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Abstract: The temporal coordination of neural activity within structural networks of the brain has been
posited as a basis for cognition. Changes in the frequency and similarity of oscillating electrical poten-
tials emitted by neuronal populations may reflect the means by which networks of the brain carry out
functions critical for adaptive behavior. A computation of the phase relationship between signals
recorded from separable brain regions is a method for characterizing the temporal interactions of neu-
ronal populations. Recently, different phase estimation methods for quantifying the time-varying and
frequency-dependent nature of neural synchronization have been proposed. The most common method
for measuring the synchronization of signals through phase computations uses complex wavelet trans-
forms of neural signals to estimate their instantaneous phase difference and locking. In this article, we
extend this idea by introducing a new time-varying phase synchrony measure based on Cohen’s class
of time—frequency distributions. This index offers improvements over existing synchrony measures by
characterizing the similarity of signals from separable brain regions with uniformly high resolution
across time and frequency. The proposed measure is applied to both synthesized signals and electroen-
cephalography data to test its effectiveness in estimating phase changes and quantifying neural syn-
chrony in the brain. Hum Brain Mapp 32:80-93, 2011.  © 2010 Wiley-Liss, Inc.
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Quantifying neural coordination in the brain is a fundamen-
tal problem of neuroscience [Ansari-Asl et al., 2005; Klein et al.,
2006; Lachaux et al., 2002; Le Van Quyen et al., 2001; Sun et al.,
2003; Varela et al., 2001]. The brain’s cognitive functions are
likely based on the coordinated interactions of neuronal sour-
ces that are distributed across specialized brain areas. Presum-
ably, integration of neural activity across brain regions occurs
at various spatial and temporal scales. The spatial and tempo-
ral scaling of neuronal interactions may well be dynamically
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adjusted to support adaptive behavior of an organism. Recent
research provides evidence that neural integration plays an im-
portant role in a wide range of cognitive and executive proc-
esses, such as memory and attention, that are impaired in
pathological brain states [Uhlhaas and Singer, 2006; Uhlhaas
et al.,, 2006]. For example, current theories of schizophrenia
emphasize that core aspects of the pathophysiology are due to
deficits in the coordination of distributed processes that
involve multiple cortical areas, rather than specific brain areas
or neurotransmitter systems [Spencer et al.,, 2003, 2004; Uhl-
haas et al., 2006]. Similarly, epilepsy, Alzheimer’s disease and
Parkinson’s disease have been characterized in terms of abnor-
malities in neural integration across the brain [Brown, 2003;
Netoff and Schiff, 2002; Stam et al., 2005]. Therefore, to charac-
terize adaptive and pathological elements of neuronal syn-
chrony, there is a growing need to quantify the interactions of
brain regions during adaptive functioning of the organism.

Any mechanism for neural integration must involve
interactions between functionally relevant local networks.
The nature of such interactions remains a point of debate.
It has been recently argued that networks of reciprocal
interactions are key to integration [Varela et al., 2001].
Among various modes of reciprocal interactions, phase
synchronization between the participating neuronal groups
has been the most studied mechanism. To examine func-
tional integration in the temporal frame in which the brain
completes processes, there is a need to characterize the
temporal dynamics of neural networks with millisecond
accuracy [Friston, 2000]. Neuroimaging techniques with
high temporal resolution, such as the electroencephalo-
gram [Ansari-Asl et al., 2005] and magnetoencephalogram
(MEG), are the most appropriate tools for examining the
dynamic interactions of neural networks.

Studies of visual binding provide direct evidence support-
ing phase synchrony as a basic mechanism for brain integra-
tion [Roskies, 1999] and suggest that visual objects are coded
by cell assemblies that synchronously fire. Although visual
binding refers to the “local” integration within neighboring
cortical areas, synchronization of neural assemblies may
span multiple spatial and temporal scales in the nervous sys-
tem, ranging from local integration to large-scale integration.
Recent research provides evidence for the existence and sig-
nificance of large-scale synchronization. In the article by
Rodriguez et al. [1999], for example, a consistent pattern of
gamma frequency synchrony among occipital, parietal, and
frontal areas during face recognition was shown. Similarly,
others have observed increased beta and gamma range syn-
chrony between auditory and visual regions of the brain dur-
ing perception and increased synchrony between prefrontal
and posterior association areas in the theta band during a
working memory task [Sarnthein et al., 1998]. These findings
point to the significance of large-scale synchrony in the
human brain during cognition and perception and provide
evidence for synchrony within several frequency bands as
well as across frequency bands [Palva et al., 2005]. In this arti-
cle, we present an index of phase synchrony for quantifying
large-scale synchronization that affords consistently high re-

solution across time and frequency bands as reflected in elec-
troencephalography (EEG) recordings.

Types of indices used for quantifying large-scale syn-
chrony can be broadly categorized into linear and nonlinear
measures [Pereda et al., 2005]. Linear correlation measures
include temporal correlation, spectral coherence, directed
transfer function [Kaminski and Blinowska, 1991], partial
directed coherence [Baccald and Sameshima, 2001], and
Granger causality [Granger, 1969; Kaminski et al., 2001],
and attempt to quantify the degree of synchronization.
These methods are closely related to each other and rely on
a multivariate autoregressive model for describing the dy-
namics of multichannel EEG signals. The magnitude of the
transfer function between different channels quantifies the
connectivity between the different cortical sites. These
measures have limitations for the following reasons. First of
all, they rely on parametric modeling of EEG signals and
thus suffer from some of the common problems with para-
metric models such as determination of the order and
robustness of the parameters to perturbations. Second, they
assume stationarity of the underlying signals by defining
the transfer function solely in the frequency domain and the
linearity of the interactions between different channels. This
linearity assumption restricts the types of interactions that
can be quantified to amplitude effects and does not allow
the separation of the effects of amplitude and phase.

Nonlinear correlation measures, on the other hand,
attempt to address this limitation of linear measures by quan-
tifying temporal correlation through measures of phase syn-
chrony [Damasio, 1990; Friston et al., 1997; Rosenblum et al.,
1996; Tononi and Edelman, 1998; Varela, 1995; Varela et al.,
2001] and generalized synchronization measures, including
information theoretic measures [Breakspear, 2002; Break-
spear and Terry, 2002; Chavez et al., 2003; Hinrichs et al.,
2006; Stam, 2005]. A desirable phase synchrony measure
should be able to separate the phase and amplitude effects
from each other and take the nonstationary nature of brain
activity into account. Two different measures for quantifying
time-varying phase synchrony have been proposed to
address these issues. The first method uses the Hilbert trans-
form of the signal to get an analytic form of the signal and
estimates instantaneous phase directly from its analytic form
[Tass et al., 1998]. To estimate the instantaneous phase of a
signal from its analytic form, one has to ensure that the signal
is composed of a narrowband of frequencies. Thus, the Hil-
bert transform method of computing phase synchrony
requires first bandpass filtering of the signal around a fre-
quency of interest and then applying the Hilbert transform to
obtain the instantaneous phase. This is an indirect way of
deriving the frequency-dependent phase estimates and is
prone to error especially in the case of noisy signals as noise
tends to be wideband. The second approach computes a
time-varying complex energy spectrum using either the con-
tinuous wavelet transform with a complex Morlet wavelet
[Lachaux et al., 2002] or the short-time Fourier transform
(STFT) [Li and Jung, 2000]. It has been observed that the two
approaches are similar in their results with the time-varying
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spectrum-based methods giving higher resolution phase syn-
chrony estimates over time and frequency, especially at the
low frequency range [Le Van Quyen et al., 2001]. Although
the wavelet- and STFT-based phase synchrony estimates
address the issue of nonstationarity, they suffer from a num-
ber of drawbacks. In the case of the wavelet transform, the
nonuniform resolution across time and frequency results in
biased energy representations and corresponding phase esti-
mates. In the case of STFT, there is a tradeoff between time
and frequency resolution because of the window function.
For these reasons, there is a need for high time-frequency re-
solution phase distributions that can better track dynamic
changes in the synchrony of neural signals.

In this article, we propose an enhanced characterization
of neural synchrony using a new nonlinear phase estima-
tion method based on bilinear time-frequency distribu-
tions (TFDs). This phase synchrony measure extends the
current complex Morlet wavelet-based phase synchrony
measure, which will be referred to as the wavelet time—fre-
quency phase synchrony (wavelet-TFPS), by using a high-
resolution complex TFD. The proposed measure is based
on a reduced interference Rihaczek (RID-Rihaczek) distri-
bution and will be referred to as RID-TFPS.

It is important to note some current methodological issues
with applying phase synchrony measures to EEG recordings.
Perhaps, the most important one is volume conduction, which
refers to activity that may come from a single source but is
observed at multiple scalp electrodes. This problem is espe-
cially important in phase synchrony measures because data
recorded from nearby electrodes are very likely to pick up ac-
tivity from a common source causing spurious correlation
between the electrodes. Synchrony measures could thus be
artificially inflated to the degree of the volume conduction.
Similarly, the bipolar recording channels used in EEG studies
can introduce artifactual synchrony between electrodes as they
share a common reference electrode [Guevara et al., 2005]. Sev-
eral methods have been suggested for addressing the problem
of volume conduction and bipolar recording channels, includ-
ing source reconstruction and Laplacian filtering to deempha-
size the effects of the common source [Lachaux et al., 1999;
Nunez and Srinivasan, 2006; Nunez et al., 1997]. Measures
such as phase lag index (PLI) have also been introduced to
address volume conduction through isolating information in
the correlation structure that is unlikely to be explained by
common sources [Stam et al., 2007]. In this article, we do not
aim to directly address or overcome such limitations. Instead,
the focus is on introducing new time-varying phase synchrony
estimates that are of uniform resolution across the time—fre-
quency spectrum, while acknowledging that such estimates
are not immune to the effects of volume conduction.

MATERIALS AND METHODS
Simulated Data

To test the validity and evaluate the performance of the
proposed phase synchrony measure, we generated three

different simulations. In the following simulations, the fre-
quency parameters of the signals were defined in terms of
the normalized frequency [0,1], where 1 corresponds to
half of the sampling frequency.

Example I: Time-varying phase tracking

The first simulation tested the performance of the pro-
posed measure in tracking time-varying phase differences.
We considered two complex exponential signals with a
time-varying phase difference, x;(t) = exp(joqt) and x,(t) =
exp(joi(t—at)), where o, = 8r, a = 0.25 for the time range
0-1 s. The parameters ®; and a were chosen such that the
maximum phase difference between the two signals is less
than or equal to 2n to prevent any ambiguity about the
phase. The instantaneous phase difference at the frequency
of interest, m, was computed using the Rihaczek-based
phase estimation method and was compared to the theo-
retical phase difference, oat’.

Example 2: Comparison of the RID-TFPS and
the wavelet-TFPS measures for linear chirp signal

In the second simulation example, we compared the per-
formance of the RID-TFPS measure to the wavelet-TFPS
measure for signals with time-varying frequency content.
The goal of this example was to illustrate how the two meth-
ods differ in the way they track phase synchrony across time
and a range of frequencies. For this purpose, we considered
two linear chirp signals with constant phase difference, that
is, x1(t) = exp(j(oot + Bt?) and x(t) = exp(j(wot + B> + 6)),
where ®y = 0.1, B = 0.001 in terms of the normalized fre-
quency for 128 time samples. The parameters oy and } were
chosen such that the signal covers a broad range of frequen-
cies, that is, it is not narrowband, and that there is no aliasing
in frequency. We considered 100 simulations of this signal
model with uniformly distributed random phase difference
0 € [0,2n] and additive white Gaussian noise at a signal-to-
noise ratio (SNR) of 14 dB.

Example 3: Performance of the RID-TFPS and
the wavelet-TFPS measures in noise

In the third example, we evaluated the robustness of the
RID-TFPS measure in noise and compared it to the per-
formance of the wavelet-TFPS measure. To evaluate the
robustness in noise, we considered two signal models:
high synchrony and low synchrony signals in noise. In the
first model, we considered two sinusoids with a constant
phase difference in noise, x;(t) = sin(16mt) + ny(t), x2(t) =
sin(lént + w/4) + ny(t), where ny(t) and ny(t) are inde-
pendent white Gaussian noise processes at different var-
iance levels, with SNR varying in the range of —12 to 17
dB. In the second model, a pair of low synchrony signals
was considered, that is, x;(t) = sin(16mt) + ny(f), x(t) =
ny(t) with ny(t) and n,(f) being independent white Gaus-
sian noise processes in the same SNR range as above. For
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both models, we considered 200 simulations of 200 trials
of the two signal models to evaluate the distribution of the
synchrony values.

Biological Data: Error-Related Negativity

To evaluate the proposed phase synchrony measure
with biological data, the measure was applied to a set of
EEG/ERP data containing the error-related negativity
(ERN also referred to as the error negativity Ne [Falken-
stein et al., 1991; Gehring et al., 1993]). The ERN is a brain
potential response that occurs following performance
errors in a speeded reaction time task. The ERN has been
characterized as a neurophysiological index of endogenous
action monitoring the automatic capacity to monitor be-
havioral performance on-line and to initiate corrective
action as needed, either through detection of errors [Gehr-
ing et al., 1995] or detection of conflict among competing
neural response pathways [Carter et al., 1998]. Evidence
indicates that the primary neural generator of the ERN is
the anterior cingulate cortex [Baccala and Sameshima,
2001], and that it is maximal over midline-frontal scalp
sites (e.g.,, FCz) when recorded with EEG/ERP [Bush
et al.,, 2000; Dehaene et al., 1994; Holroyd et al., 1998]. In
terms of time-frequency representations, the ERN is
known to involve increases in the theta range (3-7 Hz) for
both amplitude (e.g., [Gehring and Willoughby, 2004; Hall
et al.,, 2007]) and intertrial phase synchrony (e.g., [Trujillo
and Allen, 2007]). Importantly for the current purposes,
the ACC is understood to be coordinated with other brain
regions involved in cognitive control processes [Holroyd
and Coles, 2002; Miller and Cohen, 2001], for example, lat-
eral prefrontal cortex and the primary motor areas. The
ultimate utility of applying measures of phase synchrony
to the ERN is in creating measures of how these regions
coordinate and communicate to produce response modula-
tion. The current application, however, is intended to eval-
uate the quality of the newly developed phase synchrony
measure, rather than to make definitive statements about
interactions among regions during the ERN.

The primary details of the task and data collection are
given briefly here (see previous article for further detail
[Hall et al., 2007]). EEG data from 62 channels were col-
lected from 92 undergraduate students (34 male) from the
University of Minnesota. Recordings were done in accord-
ance with the 10/20 system on a Neuroscan Synamps2
system (Neuroscan). A speeded response flanker task was
used, and error and correct response-locked averages were
computed for each subject. These averages served as the
experimental data to which the new method was applied.

Cohen’s Class of TFDs

Cohen’s class of distributions are bilinear TFDs that are
expressed as! [Cohen, 1995]:

TAl integrals are from oo to oo unless otherwise stated.

o =gz [ [ [x(u (=)

x (0, 1)eMe 1% dudedr, (1)

where the function ¢(0,7) is the kernel function and x is
the signal. TFDs represent the energy distribution of a sig-
nal over time and frequency, simultaneously. The kernel
function completely determines the properties of its corre-
sponding TFD. Some of the most desired properties of
TFDs are the energy preservation, satisfying the marginals,
and the reduced interference. Energy preservation and sat-
isfying the marginals imply that the following equalities
hold

/ / C(t,0)dtdo = / |x(£)[*dt = | / 1X(0)*do,

/ C(t, m)dw = |x(t)]%, / C(t,w)dt = X% (2)

For bilinear time-frequency energy distributions, cross-
terms or interference occur when the signal is multicom-
ponent, that is, if x(t) = Zﬁil xi(t) then C(t,0)=
Zf\il Cy o (t,0) + Zi# ZRe(Cx,_,X/(t, ®)),, where ¢, ,; and ¢y,
refer to the autoterms and crossterms, respectively. The
crossterms introduce time-frequency structures that do
not correspond to the time—frequency spectrum of the
actual signal. In the case of real life signals, such as the
EEG, where the individual components may not be dis-
joint in the time—frequency plane, the crossterms will con-
taminate the spectrum of the autoterms directly. For this
reason, there is a need for filtering out the crossterms
using an appropriate kernel function. Any TFD given by
Eq. (1) can be equivalently written as follows:

C(t,m) = / / $(0,7)A(0, t)e *F) d1de, 3)

where A(0,7) = [x(u+2)x"(u —3)e™du is the ambiguity
function of the signal. This alternative representation of
TFD is equivalent to multiplying the signal’s autocorrela-
tion function (ambiguity function) with a filter (kernel
function) and then transforming it back to the time—fre-
quency plane. As the ambiguity function tends to group
the autoterms close to the 0-t axis, the kernel function is
usually designed as a lowpass filter. In this article, we will
use reduced interference distributions (RIDs) to address
the problem of crossterms, with |(0,7)! <« 1 for 10t >
0, to concentrate the energy around the autoterms [Jeong
and Williams, 1992].

The major differences between Cohen’s class of TFDs
compared to other time—frequency representations such as
the wavelet transform are the nonlinearity of the distribu-
tion, energy preservation, and the uniform resolution over
time and frequency. The wavelet transform provides a
representation over time and scale where the frequency
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resolution is high at low frequencies and low at high fre-
quencies. Although this property makes wavelet transform
attractive in detecting high-frequency transients in a given
signal, it inherently imposes a nonuniform time—frequency
tiling on the analyzed signal and thus results in biased
energy representations. Cohen’s class of bilinear TFDs on
the other hand assumes uniform resolution over the entire
time—frequency plane.

Most of the members of Cohen’s class are real-valued
energy distributions such as the spectrogram and the
Wigner distribution. These distributions are successful at
describing the energy of the signal over time and frequency,
simultaneously. However, they do not carry any informa-
tion about the phase of the signal. For this reason, they can-
not be directly used for describing the phase information in
an individual signal and estimating the phase synchrony
between two signals. Therefore, there is a need for high-re-
solution complex-valued TFDs that carry both the energy
and the phase information of the underlying signals.

Rihaczek Distribution

Rihaczek derived the signal energy distribution in time
and frequency by application of the complex signal nota-
tion. If we consider two complex signals at the same fre-
quency, x1(t) and x(t), where x;(f) may be interpreted as
the voltage and x,(t) as the current generated in an imped-
ance, the total complex energy is defined as [x;(f)x;(t)dt.
Rihaczek extended this idea for computing the interaction
energy of a signal within some frequency band centered at
a frequency of interest with the signal itself at a given
time restricted to an infinitesimal time interval. This exten-
sion leads to the time-frequency energy density function,
which is expressed as [Rihaczek, 1968]:

C(t,0) = \/%x(t)x* ()e /e, 4)

and which measures the complex energy of a signal
around time f and frequency w. The complex energy den-
sity function provides a fuller appreciation of the proper-
ties of phase-modulated signals that is not available with
other TFDs. For example, with the short-time Fourier
transform or the wavelet transform, the time—frequency re-
solution is determined by the waveforms used to expand
the signal. In the case of the STFT, the time—frequency re-
solution is uniform with the resolution being determined
by the length of the window. For the Rihaczek distribu-
tion, on the other hand, the time-frequency resolution is
determined by the rate of change of the instantaneous fre-
quency, which provides better localization for phase-
modulated signals.

Like other members of Cohen’s class of distributions,
the Rihaczek distribution can also be shown to be a bilin-
ear, time and frequency shift covariant TFD that satisfies
the marginals, preserves the energy of the signal with

strong time and frequency support properties, that is, the
distribution is only nonzero when both the signal itself
and its Fourier spectrum are nonzero. With these proper-
ties, the Rihaczek distribution provides both a time-vary-
ing energy spectrum and a phase spectrum and offers
good time—frequency localization for phase-modulated sig-
nals, and thus is an appropriate choice for estimating the
phase synchrony between EEG signals.

Reduced interference Rihaczek distribution

One of the disadvantages of the Rihaczek distribution is
the existence of crossterms for multicomponent signals.
For any signal, x(f) = x1(t) + x»(f), the Rihaczek distribu-
tion is as follows:

1

(61 ()X (@) T + x2(1) X3 (0)e

+x ()X (@) +x ()X (@)e ), (5)

where the last two terms in the above expression are the
crossterms. These crossterms are located at the same time
and frequency locations as the original signals and will
lead to biased energy and phase estimates.

To get rid of these crossterms, in this article, we propose
a reduced interference version of the Rihaczek distribution
by applying a kernel function such as the Choi-Williams
(CW) kernel with ¢(0,1) =exp @ to filter the cross-
terms in the ambiguity domain. Different kernel functions
such as the Born-Jordan kernel, binomial kernel can be
used to address the issue of crossterms with similar results
[Cohen, 1995]. The resulting distribution can be written in
terms of the product of the CW kernel and the kernel for
the Rihaczek distribution as follows:

Clt,w) = / / exp < (9;)2) exp (j%)A(e, 1)e /0l d1de,

(6)

where exp(j %) is the kernel function for the Rihaczek dis-

tribution, which can be obtained from the ratio
ffCR;haczck(t,m)eﬂo”“’)dtd(o 1 ffx(f)X*(m)e jot o/ (0+70) dtd oy . E
A01) TVE () (u)edu using Eq.

(3) and the definition of the Rihaczek distribution. This
new distribution, which will be referred to as RID-Rihac-
zek distribution, still satisfies the marginals and preserves
the energy and is a complex energy distribution at the
same time. The value of ¢ can be adjusted to achieve a
desired trade-off between resolution and the amount of
crossterms retained. Figure 1 illustrates the magnitudes of
the original and the RID-Rihaczek distributions for the
sum of two signals to show the effect of filtering. In this
article, the RID-Rihaczek distribution will be used to
define the phase synchrony between signals.
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Time-Varying Phase Spectrum and Phase
Synchrony

Synchrony measures the relation between the temporal
structures of the signals regardless of signal amplitude.
Two signals are said to be synchronous if their rhythms
coincide. The amount of synchrony between two signals is
usually quantified by estimating the instantaneous phase
of the individual signals around the frequency of interest.
As mentioned earlier, the two main current approaches for
isolating the instantaneous phase of the signal are Hilbert
transform and complex wavelet transform. In the Hilbert
transform method, the signal is first bandpass filtered
around the frequency of interest and then the instantane-
ous phase is estimated from the analytic form of the sig-
nal. In the wavelet transform approach, the phase of the
signal is extracted from the coefficients of the wavelet
transform at the target frequency, which is basically equiv-
alent to estimate the instantaneous spectrum around a fre-
quency of interest. In both methods, the goal is to obtain
an expression for the signal in terms of its instantaneous
amplitude, a(t), and phase, ¢(t), at the frequency of inter-
est as follows:

X(t, o) = a(t) exp(j(ot + §(1))). 7)

This formulation can be repeated for different frequen-
cies, and the relationships between the temporal organiza-
tion of two signals, x and y, can be observed by their
instantaneous phase difference:

Dy (t) = [ndy(t) — mo, (1), o)

where n and m are integers that indicate the ratios of pos-
sible frequency locking. Most studies focus on the case
n = m = 1, that is, look at phase synchrony at a particular
frequency of interest.

In neuroscience, the focus is on the case when the phase dif-
ference is bounded over a limited time window, that is, the
weak locking condition [Rosenblum et al, 1996]. This is
defined as a period of phase locking between two events and
is an indicator of the dynamic phase relationship between two
oscillatory neuronal sources independent of their amplitude.

After defining a high resolution, complex TFD, one can
easily estimate the phase in the time—frequency plane. The
time-varying phase estimate is defined as follows:

o6.0) = arg |5 oy

©)

where C(t,m) is the RID-Rihaczek distribution given by Eq.
(6). For the particular case of the Rihaczek distribution,
where there is no smoothing, this expression simplifies to
d(t) — B(0) — ot, where ¢(t) and 6(w) refer to the phase in
the time and the frequency domains, respectively.

Once the time-varying phase spectrum is defined, the
phase difference between two signals, x1(f) and x,(f), can
be computed as follows:

Ci(t,w)C5(t, o)

Gt )G o)) (10)

O (t,0) = arg
For the actual Rihaczek distribution, this expression will
reduce to (p1(f — da(t)) + (B2(®) — (61(w)), that is, the sum
of the differences between the phases in the time and fre-
quency domains.
It can be shown that for the Rihaczek distribution of a
real-valued signal, the phase between a signal x4(t) and its
shifted version x; (t — f) is given by:

x1 ()X (w)e 79 (t — 1) Xy (w)e*f(’”oef‘*’t]
1 () [1Xa (@) [[x1 (F = t0)[[ X4 (0)] ’
- {xl(t)ﬁ(t — fo)e /M

1 (8)][x1 (¢ — o))

Dy, (F, ) = arg[

] = —oty, (11)

which is a linear function of frequency as expected.” Simi-
lar expressions can be obtained for the RID-Rihaczek
distribution with the phase difference estimate being
smoothed by the kernel function.

In most applications, the time-varying phase spectrum is
not directly useful for measuring the synchrony between
the signals. To further quantify the synchrony between sig-
nals, we need to define a measure of phase synchrony
based on the time-varying phase spectrum estimate intro-
duced above. In previous work, phase synchrony meas-
ures have been applied to measure both the intertrial
phase synchrony and phase synchrony across electrodes.
Although intertrial phase synchrony is effective at quanti-
fying stimulus-related synchronization [Tallon-Baudry and
Bertrand, 1999], in this article our focus will be on syn-
chronization across electrodes to quantify functional inte-
gration. Similar to the definition given in [Lachaux et al.,
2002], one can obtain the phase locking value (PLV). PLV
is defined between two signals and is averaged over all
realizations/trials. It measures the intertrial variability of
the phase difference at time t and frequency ® and can
quantify the consistency of response-locked phase differen-
ces across trials as follows:

PLV(t,0) = % , (12)

N
> exp(i®h(t, )
k=1

where N is the number of trials and ®%,(t,») is the time-
varying phase estimate between two electrodes for the kth
trial. If the phase difference varies little across the trials,
PLV is close to 1. In this article, we will use PLV based on
the RID-Rihaczek distribution to quantify the synchrony
between electrode pairs and will refer to this measure as
the RID-TFPS measure or simply as PLV, interchangeably.

Phase synchrony measures represent the actual phase
difference between two signals for a defined time and fre-

2P 15(t,w) = wty with modulus of 7.
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Figure I.
(a) Magnitude of Rihaczek distribution and (b) magnitude of RID-
Rihaczek distribution for the sum of two gabor logon signals,
x(t) = exp<f @) exp(j0.3t) + exp(f @) exp(j0.7),
computed with a Choi-Williams kernel, $(0, 1) = exp<f @),
where ¢ = 0.001. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com]

quency. To more accurately measure transient changes in
phase synchrony (instead of constant synchrony), we base-
line correct the time-frequency phase-synchrony values.
For baseline correction, the average phase synchrony at
each frequency for the prestimulus time range is sub-
tracted from the poststimulus phase synchrony, as follows:

PLV.(t,0) = PLV(t, 0)

PLV(t,0). (13)

1
~ |Length of prestimulus| Z

teprestimulus

Statistics of the Time-Frequency Phase Synchrony
Measure

RID-TFPS provides an estimate of the synchrony
between two ensembles of signals for any time—frequency
bin. Given a PLV, the natural question is whether the two
signals are independent or not. For real data with limited
numbers of trials, nonzero synchrony values can arise
between independent signals by chance alone. Bias and
variance of the RID-TFPS for independent white signals

would provide measures of how the synchrony value is
affected by the number of trials as well as give an indica-
tion of the range of synchrony values for independent sig-
nals. A more detailed analysis of the performance of the
RID-TFPS as a phase synchrony estimator would require
the computation of Cramer-Rao lower bound, which is
beyond the focus of this article.

In this article, the bias and variance of the RID-TFPS are
determined based on simulations with white noise time se-
ries as it is not possible to find an analytic expression for
these quantities. Similar to the approach outlined in
[Lachaux et al., 2002] for the wavelet-TFPS, we generate in-
dependent white noise sequences, with length 64, and com-
pute the bias and variance for different number of trials, N.
We have observed that the bias and the variance are inde-
pendent of the time and frequency bin as the RID-Rihaczek
distribution provides uniform resolution in the time-fre-
quency plane. The mean and the range of RID-TFPS values
over a range of N are shown in Figure 2a. It can be seen
that the bias and variance go to zero as N — oo.

Similarly, this procedure can be used to determine the
statistical significance of the computed RID-TFPS value.
Determining the statistical significance involves hypothesis
testing and requires the formation of a null hypothesis. In
some cases, it may be possible to derive analytically the
distribution of the given measure under a given null hy-
pothesis. However, in the case of the RID-TFPS this proves
to be a very difficult problem, therefore this distribution is
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Figure 2.

Statistical evaluation of the RID-TFPS measure: (a) The bias and
the range (minimum to maximum) of RID-TFPS measure for 200
simulations of 200 white noise pairs as a function of the number
of trials. (b) The significance threshold for the RID-TFPS for P
= 0.05 as a function of the number of trials. [Color figure can
be viewed in the online issue, which is available at
wileyonlinelibrary.com]
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estimated by direct Monte Carlo simulations. For this pur-
pose, an ensemble of surrogate data sets are generated
[Theiler et al., 1992]. For each surrogate data set, the RID-
TFPS is computed and from this ensemble of statistics, the
distribution is approximated. A robust way to define signif-
icance would be directly in terms of the P-values with rank
statistics. For example, if the observed time series has a syn-
chrony value that is in the lower one percentile of all the
surrogate statistics, then a P-value of 0.01 could be quoted.

In this article, we use the null hypothesis that the
observed data are independent. For this purpose, 200 sur-
rogate data ensembles with N pairs of independent white
noise signals with the same length as the original signals
are generated, and the RID-TFPS values are computed
over these N trials. The mean RID-TFPS value over time
and frequency is computed for each surrogate data set,
and the distribution of the synchrony values under the
null hypothesis is formed. All time—frequency pairs are
treated as independent points as we observed that the syn-
chrony values for white noise are independent of time and
frequency. The statistical test will compare the synchrony
value obtained from the actual signals with this distribu-
tion obtained for independent signals. If the observed
value is higher than a given proportion g of the distribu-
tion (e.g., 95%), then the two signals under consideration
are said to be nonindependent with a probability p = 1 —
g. In Figure 2b, we plot the significance thresholds for P =
0.05 as a function of the number of trials, N.

RESULTS

In this section, we will first test the validity of the RID-
TFPS measure on the set of simulated signals in section
“simulated data” and then apply it to ERN ERP signals
collected during a speeded response task.

Simulated Data
Example I: Time-varying phase tracking

In this example, the proposed Rihaczek distribution-
based phase estimation method is applied to compute the
instantaneous phase difference between the two signals,
x(t) = exp(joit) and x,(t) = exp(jon(t — at?)), shown in
Figure 3a, using Eq. (10). In Figure 3b, we compare the
theoretical phase difference, which is a second-order poly-
nomial, and the estimated one at the frequency of interest,
;. From this figure, it is seen that the proposed method is
successful at estimating the time-varying phase difference
with a mean square error of 1.1 x 10%. This result is in-
dependent of the parameters, m; and 4, as long as the max-
imum of wat” is less than or equal to 27.

Example 2: Comparison of the RID-TFPS and the
wavelet-TFPS measures for linear chirp signal

In this example, we compared the performance of the
RID-TFPS and the wavelet-TFPS measures for two linear

chirp signals with a constant phase difference in white
Gaussian noise. From Figure 4a, it can be seen that the
RID-TEPS is close to 1 around the instantaneous frequency
(the maximum synchrony is equal to 0.9976) and smoothly
tapers off as the frequency moves away from the instanta-
neous frequency. For the wavelet-TFPS (Fig. 4b), the val-
ues do not taper off gradually but rather sharply and
there is a larger bandwidth around the instantaneous fre-
quency (the maximum synchrony is equal to 0.9672). The
instantaneous frequency is defined as the derivative of the
phase and is equal to ®y + 2Bt in this example, shown by
the black lines in Figure 4a,b. The difference in the concen-
tration of the phase synchrony values around the instanta-
neous frequency can be quantified by computing the mean
squared error (MSE) between the ideal PLV profile and
the computed ones. The ideal PLV profile is a time—fre-
quency surface with ones at the instantaneous frequency
and zeros everywhere else and can be easily obtained by
computing the Wigner distribution and estimating the in-
stantaneous frequency. For the RID-TFPS, MSE is equal to
0.2138, whereas for the wavelet-TFPS it is equal to 0.3015,
indicating a larger deviation from the ideal case. It is
also important to note that for the wavelet-TEPS, the
bandwidth around the instantaneous frequency increases
as the instantaneous frequency increases. This is due to
the fact that at high frequencies the wavelet transform has
high time resolution at the expense of low frequency
resolution.

Example 3: Performance of the RID-TFPS
and the wavelet-TFPS measures in noise

In this example, we evaluated the robustness of the two
TFPS measures in noise. To evaluate the robustness under
noise, we considered two signal models in noise: A pair of
high synchrony signals (two sinusoids with a constant
phase difference) and a pair of low synchrony signals (a
sinusoid and white Gaussian noise) described in section
“simulated data.” In the first model, ideally, when the
noise variance is small, that is, the SNR is high, the phase
synchrony is expected to be close to 1. As the noise power
increases, the phase synchrony should get smaller as the
two signals are no longer perfectly in phase with each
other. This phenomenon is illustrated for both the RID-
TFPS and the wavelet-TFPS measures in Figure 5a. This
figure illustrates that the RID-TFPS measure remains
higher for a larger range of SNR values compared with
the wavelet-TFPS measure and that the range (minimum
to maximum) of the RID-TFPS is smaller than that of the
wavelet-TFPS as observed through the error bars. The dif-
ference between the two synchrony measures is found to
be statistically significant for all tested SNR values (t-val-
ues are 160.2178, 154.15, 101.4, 48.86, 8.6, and 10.8). These
results support the idea that the RID-TFPS is more robust
against noise than the wavelet-TFPS. Moreover, the com-
puted synchrony values are greater than the threshold
computed in section “statistics of the time-frequency phase
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Comparison of the theoretical and estimated time-varying phase
difference between x(t) = exp(jwt) and x,(t) = exp(jw,(t —
at’)), where ®, = 87, a = 0.25 for the time range 0—I s using
the proposed RID-Rihaczek-based phase estimation method: (a)
The two signals and (b) the theoretical and the estimated phase
differences. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com]

synchrony measure” (0.0748) indicating that the null hy-
pothesis that two signals are independent is rejected at the
95% confidence level. For the second model (Fig. 5b), both
of the measures show low values of synchrony. The aver-
age phase synchrony is low for both methods indicating

that the noise variance has little effect on the value of
phase synchrony. Further, for all of the SNR values, the
computed synchrony value is smaller than the threshold
discussed in section “statistics of the time-frequency phase
synchrony measure” (0.0748) indicating that we fail to
reject the null hypothesis that two signals are independent
at the 95% confidence level. Despite the low and nonsigni-
ficant values for both the RID- and wavelet-TFPS meas-
ures, it is worth observing (in Fig. 5b) that the SNR has an
influence on the synchrony values for the RID-TFPS, such
that there is an increase in TFPS values at the highest SNR
levels. This can be explained by the deterministic signal’s
amplitude interfering with the actual phase synchrony
computation for high SNRs. Although this pattern is read-
ily apparent for the RID-TFPS, and significant, this same
pattern is present in the wavelet-TFPS implementation,
although so small that the graph does not depict it clearly.
Pearson correlation between the RID- and wavelet-TFPS
does reveal the correspondence (r = 0.38). We hypothesize
that this effect is stronger for the RID-TFPS because of the
extensive filtering inherent in the wavelet-TFPS and points
to expectable ways in which background noise can influ-
ence phase synchrony computation.

Biological Data: ERN

Previous research suggests that the ERN ERP compo-
nent is associated with increased intertrial synchrony in
the theta range and that this synchrony is enhanced for
error responses compared with correct responses [Trujillo
and Allen, 2007]. Because the ERN generally has its ampli-
tude and intertrial synchrony maximum around FCz, we
hypothesized that measurable synchrony during the ERN
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Average phase locking value for two chirp signals with a constant phase difference in noise, that
is, x,(t) = exp(j(wot + Pt?)) and x,(t) = exp(j(wot + Pt* + 0)) over 100 simulations: (a) RID-

TFPS and (b) wavelet-TFPS.
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Comparison of robustness of the RID-TFPS versus the wavelet-
TFPS in noise for a range of SNRs [—12 dB, 17 dB]. A total of 200
simulations with 200 trials are run for each SNR value and for the
two types of signals (high synchrony pair and low synchrony pair).
The mean and the range of synchrony values (minimum to maxi-
mum) over 200 simulations at 8 Hz are shown: (a) between two
high synchrony signals (sinusoids in independent white Gaussian
noise, x|(t) = sin(16mt) + ny(t), xo(t) = sin(l6mt + w/4) + ny(t)))
and (b) between two low synchrony signals (a sinusoid in white
Gaussian noise and independent white Gaussian noise, x(t) =
sin(16mt) + ny(t), xa(t) = ny(t))). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com]

would be observable between FCz and the other electrode
sites on the scalp. We tested this hypothesis by computing
the PLV between FCz and each of the remaining 61 elec-

trodes. Phase synchrony was computed using Eq. (12) sep-
arately for error and correct trials across a wide range of
frequencies (1-64 Hz) and from 1,000 ms before the stimu-
lus to 2,000 ms after the stimulus. The number of error
and correct trials varied across subjects, but accuracy was
generally high (M = 90%, SD = 8.9%). Thus, correct trials
greatly outnumbered error trials. To handle this, for each
subject, a random subset of the correct trials was chosen to
match the number of error trials (M = 24.83).

Comparisons of the RID-TFPS to the wavelet-TFPS for
error and correct responses are presented in Figure 6. The
first row contains the grand average time-domain
amplitude signal representation. The second and third
rows contain the RID- and the wavelet-TFPS measures,
respectively. The left column contains data from error tri-
als and the right from correct trials. The correlation
between the average wavelet- and RID-TFPS surfaces is
0.594 for error and 0.559 for correct trials, both of which
are statistically significant (P < 0.001). This supports the
view that the wavelet- and the RID-TFPS measures evi-
dence similar time—frequency structure and suggests that
these measures are representing the same synchrony activ-
ity. For both trial types, however, the RID-TFPS activity
appears more localized and less smoothed on the surface
relative to the wavelet-TFPS. This is consistent with the
smearing inherent in the wavelet tiles, which have reduced
temporal support at low frequencies and reduced fre-
quency support at higher frequencies. This difference is
particularly apparent in the 100 ms just after the button
press for both error [Hall et al., 2007] and correct trials,
where the RID provides more structure and definition
than the wavelets. For example, the wavelet contains activ-
ity during this window that looks much less differentiated
from activity before and after that window. As described
earlier (e.g., Fig. 2b), the synchrony values for both error
and correct trials were significantly greater than for white
noise indicating that the computed synchrony values are
not due to chance. It is also worth noting that the TFPS for
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The spatial localization of the baseline corrected error—correct
difference phase synchrony based on the RID-TFPS. The average
phase synchrony surfaces across subjects depicting variation of
the error—correct difference phase locking values for a subset of
electrodes are shown.

error trials was significantly greater than that for correct
trials, broadly across the surfaces depicted in Figure 6.
However, partly because of volume conduction and other
potential confounds and partly in an attempt to remove
global condition and frequency-band TFPS differences, the
error—correct comparisons are assessed using a baseline
correction as follows.

In this article, we baseline corrected the time—frequency
phase-synchrony values before comparing TFPS from error
and correct trials as described in section “time-varying phase
spectrum and phase synchrony.” Because the presented data
are response locked, a great deal of additional stimulus-
related processing occurs just before the response. We thus
chose a baseline by moving a 100 ms window from 1,000 ms
before the response up to the response. We observed that
baseline correction had the strongest effects just before the
response, but the effects seemed to vary widely in the 500
ms before the response. In the late part of the 1,000 ms, on
the other hand, the surface-wide differences between error
and correct were still removed, and the impact of the base-
line varies less as a function of time, all suggesting this cor-
rection was an improvement over uncorrected measures. The
baseline window selected with this approach was —1,000 to
—900 ms, well before the stimulus was presented (e.g., range
of mean reaction times in the experiment 618-741 ms).

In Figure 7, differences between error and correct trials
are presented for the RID-TFPS measure, now baseline cor-
rected as described earlier. We illustrate the grand average
time—frequency surfaces depicting variation of the PLVs
between error and correct for a subset of electrodes. The
time—frequency surfaces are obtained by averaging the
error—correct difference synchrony values across subjects.

In Figure 8, we present the spatial localization of the differ-
ences between error and correct trials for both wavelet- and
RID-TFPS measures. The left side of the plot contains topo-
graphic representations of the grand error—correct difference
in the ERN theta window (25-75 ms after the response and
in the 4-8 Hz range). The right side depicts the statistical
assessment of the differences using the Wilcoxon sign-rank
test. In these figures, increased synchrony for error trials rela-
tive to correct can be observed in central electrodes (proximal
to primary motor areas). These differences are statistically
significant, as detailed in the topographic map of Wilcoxon
P-values. This is notable in comparison to other regions,
such as occipital and frontal, which have few apparent or
significant differences. Topographic significance patterns
between the wavelet and RID are similar, providing further
support for the view that the two TFPS measures are index-
ing the same underlying synchrony. This offers some valida-
tion for the RID-TFPS relative to the previously published
wavelet-TFPS approach, and thus provides motivation for
future efforts to utilize the improved time—frequency sup-
port offered by the RID to better isolate the time—frequency
attributes of biological signals (e.g., the ERN).

DISCUSSION

In this article, we have introduced a new time-varying
measure of phase synchrony for quantifying large-scale

Error-Correct Difference Error vs. Correct

RID-TFPS

RID-TFPS Wilcoxon

E +05 p<.01
i P U p>.05

Figure 8.
Comparison of the RID-TFPS and the wavelet-TFPS topographic
maps for the error—correct difference in the ERN theta window.
The right side of the plot depicts the statistical assessment of
the differences using the Wilcoxon sign-rank test.
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neural synchrony in the brain. The proposed measure is
based on a complex-valued TFD introduced by Rihaczek
[1968]. The time-varying phase and phase synchrony
measures are defined based on this complex distribution.
The effectiveness of the proposed measure in quantifying
time-varying phase synchrony was verified both through
simulations and with EEG data recorded from human
subjects.

The proposed RID-TFPS measure is shown to provide
higher time-frequency resolution and improved robust-
ness under noise compared with the wavelet-TFPS. The
increased resolution is due to Rihaczek distribution being
based directly on the signal and its Fourier transform and
not involving a frequency-dependent window function
like the wavelet transform. Although the frequency-de-
pendent scaling property of the wavelet transform is use-
ful for detecting high-frequency transients, it inherently
imposes a certain time-frequency structure on the under-
lying signal, which in turn results in bias in the phase syn-
chrony estimates. This bias can be seen in both the
increased bandwidth across the instantaneous frequency
in Figure 4b and the reduced value of phase synchrony at
high SNRs in Figure 5a.

Results based on the analysis of EEG signals collected
during a study of ERN [Hall et al., 2007] revealed signifi-
cant and expected differences in phase synchrony between
error and correct responses. Statistically significant
increases in phase synchrony for error responses, relative
to correct, were observed 25-75 ms after the subject
response and in the 4-8 Hz range corresponding to the
ERN. The current analyses suggest that there is a topo-
graphically broad increase in interelectrode phase syn-
chrony for error trials in the theta range. This is consistent
with the idea that a number of regions become engaged
together in the function of performance monitoring. In the
current data, the phase synchrony differences are signifi-
cant for central electrodes near the primary motor areas,
suggesting that this measure may be indexing interactions
between the ACC and motor areas during error process-
ing. Although such inferences must be tentative, as sug-
gested earlier, this pattern of results can be anticipated
from the literature, suggesting that the new phase syn-
chrony measure may appropriately index activity between
regions understood to be implicated in the ERN.

The proposed RID-TFPS method was also compared to
the wavelet-TFPS for ERN data. The two measures looked
similar and were significantly correlated, suggesting that
they index the same underlying activity. The current effort
was intended to demonstrate stable behavior of the RID-
TFPS, rather than document specific gains in the time—fre-
quency representation of ERN activity per se. Neverthe-
less, the effect of known limitations in the wavelets can be
observed in the plots. Specifically, for both error and cor-
rect trial types, the RID-TFPS index depicts activity that is
more localized on the time-frequency surface (i.e., smaller
and more distinct areas of activation), while the wavelet-
TFPS displays characteristic temporal smoothing at lower

frequencies (see Fig. 6). These observations in biological
data, combined with the assessment of the simulated data
earlier, suggest that commonly understood limitations of
wavelet transforms are present in the current wavelet-
TFPS implementations. This provides motivation for more
detailed analysis of specific ERP phenomena, like the
ERN, to evaluate whether the improvements offered by
the RID-TFPS produce significant gains in disaggregating
such activity.

In this article, we have also proposed a methodology for
determining the significance of the computed phase syn-
chrony values both within a subject and across experimen-
tal conditions. To determine the significance of a
computed synchrony value, we generated surrogate data
ensembles consisting of independent white noise signals
with the same length as the original signal. The distribu-
tion of the synchrony values under this null hypothesis
was formed and statistical hypothesis testing was used to
determine the significance of synchrony from real data.
This approach tests whether the hypothesis that the actual
signals are independent can be rejected with a given prob-
ability. It is possible to extend the formulation of the null
hypothesis such that the surrogate data are generated
from shifted trials of the original data. In previous work, it
has been shown that both the white noise and shifted tri-
als approaches yield similar test statistics for the wavelet-
TFPS [Lachaux et al., 2002]. We have observed a similar
finding for the RID-TFPS and focus on white noise
approach for generating the surrogate data because of its
generalizability and because it is more analogous to assess-
ing synchronous brain regions within ongoing EEG.

One further difficulty in interpreting ERN phase syn-
chrony observed in raw EEG/ERP (untransformed data
recorded at the scalp) is that some of the observed syn-
chrony will likely be due to volume conduction. As sug-
gested earlier, this can happen when a neural source is
observable at more than one electrode. When the phase
synchrony between those two electrodes is computed,
some degree of the synchrony would be due to that single
source, instead of indexing two regions operating in syn-
chrony, which is the goal of the analysis. The baseline cor-
rection helps to a degree by attenuating volume
conduction-driven phase synchrony that is more tonic in
nature (e.g., consistently present in the baseline), although
failing to address additional volume conduction associated
with stimulus-locked activity (e.g., ERN). Additional meth-
ods are available to attenuate volume conduction by local-
izing activity toward the cortical surface (e.g., Laplacian
transforms) [Lachaux et al., 1999], but application of these
methods to the data would likely limit characterization of
activity from the deeper ACC source, where the ERN has
its primary generators. In recent work by Stam et al.
[2007], a new measure named the PLI has been introduced
to address the problem of volume conduction and active
reference electrodes in the assessment of functional con-
nectivity. The PLI is a measure of the asymmetry of the
distribution of phase differences between two signals and
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can separate consistent, nonzero phase difference from
random phase differences due to noise. The PLI is not lim-
ited to any particular phase estimation method and can
easily be adapted to the proposed RID-TFPS to replace
PLV. Thus, because our goal is to validate the behavior of
the phase estimation method with expected patterns of
phase synchrony, rather than make a definitive statement
about phase synchrony and the ERN, further efforts to
more completely isolate the regions of activity relative to
volume conduction are left for future work.

Apart from addressing the problem of volume conduc-
tion, EEG source localization methods such as current
dipole models and distributed models can be used to iden-
tify and isolate ERN activity [Michel et al., 2004]. Source
localization methods can be used to identify ERN activity
in areas of interest such as ACC (the known primary
source of ERN), lateral-PFC, and primary motor cortex.
Once localized signal models are derived for these areas,
the proposed phase synchrony measure can be applied
directly to these source signals to identify functional inte-
gration at the neuronal source level.

In this article, the application of the phase synchrony
measure focused on computing the connectivity with
respect to a reference electrode, FCz. The proposed mea-
sure can also be applied to quantify all possible pairwise
electrode interactions. This analysis would allow us to bet-
ter identify the local networks responsible for ERN. Simi-
larly, one can apply the proposed measure for quantifying
intertrial synchrony as in [Tallon-Baudry and Bertrand,
1999] to identify stimulus-related synchronization.

Similar to other bivariate measures of functional connec-
tivity, the proposed measure is limited in the sense that it
can only quantify pairwise interactions between electrodes
rather than identifying a group of electrodes or neuronal
sources that are synchronized. Recent work suggests that
it is possible to extend bivariate measures of phase syn-
chrony to the multivariate case by using the relationship
between instantaneous frequency and phase and estimat-
ing the instantaneous frequency locking in the time—fre-
quency plane [Rudrauf et al., 2006]. Similar to the method
proposed by [Rudrauf et al., 2006], one can use high-reso-
lution TFDs to estimate the instantaneous frequency of a
group of electrodes and estimate the frequency locking/
phase synchronization across trials and electrodes. This
extension would offer improvements over the wavelet-
based multivariate measures due to the uniformly high
time-frequency resolution provided by bilinear TFDs.
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