA on the first 10 SVD
components. Since we did not intend to compare opti-
mized versions of the abovementioned methods, we did
not tune their parameters for their best performance.

For each statistical method, the relative number of truly
detected voxels (probability of detection) and falsely
detected voxels (false alarms) are calculated after thresh-
olding their SPMs. The plot of estimated probability of
true-positive detections versus false-positive alarms for
different thresholds provides empirical ROC curves for
each analysis technique. The average ROC curves over
thirty training datasets for the five statistical analysis
methods are shown in Figure 3a. For this simulation, none
of the models perform particularly well with a maximum
detection rate of 0.4 achieved by the two multivariate tech-
niques for a false-alarm rate of 0.1. The partial areas under
the ROC curves (ROCPA) for false alarms between 0 and
0.1 were calculated for each of the five analysis techniques
on the thirty simulated training datasets.

We used a nonparametric Friedman test to explore
whether there are significant differences between the
ROCPA values across analysis techniques [Friedman test;
treatment ¼ single-subject analysis techniques, samples ¼

the partial area under the ROC curves; Conover, 1999].
The test shows that different methods result in signifi-
cantly different ROCPA (p < 0.001). As the null-hypothesis
of no analysis technique differences is rejected, we proceed
with the Nemenyi test [Demsar, 2006; Nemenyi, 1963] to
pairwise compare the methods to each other. The ROCPA

of two methods is significantly different if the correspond-
ing average ranks differ by at least a critical difference
[CD; Demsar, 2006; Nemenyi, 1963)]. The mean rank of
each analysis technique is shown in Figure 3b. Rank 1 cor-
responds to the largest ROCPA. The CD for a ¼ 0.05 is
shown to the right of rank 1, and all the analysis techni-
ques have significantly different performance with average
ranks greater than the CD apart.

For each of the five single-subject analysis techniques,
we calculated 30 values of MI from the 30 pairs of training
and validation simulated datasets. In Figure 4, the MI with
k ¼ 20 (see below) is estimated based on the MI method
for binary labeled data [i.e., g(f(yt))] as a function of a
range of SPM thresholds (c) and for the continuous MI
metric. In Figure 4a, the median of MIBINARY is plotted
versus c in the simulated datasets. The plots rank models
identically to the ROC curves for false alarms less than
�0.05 (see Fig. 3). Both multivariate methods, CCA and
CVA, have better MI values than the univariate techniques
for c < 0.3, and their MIBINARY curves peak near c ¼
0.075, close to the actual ratio of active voxels in the

Figure 3.

(a) The average ROC curves for different analysis methods

applied to the simulated datasets. The methods are CCA, CVA,

GLM-AR, GLM with a white Gaussian noise model, and TIWT.

The partial areas under ROC curves (0 < false alarm < 0.1) of

CCA, CVA, GLM-AR, GLM, and TIWT are 0.0525, 0.0386,

0.0325, 0.0318, and 0.0312, respectively. (b) Mean ranks of

CCA, CVA, GLM-AR, GLM, and TIWT measured by the partial

area under ROC curve for 0 < false alarm < 0.1 over 30 simu-

lated datasets. A CD diagram based on a nonparametric Fried-

man difference test by ranks is shown in the right panel. The

CD range (a ¼ 0.05) for significant rank differences allowing for

multiple comparisons is marked next to the best-performing

technique with rank ¼ 1, i.e., CCA.
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simulated datasets (1,400/20,480 ¼ 0.068). The MICONTINUOUS

values of each processing method are shown in Figure 4b
and are rank ordered identically to the ROC results (see Fig.
3), and the MIBINARY results in Figure 4a. This shows that MI
is consistent with ROC curves for both label maps and con-
tinuous maps for k ¼ 20.

Figure 5a shows the mean rank of each analysis tech-
nique acquired using MICONTINUOUS for k ¼ 1, 20, 100,
500. The null-hypothesis of no significant difference
between the techniques is rejected in each case (p < 0.001),
and so we proceeded with pairwise comparisons of the
five single-subject analysis techniques. Rank 1 corresponds
to the largest MI value, and the CD for a ¼ 0.05 is shown
as a black line above the Rank 1 result. For k ¼ 1, MICON-

TINUOUS cannot detect any significant difference between
CCA and CVA or between GLM-AR, GLM, and TIWT
(CD ¼ 1.36). Using k ¼ 20, MICONTINUOUS detects signifi-
cant differences between all five analysis techniques (CD
¼ 0.42). For k ¼ 1, 20, and 100, the average rankings of the
analysis techniques are consistent with the ROC curves,
but for k ¼ 100 MICONTINUOUS cannot differentiate between
GLM-AR and GLM (CD ¼ 0.78). For k ¼ 500, which
includes more than 1/3 of the total number of active vox-
els, the rankings are not consistent with the ROC curves,
and many pairwise comparisons are not significantly dif-
ferent. The minimum CD occurs for k ¼ 20, showing that
MICONTINUOUS has maximum sensitivity around k � 20 in
this simulated dataset.

These results in Figure 5a illustrate the bias-variance
trade-off in estimation of the MICONTINUOUS metric. If we
assume that the time-series of each active voxel is similar

to that of a small number of neighborhood voxels and
choose a small value for the neighborhood size (k), we will
have high variance in estimation of the metric but the bias
of estimation will be relatively low. This means that the
ranking of the methods will be consistent with the true
rankings on average, but the MI metric may be too noisy
to significantly differentiate between similar methods (see
Fig. 5a for k ¼ 1). For large neighborhood sizes, the var-
iance of the MI metric will be low but with a high bias in
ranking of the analysis techniques producing average
rankings that may not be consistent with the true perform-
ance represented by the ROC curves (see Fig. 5a for k ¼
500).

In Figure 5b, the mean rank of each analysis technique
acquired using MIBINARY (c ¼ 0.1) for k ¼ 20 is shown.
MIBINARY ranks techniques identically to the ROC results
(see Fig. 3) and detects that all five analysis techniques are
significantly different. As we get reasonable sensitivity for
k ¼ 20 in our simulation datasets, we have used the same
k for real fMRI data in this article. Ideally k should be opti-
mized in a validation resampling step and then MI tested
for that value of k using independent test data. However,
this is not currently computationally feasible in our labora-
tory with typical real fMRI datasets.

To show the difference between the modified MI estima-
tor and the original MI estimation proposed by Kraskov
et al. [2004], we use their MI estimation code (available at
http://www.klab.caltech.edu/�kraskov/MILCA/) with-
out any dimension reduction and apply it to the simulated
datasets (k ¼ 20). As above, we use a nonparametric Fried-
man test to test whether the MI metric from Kraskov can

Figure 4.

(a) The median of MIBINARY calculated for and plotted against

the fraction of positive SPM values, c, for different single-subject
analysis techniques (see Fig. 3) applied to the simulated datasets.

(b) MICONTINUOUS for different single-subject techniques (see

Fig. 3) applied to the simulated datasets. The rankings of the

analysis techniques acquired by MIBINARY and MICONTINUOUS and

shown above are consistent with their true rankings acquired by

ROC curves as shown in Figure 3 (for statistical tests of analysis

rankings, see Fig. 5).
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detect any significant difference between the five analysis
techniques. The omnibus test is not rejected (p ¼ 0.36)
indicating that MI estimation in such a high-dimensional
space with Kraskov’s max norm has a large variance.

Real fMRI Data

We used the software packages SPM5 [http://www.
fil.ion.ucl.ac.uk/spm/; Friston et al., 2007] and FSL4.0
[http://www.fmrib.ox.ac.uk/fsl/; Smith et al., 2004] to an-
alyze the datasets. The software packages SPM5 and
FSL4.0 are GLM-based methods that use different methods
for estimation of the noise covariance matrix and calcula-
tion of the effective degrees of freedom used for statistical
inference in the first-level analysis. In the second level,
SPM5 is an OLS estimator when only one task contrast at
a time is used, which is the case in this article. The OLS
estimator in FSL4.0 was used to run the second-level anal-
ysis (FSL-OLS).

The design matrix for GLM-based methods (SPM5,
FSL4.0) includes a hemodynamic response modeled by
two gamma functions and their derivatives. The gamma
functions implemented inside each software package with
their default settings for the parameters are used. We used
the implemented high-pass filters in the respective SPM5
and FSL packages with a cut-off frequency of 0.01 Hz to
remove low-frequency fluctuations, trends, and voxel

time-series means. Performance differences between FSL-
OLS and SPM5 could result from differences in noise pa-
rameter estimation, high-pass filtering, hemodynamic
response model, etc. We used the MI metric to deliberately
compare the whole processing pipeline in SPM5 and FSL-
OLS with their default settings. We believe the comparison
of default settings is useful for the field because it repre-
sents a common mode of operation for many papers pro-
duced with the two packages under the assumption that
the developers have chosen semioptimal default parameter
settings.

We randomly split the datasets 16 times into training
sets with 10 or 15 subjects and validation sets with 1 sub-
ject, producing 16 estimated MI values for each of the two
training set sizes. The validation subject for 10 and 15
training subjects is the same for each split but different
between splits. In addition, the same splits are used to ac-
quire Jaccard and reproducibility metrics. This allows us
to perform a pairwise Student’s t-test and compare the
sensitivity of the MI, reproducibility, and Jaccard metrics.
The detected active areas (|z| > 1.96) in two slices of
PMT contrasts using FSL-OLS and SPM5 for 10 and 15
training subjects are shown in Figure 6.

We estimated the MICONTINUOUS and MIBINARY for FSL-
OLS and SPM5 applied to the 10 and 15 training subjects
for PMT versus Fixation contrasts. Note that the same pre-
processing steps such as motion correction, smoothing,

Figure 5.

CD diagrams of mean rankings based on a nonparametric Fried-

man difference test by ranks for analysis of the simulated dataset

with (a) CCA, CVA, GLM-AR, GLM and TIWT measured by

MICONTINOUS for neighborhood values of k ¼ 1, 20, 100, and

500 (see Fig. 2) and (b) CCA, CVA, GLM-AR, GLM, and TIWT

measured by MIBINARY (c ¼ 0.1) for k ¼ 20. The CD range

within which ranks are not significantly different (a ¼ 0.05)

allowing for multiple comparisons is illustrated as a line segment

starting at Rank 1 above each diagram. Rank 1 corresponds to

the best-performing analysis with the highest average MI mea-

surement. MI metrics for (a) k ¼ 1, 20, 100 and (b) k ¼ 20 are

consistent with the partial area under the ROC curves (see Fig.

3). All analysis techniques are ranked as significantly different

only for k ¼ 20 with MICONTINOUS and MIBINARY.
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and high-pass filtering are performed on both the training
and validation datasets. The MI metrics were estimated
using those segments of validation time-series where the
subjects were performing the PMT and adjacent Fixation
tasks to remove the effects of other tasks.

The SPMs acquired using 15 compared to 10 subjects
are expected to have more power and higher MI metrics.
We used this to test the effect of the number of subjects in
the training set (T) on the MI metrics (MICONTINUOUS and
MIBINARY), asymmetric-split reproducibility (r), and JC.
The metric that is most sensitive to increasing the group
size may be rated as a better metric. Figure 7 shows the
performance of FSL-OLS and SPM5 for T ¼ 10 and T ¼ 15
measured with MICONTINUOUS, asymmetric-split reproduci-
bility (r), MIBINARY, and JC. For all four metrics and their
plots (Fig. 7a–d), the medians of the box–whisker distribu-
tions are seen to rise with increasing numbers of subjects
showing that increasing the group size increases the per-
formance of the analysis techniques.

Comparing Figure 7a and Figure 7b, the nonoverlapping
distributions of the MICONTINUOUS measure are seen to be
more sensitive to differences between methods and the
group size than the largely overlapping distributions of
the asymmetric-split reproducibility correlation coeffi-

cients. In Figure 7c,d, for each model with c ¼ 0.1, the
MIBINARY metric distributions have somewhat less overlap
and more separated medians than the Jaccard metric dis-
tributions with increasing group size. In addition, when
comparing MICONTINUOUS in Figure 7a with MIBINARY in
Figure 7c, we see that for the same analysis technique
thresholding with c ¼ 0.1 loses information. Furthermore,
both MI metrics and to some extent the asymmetric-split
reproducibility values reflect a tendency for FSL-OLS to
more efficiently extract information from the data for a
given percentile activation threshold.

To quantitatively evaluate these apparent sensitivity
differences, we used a pairwise Student’s t-test to test for
significant metric differences between the training groups
of T ¼ 10 and T ¼ 15 subjects. Table I reports the pairwise
t-test statistics, which are calculated separately for FSL-
OLS and SPM5. Based on the magnitude of the estimated
t-tests, there is evidence that the MICONTINUOUS measures
are significantly more sensitive than the asymmetric repro-
ducibility and Jaccard measures. The MIBINARY (c ¼ 0.1) is
somewhat more sensitive than Reproducibility and Jaccard
for FSL-OLS, but it is less sensitive for SPM5.

In Figure 8a, the MIBINARY measured from FSL-OLS and
SPM5 for 10 and 15 training subjects is shown versus c. In
Figure 8b, MIBINARY for 0.05 < c < 0.125 is shown. SPM5
outperforms FSL-OLS for c < 0.1 for both T ¼ 10 and T ¼
15, but FSL-OLS has a superior performance with higher
cs. Therefore, depending on the fraction of activated vox-
els identified by a particular false discovery rate (FDR; see
Table II), detection performance may be more dependent
on the choice of GLM model than a 50% increase in the
number of subjects. In Table II, we report the relative
number of detected voxels (c) and MIBINARY for FSL-OLS
and SPM5, for T ¼ 10 and T ¼ 15 and for three values of
FDR, 0.005, 0.01 and 0.05. With FDR ¼ 0.005, FSL-OLS for
T ¼ 10 identifies the same fraction of active voxels (c ¼
0.1) as SPM5 with T ¼ 15. For an increasing fraction of
nominally active voxels, MI and FDR are related for all
models and training set sizes, and at a fixed FDR, GLM
using FSL-OLS extracts more voxels and more information
(i.e., MIBINARY) than SPM5 in both group sizes. Further-
more, at a fixed FDR, the increased fraction of activated
voxels for T ¼ 15 versus T ¼ 10 is associated with greater
information extraction for T ¼ 15 with either GLM tech-
nique as expected.

In real datasets, the peaks of the MIBINARY curves are
near c ¼ 0.5, indicating that the most separable clusters in
time-series space are created for c � 0.5. This optimal
threshold fraction is very different from the simulated
dataset where the multivariate peaks are around 0.075
with univariate peak thresholds closer to 0.1. This differ-
ence between real and simulated datasets may be due to
the simulated data having only positive BOLD changes
(Task mode). In the real fMRI datasets, there are both
strong positive and negative (Default mode) BOLD
changes that create two strong clusters in time-series
space. Also, in the real datasets, the separation of the time-

Figure 6.

Positively and negatively thresholded voxels (|z| > 1.96) for the

perceptual matching task versus fixation analyzed with FSL-OLS

(left column) and SPM5 (right column) of 10 subjects (the first

row) and 15 subjects (the second row).
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series into different clusters has been increased by apply-
ing spatial smoothing. Finally, the MI metrics for real data-
sets are much larger than MI metrics for simulated
datasets. This demonstrates that real datasets are more in-
formation-rich than simple simulated datasets such as
those used here.

Figure 9 shows the performance of FSL-OLS and SPM5
for all four tasks (ATT, DMS, PMT, and RT) versus Fixa-
tion measured by MICONTINUOUS. To calculate the MI met-
ric for a specific task, we used those segments of
validation subjects’ time-series when the subjects were per-
forming the task or in the Fixation state. This removes the
effects of the other tasks in evaluation of an analysis tech-
nique for a specific task contrast. As shown in Figure 9,
FSL-OLS with its default settings performs better than

Figure 7.

Results from analysis of the perceptual matching task versus fix-

ation analyzed with FSL-OLS (left column) and SPM5 (right col-

umn) in each panel for training groups of T ¼ 10 and T ¼ 15

young subjects: (a) MICONTINUOUS; (b) asymmetric-reproducibil-

ity (r) (see text); (c) MIBINARY for the fraction of positive SPM

values, c ¼ 0.1; (d) the Jaccard metric (JC). The line in the mid-

dle of each box–whisker plot is the sample median. All measures

use the same leave-one-out crossvalidation scheme (see text).

MICONTINUOUS and MIBINARY are more sensitive than asymmetric

reproducibility and the Jaccard metric in differentiating between

T ¼ 10 and T ¼ 15.

TABLE I. t Statistics and significance levels for different

MI metrics, asymmetric reproducibility (r), and the

Jaccard metric (JC)

MICONTINUOUS

MIBINARY

(c ¼ 0.1)
Reproducibility

(r)
Jaccard
(c ¼ 0.1)

FSL-OLS 15.37** 4.53** 3.38* 3.03*
SPM5 12.02** 2.56 3.32* 3.95**

For subjects performing the perceptual matching task and SPMs
from FSL-OLS and SPM5, a pairwise Student’s t-test is used to
determine the significance of the difference between the Training
groups of subjects for T ¼ 10 and T ¼ 15 (see Fig, 7).
*p < 0.05 corrected for multiple comparisons; **p < 0.01 corrected
for multiple comparisons.
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SPM5 with its default settings for all task contrasts. How-
ever, we did not tune the parameters inside each software
package for their best performance, and for other setting
of the parameters, their relative performance might
change.

DISCUSSION

This article introduces an evaluation method based on
MI to assess fMRI analysis techniques without knowing
the ground truth. To our knowledge, this is the first tech-
nique for measuring analysis performance in fMRI that
compares SPMs from any model against independent
time-series, without requiring any of the modeling
assumptions that generated the SPM. This is an extension
of standard prediction and reproducibility metrics, which
use the same modeling framework and assumptions to
both generate a reliable SPM and predict a related label
structure in an independent time-series (e.g., the NPAIRS
framework). We have shown that these MI metrics may be
significantly more sensitive than other modeling perform-
ance measures such as asymmetric-split reproducibility
and the Jaccard (or DICE) overlap statistic.

In addition, MI also provides a new measure of informa-
tion extraction that may be used to identify nominally acti-
vated voxels for comparison with thresholding procedures
such as FDR. Furthermore, removing the need to know a
label structure in the independent, validation time-series
opens up a broad class of experiments. With the MI met-

rics a SPM can be generated using any analysis model in
one experiment and then tested for its relative expression,
on an MI scale, in time-series from arbitrary related or
unrelated experiments, e.g., to rank activation pattern and
network expression across different tasks.

To calculate the MI between a spatial SPM and inde-
pendent time-series from the same or different experi-
ments, we used a method based on k-nearest neighbors.

Figure 8.

MIBINARY results from analysis of the perceptual matching task versus fixation analyzed with FSL-

OLS and SPM5 for training set groups of T ¼ 10 and T ¼ 15 subjects as a function of (a) the frac-

tion of SPM values, c from 0.0 to 1.0, and (b) for 0.05 < c < 0.125. SPM5 performs better than

FSL-OLS for c � 0.1 in both group sizes, but FSL-OLS has better performance with higher cs.

TABLE II. The fraction of all voxels declared active (c)
and MIBINARY for different FDR levels using FSL-OLS

and SPM5 applied to training groups of 10 and 15 young

subjects

Analysis technique

FDR

0.005 0.01 0.05

T ¼ 10 FSL-OLS
c 0.10 0.13 0.23

MIBINARY 0.22 0.26 0.37
SPM5

c 0.06 0.08 0.13
MIBINARY 0.16 0.18 0.25

T ¼ 15 FSL-OLS
c 0.20 0.23 0.31

MIBINARY 0.34 0.37 0.43
SPM5

c 0.10 0.12 0.19
MIBINARY 0.22 0.24 0.33
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This method appears to perform well even when only
weak signals exist, such as in simulations with only a
small number of active voxels or in relatively small groups
of subjects. The parameter k and the SPM- and time-series
distance measures used to estimate MI are parameters that
allow SPMs to be linked to arbitrary, independent time-se-
ries: (1) for MIBINARY by determining the form of the sepa-
rating boundary between two time-series clusters of active
and non-active voxels defined by the thresholded SPM or
(2) for MICONTINUOUS by comparing the interval ranking of
the distance between voxel pairs in the SPM to the dis-
tance between the corresponding voxel pairs in the time-
series.

MI metrics share the advantage with NPAIRS prediction
and reproducibility metrics of depending on both general-
izable spatial and temporal consistency evaluated in a
crossvalidation framework, which distinguishes them from
other performance metrics as outlined in the Introduction.
Such approaches go some way to ensuring better general-
ization of fMRI results and can provide evidence of the
generalization through replication needed to develop
‘‘strong inferences’’ [Platt, 1964] and avoid circular analysis
[Kriegeskorte et al., 2009].

However, there are still some fMRI artifacts that may be
spatially reproducible with somewhat consistent temporal
structure in different repetitions of an fMRI experiment,
particularly in single-subject analysis [e.g., Fig. 1, Chen
et al., 2006]. Such spatially reproducible artifacts may cre-
ate spurious clusters in time-series space and cause an
error in ranking the methods, even in a spatiotemporal
crossvalidation framework. Therefore, when comparing

analysis techniques, it is important that careful attention is
paid to removal of such artifacts (e.g., some motion-related
effects, other low-frequency temporal trends, potential
white-matter bias, etc.) from both training and validation
datasets using similar preprocessing pipelines.

Our results show that the MI metric for binary maps is
always smaller than the MI metric for continuous maps.
This confirms the fact that information is lost via thresh-
olding procedures, which are removing more than simple
random noise voxels. This loss is clearly seen in the simu-
lated datasets where MIBINARY < MICONTINUOUS, but both
metrics rank the analysis techniques in the same order as
ROC curves. Furthermore, MI metrics for simulated data-
sets and MIBINARY < MICONTINUOUS differences (see Fig. 4)
are much smaller than those seen in real fMRI datasets
(Figs. 7 and 8). These results show that our simple simu-
lated dataset does not capture the structure of real fMRI
datasets, and therefore comparing analysis techniques
using such simulations is likely to be biased. This is one of
the primary motivations for developing data-driven per-
formance metrics such as MI. Furthermore, the two MI
metrics could be used to test the similarity of any particu-
lar simulation to any real dataset.

We also used the MI-based metrics to compare the
implemented OLS methods in SPM5 and FSL together
with their respective high-pass filtering approaches and
other default parameter settings. These GLM-based soft-
ware packages use different models for temporal noise
whitening of fMRI time-series and different temporal fil-
tering approaches; as a result, they create different SPMs
from the same data. In our data, based particularly on
measures of MICONTINUOUS (Figs. 7a and 9) and MIBINARY

at a fixed FDR, there is strong evidence that the FSL proc-
esses may significantly outperform those of SPM5. How-
ever, based on MIBINARY (Fig. 8b), the SPM5 processes
may outperform FSL for peak, active voxel fractions that
are approximately defined by c < 0.1 and underperform
against FSL processes for c > 0.1. We are currently testing
both of these preliminary results across multiple datasets
as a function of age and extending them to include a com-
parison with NPAIRS metrics and associated multivariate
analysis techniques. Overall, these results and the relation-
ship between FDR and MIBINARY seen in Table II suggest
that FDR and related absolute statistical thresholds based
on controlling Type 1 errors may be poor approaches to
understanding the information content of SPMs and infor-
mation extraction with thresholding.

CONCLUSION

In this article, we have introduced a powerful new mea-
sure based on the MI between spatial activation patterns
and independent fMRI time-series for evaluating the per-
formance of fMRI data analysis techniques without ground
truth. This technique generalizes the use of a single model-
ing framework, which underlies the temporal prediction

Figure 9.

The performance of FSL-OLS and SPM5 measured by MICONTINUOUS.

FSL-OLS performs better than SPM5 for all task contrasts.
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and spatial reproducibility metrics within the NPAIRS
framework. This allows a SPM from a particular model to
be compared with any arbitrary independent time-series
without knowing its experimental design structure (e.g.,
condition labels). We show that our MI metric is consistent
with ROC measures in simulations and more sensitive
than reproducibility or Jaccard metrics for detecting
improved activation maps in real datasets.
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APPENDIX

The Shannon entropy of a continuous random variable
(or vector) x measures the amount of uncertainty or lack
of information in that variable and is defined as
HðxÞ ¼ � R

PðxÞ logðPðxÞÞdx, where P(x) is the probability
density function of x. The MI between two random varia-
bles (or vectors) x and y defined in Eq. (2) may be
expressed in terms of Shannon entropy as follows [Cover
and Thomas, 1991]:

r Afshin-Pour et al. r

r 714 r



Iðx; yÞ

¼
Z
y

Z
x

Pðx; yÞ log Pðx; yÞ
PðxÞPðyÞdxdy

¼ �
Z
y

Z
x

Pðx; yÞ logðPðxÞÞdxdy

�
Z
y

Z
x

Pðx; yÞ logðPðyÞÞdxdyþ
Z
y

Z
x

Pðx; yÞ logðPðx; yÞÞdxdy

¼ �
Z
x

PðxÞ logðPðxÞÞdx�
Z
y

PðyÞ logðPðyÞÞdy

þ
Z
y

Z
x
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(A1)

The same relation between the MI and Shannon entropy
exists when x is a binary random variable. In Kraskov
et al. [2004], the Shannon entropy terms in Eq. (A1) is esti-
mated based on a k-nearest neighbor based algorithm as
follows:

HðxÞ ¼ wðNÞ � 1

N

XN
i¼1

ðwðnxðiÞ þ 1ÞÞ þ cx

HðyÞ ¼ wðNÞ � 1

N

XN
i¼1

ðwðnyðiÞ þ 1ÞÞ þ cy

Hðx;yÞ ¼ wðNÞ � wðkÞ þ cy þ cx (A2)

where cx and cy are two terms that depend on the observa-
tion xi and yi for i 1, . . ., N. nx(i), ny(i), and w(.) are defined

in ‘‘Estimating the MI Metric’’ subsection. By substituting
the estimated entropy of x and y, and the joint entropy
(x,y) from Eq. (A2) into Eq. (A1) the terms cx and cy are
canceled out and the estimation of MI based on a k-nearest
neighbor approximation as defined in Eq. (6) is obtained.

The pseudocode for our modified k-nearest neighbor-
based MI algorithm is as follows (see Fig. 1):

1. I / w(k) þ w(N)
2. For i ¼ 1 to N

a. Calculate the distance between the voxel i and the
remaining N � 1 voxels in SPM space
dxðxi; xjÞ ¼ xi � xj

�� ��� �
b. Calculate the distance between the voxel i and the

remaining N � 1 voxels in time-series space

dyðyi; yjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qijÞ=ð1þ qijÞ

q� �
c. Calculate the distance between the voxel i and the

remaining N � 1 voxels in the joint space
dzðzi; zjÞ ¼ maxðdxðxi; xjÞ; dyðyi; yjÞÞ
� �
d. Sort the N � 1 voxels from the nearest to the far-

thest based on their distance in joint space
e. Find the kth nearest voxel from the ranked list in (d).

Its distance in joint space defines the neighborhood
size (ez(i)).

f. Count the number of voxels j such that dx(xi, xj) �
ez(i) (nx(i))

g. Count the number of voxels j such that dy(yi, yj) �
ez(i) (ny(i)).

h. I / I � (w(nx(i) þ 1) þ w(ny(i) þ 1))/N
3. End for
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