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Abstract: The corpus callosum facilitates communication between the cerebral hemispheres. Morphological
abnormalities of the corpus callosum have been identified in numerous psychiatric and neurological disor-
ders. To quantitatively analyze the thickness profile of the corpus callosum, we adapted an automatic thick-
ness measurement method, which was originally used on magnetic resonance (MR) images of the cerebral
cortex (Hutton et al. [2008]: NeuroImage 40:1701–10; Jones et al. [2002]: Hum Brain Mapp 11:12–32; Schmitt
and Böhme [2002]: NeuroImage 16:1103–9; Yezzi and Prince [2003]: IEEE Trans Med Imaging 22:1332–9), to
MR images of the corpus callosum. The thickness model was derived by computing a solution to Laplace’s
equation evaluated on callosal voxels. The streamlines from this solution form non-overlapping, cross-sec-
tional contours the lengths of which are modeled as the callosal thickness. Apart from the semi-automated
segmentation and endpoint selection procedures, the method is fully automated, robust, and reproducible.
We compared the Laplace method with the orthogonal projection technique previously published (Walter-
fang et al. [2009a]: Psych Res Neuroimaging 173:77–82; Walterfang et al. [2008a]: Br J Psychiatry 192:429–34;
Walterfang et al. [2008b]: Schizophr Res 103:1–10) on a cohort of 296 subjects, composed of 86 patients with
chronic schizophrenia (CSZ), 110 individuals with first-episode psychosis, 100 individuals at ultra-high risk
for psychosis (UHR; 27 of whom later developed psychosis, UHR-P, and 73 who did not, UHR-NP), and 55
control subjects (CTL). We report similar patterns of statistically significant differences in regional callosal
thickness with respect to the comparisons CSZ vs. CTL, UHR vs. CTL, UHR-P vs. UHR-NP, and UHR vs.
CTL.Hum Brain Mapp 32:2131–2140, 2011. VC 2011Wiley Periodicals, Inc.
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INTRODUCTION

The corpus callosum (CC) is a white matter structure
that facilitates communication between the cerebral hemi-
spheres. The dense myelination of the axons within the
CC makes it easily identifiable as hyperintense voxels in
mid-sagittal slices of T1-weighted magnetic resonance
(MR) images. Morphological abnormalities, identified
using thickness- or area-based analysis of the CC in MR

images, have been reported in degenerative disorders such
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as Alzheimer’s disease [Hampel et al., 1998], vascular de-

mentia [Pantel et al., 1998] and frontotemporal dementia

[Yamauchi et al., 2000], neuropsychiatric illnesses, includ-

ing schizophrenia [Bachmann et al., 2003; Downhill et al.,

2000], autism [Vidal et al., 2006], and bipolar disorder

(Brambilla et al., 2004), and other conditions such as trau-

matic brain injury [Beauchamp et al., 2009] and birth

trauma [Benjak et al., 2008].
Recent studies have used descriptions of the CC based on

regional thickness profiles constructed by measuring the

lengths of line segments traversing the cross-section of the

callosum at predefined intervals from the genu to the sple-

nium [Downhill et al., 2000; Peters et al., 2002; Walterfang

et al., 2009b]. In Downhill et al. [2000] and Walterfang et al.

[2009b], straight contours were produced via orthogonal

projection outward from a midline that bisected the CC and

connected two endpoints defined at the anterior tip of the

genu and the end of the splenium. The endpoints divide the

CC into superior and inferior boundaries, which are used as

terminating points for the contours. The midlines were dis-

cretized into 30 and 39 equally spaced nodes by Walterfang

et al. [2009b] and Downhill et al. [2000], respectively, from

which the contours were instantiated. Peters et al. [2002]

constructed straight contours by connecting 99 pairs of

boundary points chosen to be equally spaced according to

arc length parameterisations of the boundary contours.
Evidence from Schmitt and Böhme [2002], who investi-

gated the similar problem of generating cross-sectional tra-
versals in images of the cerebral cortex, showed that
overlapping contours were created by the orthogonal pro-
jection method in highly curved regions. Although the CC
is generally not as severely curved as the sulci and gyri of
the cerebral cortex, we demonstrate that overlapping con-
tours are produced by the orthogonal projection method in
curved callosal regions. This has implications for disorders
in which the callosum typically exhibits increased degrees
of curvature. For example, there is strong evidence that the
callosum shows increased curvature in some disease states,
such as schizophrenia [Casanova et al., 1990a; Casanova
et al., 1990b; Frumin et al., 2002; Narr et al., 2000; Walterfang
et al., 2008a], and a methodology which remains valid even
in the presence of increased curvature is desirable when
these disease states are compared against controls.

The presence of overlapping contours within a callosal
thickness model renders the model invalid in terms of
mathematical and anatomical aspects. Mathematically, at
the point of intersection between two overlapping con-
tours, the thickness function is multivalued, which is
mathematically invalid. Anatomically, the fibres of the CC
exhibit a predominantly homotopic organisation, which
progresses along an anterior–posterior trajectory, that is
mirrored in the cerebral cortex [Hofer and Frahm, 2006].
Although crossing contours are not invalid in light of this
topography, they do produce a contour ordering that dis-
agrees with this organisation.

To address these issues for thickness measurements for
the CC, we draw on methods that were developed for the
related problem of cortical thickness measurement [Barta
et al., 2005; Fischl and Dale, 2000; Hutton et al., 2008; Jones
et al., 2002; MacDonald et al., 2000; Schmitt and Böhme,
2002; Yezzi and Prince, 2003; Zeng et al., 1998]. The prob-
lem of cortical thickness measurement is more difficult at
the segmentation stage due to segmentation uncertainties
in the location of borders due to partial volume effects.
These issues are not as problematic in the callosum as the
boundaries are typically distinguishable from surrounding
structures based on intensity alone. The thickness models
proposed for the cortex, however, are directly transferable
to the callosum.

A subset of the abovementioned methods modeled the
cortical thickness using: signed distance functions [Zeng
et al., 1998], minimal Euclidean distances between verti-
ces located on mesh-based estimates of each cortical sur-
face [Fischl and Dale, 2000; MacDonald et al., 2000] and
orthogonal projection from the inner boundary to the
outer boundary [Barta et al., 2005; MacDonald et al.,
2000]. In the first and second cases, many-to-one map-
pings may be produced because a single node or voxel
may be minimally distant to many nodes or voxels on
the other surface. Application of the third method to the
callosum, in 2D, would be prone to contour intersections
as per the orthogonal projection method described
previously.

In this article, we propose a thickness model for the cor-
pus callosum that is based on the attractive mathematical
properties of Laplace’s equation [Hutton et al., 2008; Jones
et al., 2002; Schmitt and Böhme, 2002; Yezzi and Prince,
2003]. In this heuristic, the cortical boundaries are assigned
unique numeric potential values. The solution of Laplace’s
equation, obtained for all voxels within the cortex, pos-
sesses equipotential surfaces that make a smooth transition
across the cortex. The cortical thickness of each cortical
voxel is measured as the length of the streamline that
passes through the voxel and intersects with each bound-
ary. It can be shown that the streamlines are non-overlap-
ping, nominally parallel and intersect the boundary
contours orthogonally. This model possesses the desirable
qualities of being fully automated, being able to construct
contours that are organised sequentially along an anterior–
posterior trajectory akin to the organisation of the connec-
tions from the CC to the cortex [Hofer and Frahm, 2006],
and the mathematical properties of Laplace’s equation
guarantee valid thickness measurements.

We present a validation of the Laplace equation thick-
ness model by reproducing the statistical analysis results
of Walterfang et al. [Walterfang et al., 2008a, 2008b,
2009a], that demonstrated changes in global and/or re-
gional callosal thickness across illness stages in schizo-
phrenia. Thus, the main contribution of this article is to
propose a robust, mostly automated and biologically plau-
sible model to perform regional thickness analysis of the
corpus callosum.
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METHOD

Participants

The participants have been previously described in a se-
ries of analyses using the original straight-line method for
analyzing regional callosal thickness [Walterfang et al.,
2008a, 2008b, 2009a]. In brief, we recruited 86 patients with
chronic schizophrenia (CSZ), 110 individuals with first-epi-
sode psychosis (FEP), 100 individuals at ultra-high risk for
psychosis (UHR; 27 of whom later developed psychosis,
UHR-P, and 73 who did not, UHR-NP), and 55 control sub-
jects (CTL). The chief analyses mirrored those previously
published [Walterfang et al., 2008a, 2008b, 2009a], where we
compared each patient group with the control group, and
compared subgroups of the UHR group.

Image Acquisition

All subjects were scanned on a 1.5-T GE Signa MRI
machine. A three-dimensional volumetric spoiled gradient
recalled echo in the steady-state sequence generated 124
contiguous, 1.5 mm coronal slices. Imaging parameters
were TE, 3.3 ms; TR, 13.4 ms; flip angle, 30�; matrix size,
256 � 256; FOV, 24 � 24 cm matrix; voxel dimensions,
0.938 � 0.938 � 1.5 mm. Head movement was minimized
by foam padding and Velcro straps across the forehead
and chin. This scanner was calibrated fortnightly using the
same proprietary phantom to ensure stability and accuracy
of measurements. A numerical code was used to ensure
blind analysis of data.

Image Analysis

We model the callosal thickness, for a point, x0, inside the
callosum, as the length of the contour that: (i) traverses the
callosum from the superior to the inferior boundary; (ii)
intersects both boundaries orthogonally; and (iii) passes
through x0. When measuring the thickness for multiple
points inside the callosum, the collection of contours for these
points must be non-overlapping and be nominally parallel.

We segmented the callosum using a multistage algo-
rithm. The acquired images were skull stripped using an
automated method [Smith, 2002]. Using the software pack-
age Automated Image Registration [Woods et al., 1998],
images were registered to a template image comprising
the average of 152 normal T1-weighted MRI scans previ-
ously placed in stereotaxic coordinate space [Evans et al.,
1993]. A nine-parameter linear transformation was used
which allowed translation, rotation and scaling along each
of the three principal axes; this method accounts for brain
size and the differential effect of gender and illness on the
relationship between callosal and brain size [Bermudez
and Zatorre, 2001]. The midsagittal slice was then man-
ually identified and the CC was segmented using a histo-
gram method [Otsu, 1979]. All segmentations were
manually inspected to ensure that the fornix and perical-

losal artery were not included. If these structures were still
present, they were manually removed using the following
manual editing protocol: (i) the fornix was excluded by
following the inferior arc of the corpus callosum at the for-
nix-callosal boundary, whereas the pericallosal artery was
identified on some midsagittal slices and excluded by
removing its characteristic curve adjacent to the genu.

A two-step approach was used to construct the cross-sec-
tional contours. Initially, a user-initialized iterative search,
using the Nelder-Mead simplex method for nonlinear,
unconstrained optimisation [Lagarias et al., 1998], for opti-
mum end points that maximised the length of the centre line
of the callosumwas performed. These subdivided the bound-
ary contour into superior and inferior contours. The centre
line was defined by first dividing the upper and lower surfa-
ces of the callosum into 40 equidistant portions by 39 nodes.
The centre line was made up of the line segments joining the
endpoints and successive midpoints between corresponding
nodes on the upper and lower surfaces. Once the end points
had been identified by the local optimisation algorithm
described previously, a smooth centre line was obtained with
cubic spline interpolation between end points and successive
midpoints. This curve was divided into 40 segments of equal
lengths by 39 nodes. At each node, the distance of the line
extending orthogonally to each boundary of the callosum
represents the orthogonal projection callosal thickness.

In the method described in this article, we generate cross-
sectional contours, used to measure thickness, by solving
Laplace’s equation for all voxels inside the CC with pre-
scribed boundary conditions on the superior and inferior
contours. Formally, Laplace’s equation is a second order par-
tial differential equation that defines the scalar-valued poten-
tial field, /, defined for each voxel within the CC. The voxels
of the CC are enclosed by the contours csuperior, and cinferior,
which denote the superior and inferior boundaries of the cal-
losum, respectively. We use the Dirichlet problem form of
Laplace’s equation which is defined, in two dimensions, as,

r2/ ¼ d2/
dx2

þ d2/
dy2

¼ 0; (1)

subject to the following boundary conditions

/ csuperior
� � ¼ /superior

/ cinferiorð Þ ¼ /inferior
;

/superior 6¼ /inferior;

/superior 2 <;/inferior 2 <;

(
(2)

where /superior and /inferior are predefined constants.
The boundary conditions at the endpoints of the contours

require special treatment to ensure that / remains single
valued. The boundary contours are assumed to meet, but
not intersect, so that csuperior \ cinferior ¼ [. Then, we assume
that linear segments, of infinitesimal size, join the boundary
contours at their endpoints. Thus, the function / makes lin-
ear transitions from /superior and /inferior along these linear
segments. Therefore, endpoint-originated streamlines will
follow this linear trajectory, joining the endpoints. These
assumptions ensure that / remains single valued. Given

r Thickness Profile Generation for the Corpus Callosum r

r 2133 r



that the callosum is discretized for computation, the end-
point segments will traverse the space between the voxels
that represent the endpoints of the boundary contours.

For any point x0 inside the callosum, we define the re-
gional thickness, at that point, as the total arc length of the
streamline that traverses the callosum from superior to in-
ferior boundary and passes through x0. Computationally,
we construct each streamline as the concatenation of two
parametric curves u(s) ¼ (x(s), y(s)) and v(t) ¼ (x(t), y(t)),
with arc length parameters s and t, respectively, whose
trajectories follow and oppose the normalised gradient of
/. Formally, we solve the following ordinary differential
equation to construct the streamlines:

u0 sð Þ ¼ r/ u sð Þð Þ
r/ u sð Þð Þj j

u 0ð Þ ¼ x0

v0 tð Þ ¼ � r/ v tð Þð Þ
r/ v tð Þð Þj j

v 0ð Þ ¼ x0

8>>>>>><
>>>>>>:

; (3)

The directionality of these contours implies that /superior

< /inferior. For convenience, we chose /superior ¼ 0 and
/inferior ¼ 1.

The finite difference method (FDM) is used to discretize (1)
and (2) to evaluate / for each callosal voxel, using the stand-
ard 5-point template to approximate the second derivatives,

r2/i;j �
/iþ1;j � 2/i;j þ /i�1;j

Dyð Þ2 þ /i;jþ1 � 2/i;j þ /i;j�1

Dxð Þ2 (4)

where /i,j denotes the value of (1) for voxel (i, j) and �x
and �y denote the voxel width and height, respectively.
Equation 4 was translated into a symmetric, positive-defi-
nite system of linear equations that was solved using the
iterative conjugate gradients method.

We used the first-order Euler approximation to evaluate
(3) numerically as follows

u sþ Dsð Þ ¼ u sð Þ þ Ds
r/ u sð Þð Þ
r/ u sð Þð Þj j

v tþ Dtð Þ ¼ v tð Þ � Dt
r/ v tð Þð Þ
r/ v tð Þð Þj j

��������

8>><
>>: ; (5)

where Ds and Dt denote predefined step lengths. The gra-
dient operators are approximated using first-order linear
interpolation. We select a collection of initial points by dis-
cretizing the equipotential contour, / = (/superior /inferior)/
2, into 41 equally spaced nodes, of which the middle 39
are chosen for thickness measurements. The initial points
must be chosen to lie on the same equipotential surface to
ensure that contours overlap. The arc lengths of the curves
formed by concatenating the u and u contours emanating
from the midpoints is defined as the Laplace method cal-
losal thickness profile.

To compare the orthogonal projection and Laplace equa-
tion methods in a valid way, the endpoints and boundary
contours, generated from the preprocessing steps of the or-
thogonal projection method, were used for both methods
in subsequent steps. Thus, the only difference between the
methods lies in the construction of the cross-sectional
contours.

For analysis of between-group differences with both
methods, a non-parametric permutation method of 20,000
randomisations was used for all group comparisons to
examine for an effect of group, to account for non-inde-
pendence between adjacent thickness measurements and
for multiple comparisons [Holmes et al., 1996]. Step-
down t testing to determine which regions showed sig-
nificant change was planned to localise between-group
differences in regional callosal thickness. Statistical infer-
ence was based on the method of Holm, which controls
for multiple comparisons of non-independent measures
by controlling the family-wise error rate without assum-
ing independence of adjacent callosal thickness measures
[Holm, 1979].

RESULTS

Figure 1 depicts the cross sectional contours generated
by the Laplace equation method (A) and the orthogonal
projection method (B) on an idealized corpus callosum
using the Laplace equation method, whereas (C) and (D)
compare the node positions and the resultant thickness
profiles, respectively, constructed by both methods on
the same callosal image. The contours labelled 36 and
37 in (B) are examples of overlapping contours produced
by the orthogonal projection method, and (C) reveals
that there are discrepancies between the nodal locations
used by the two methods. The Laplace method midline
seems to have smaller overall distance because of its ge-
ometry near the genu and splenium as illustrated in the
inset in Figure 1(A). Therefore, the extreme nodes pro-
duced by the Laplace method are more advanced
lengthwise along the callosum than their orthogonal pro-
jection method counterparts. Despite these disparities in
nodal locations, these methods produce similar thickness
profiles [Fig. 1(D)], suggesting that direct comparison of
statistical analysis results produced by these methods is
valid.

As previously noted, the orthogonal projection method
is prone to producing overlapping contours. Figure 2
quantitatively reveals that there are high concentrations of
overlapping contours at the genu and splenium. This vali-
dates our earlier statement that the orthogonal projection
method is prone to constructing crossing streamlines
within regions of high curvature. Note that there are no
occurrences of overlapping contours in the midbody of the
callosum, which has limited curvature. In addition, cross-
ing streamlines occur in a high number of cases, with the
maximum proportions of callosi in which overlapping
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contours occur in these areas, across the entire dataset, are
64.16 and 31.66%, respectively.

Figure 3 shows a selection of particular callosi in which
the effects of overlapping were particularly profound on
callosal thickness measurements. Specifically, panels (A–C)
contain callosi in which slices 37, 38, and 37 (indicated by

the white arrows), respectively, located in the splenium,
were constructed incorrectly. Rather than terminating
within the inferior portion of the splenium, these stream-
lines penetrate into the midbody and intersect with multi-
ple rostral neighbours. As a result, their callosal
thicknesses are overestimated. The same slices in the Lap-
lace equation terminate within the splenium. Figure 3(D)
displays the typical overlapping pattern in the genu,
where multiple streamlines converge on the highly curved
segment of the inferior boundary, annotated by the white
arrow. At the inferior boundary the streamlines of the or-
thogonal method overlap, resulting in overestimated thick-
ness values, although the streamlines constructed by the
Laplace equation method converge to similar locations,
they do not overlap.

To further investigate the validity of comparing statisti-
cal analysis results between the two methods, Figure 4
presents the nodal mean thicknesses and variances for the
CTL cohort. The profile of the mean thickness is consistent

Figure 2.

(A) Idealized callosum with the contours colored according to

the number of callosi, as a percentage, in the dataset in which

that contour intersected with at least one other contour. (B)

Graphical representation of (A) with the non-intersecting nodes,

across the entire dataset, omitted.

Figure 1.

Laplace equation thickness model (A) and orthogonal projection

method thickness model (B) shown on an idealized corpus cal-

losum. The 39 sampled streamlines in (A) and (B) are colored

according to callosal thickness and are annotated with their indi-

ces, which were chosen to increase caudally. (A) (Inset) Magnifica-

tion of the streamlines (not colored according to callosal

thickness), constructed from a denser sampling of the midline,

near the splenium. A comparison of the node locations and result-

ant regional thickness profiles of the two methods are shown in

(C) and (D), respectively.
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across the two methods and the variance values are com-
parable, which provides further evidence that comparison
of statistical analysis results of these methods is valid.

A comparison of group-wise statistical analysis results
generated by the straight-line and Laplace methods can be
seen in Figure 5, with significant regional between-group
changes mapped to a mean callosum. When CSZ were
compared with CTL, a similar profile of significant reduc-
tions was seen in the anterior (Laplace: nodes 1–5, orthog-
onal projection: 1–5) and posterior genu (Laplace: 11 & 14–
15, orthogonal projection: 11–18), and in the body and isth-
mus (Laplace: nodes 20–21 & 29, orthogonal projection:

20–21, 27–30), and were highly significant for both meth-
ods (Laplace: P < 0.005, orthogonal projection: P < 0.005).
When the FEP and CTL groups were compared, reduc-
tions were again seen in the anterior genu (Laplace: 1-2,
orthogonal projection: 1-4), which were at trend level for
both methods (Laplace: P ¼ 0.056, orthogonal projection:
P ¼ 0.053). When UHR and CTL groups were compared,
no significant differences were detected using either
method (P ¼ 0.75 using the Laplace method, P ¼ 0.64
using the straight-line method). When the UHR-P and
UHR-NP groups were compared, significant reductions
were again seen at the level of the genu (Laplace: nodes

Figure 3.

Four selected callosi with overlapping streamlines produced by the orthogonal projection method.

In each figure, the top panel shows the streamlines produced by the orthogonal projection method,

whereas the lower panel shows the streamlines produced by the Laplace equation method.
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3-4, orthogonal projection: nodes 1-4) and were significant
for both (Laplace: P < 0.01, orthogonal projection: P <
0.05). Although the statistically significant profiles were
broadly in the same areas across these datasets, the Lap-
lace method produced fewer regions of significant differ-
ence, particularly in the genu of the callosum, where
curvature is greatest. Results using the Laplace methodol-
ogy are broadly consistent with findings already published
on this dataset [Walterfang et al., 2008a, 2008b, 2009a].

DISCUSSION

We used an adaptation of the method in [Hutton et al.,
2008; Jones et al., 2002; Schmitt and Böhme, 2002; Yezzi and
Prince, 2003], for measuring thickness between the superior

and inferior surfaces of the corpus callosum. The Laplace

equation thickness measurements produced similar results

in between-group comparisons to the straight-line method

across a large dataset in whom robust and meaningful dif-

ferences have previously been demonstrated.
The primary motivation for developing the Laplace

equation method was that the desirable properties of or-
thogonal boundary intersections and non-overlapping con-
tours were guaranteed. We do not claim that the Laplace
method provides a more biologically valid thickness mea-
sure because current in vivo imaging techniques cannot be
used to validate any method against the microscopic organi-
sation of the fibres within the CC. In this sense, any subdivi-
sion method of the CC that is purely applied to MR data is
heuristic in nature. However, the properties of Laplace’s
equation guarantee desirable mathematical and geometric
properties of the thickness measurement contours.

Figure 4.

Mean thickness and variance values for the Laplace and Orthogonal projection thickness

measurement methods for the CTL group. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 5.

Comparison of statistical analysis results using the orthogonal projection callosal thickness measure

(first row) and the Laplace method callosal thickness measure (second row). The columns of the

figure denote the CSZ vs. CTL (A), FEP vs. CTL (B), and the UHR-P vs. UHR-NP (C) contrasts.
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Apart from the segmentation of the CC and the selection
of the endpoints, which were performed semi-automati-
cally to validly compare results with the previous tech-
nique, the discretization of the callosum is fully automatic.
The mathematical properties of the thickness model,
derived from Laplace’s equation, guarantee that the thick-
ness measures are derived from non-intersecting contours.
As a result, our methodology avoids the potential limita-
tion of methods that use orthogonal projections, where
intersections may occur in areas of high curvature (such as
at the genu or splenium). The Laplace equation thickness
model thus avoids ‘‘crossing’’ thickness measures, and
may be more suitable for a curved structure.

We found that using Laplace’s equation yielded similar
results to our original analysis using a thickness measure-
ment derived from a straight line orthogonal to a calcu-
lated mid-spline traversing the callosum, suggesting that
applying the Laplace methodology to calculating callosal
thickness has face validity in that it detects change in simi-
lar regions to those where change was detected using the
straight-line methodology. As seen in the CSZ vs. CTL
comparisons, fewer slices in the genu are significantly dif-
ferent across groups, and in the FEP vs. CTL comparisons,
no genu slices differ significantly; the findings in the UHR
group are similar to the orthogonal projection method.
Here, the foci of significant change appear in similar
regions, but are less strongly positive. On the basis of the
evidence that the orthogonal projection method produced
overlapping contours in the genu, the Laplace equation
method may reduce false positive results that occur in
areas of high curvature, such as in the genu. This cannot
be attributed to a more conservative statistical approach,
as the permutation method used for each analysis was
identical. It is also possible however that application of the
Laplace equation method reduces sensitivity to detect
change, resulting in a lack of detection of true differences.

This adaptation of Laplace’s equation differs from the
original cortical thickness description in a few key areas.
Firstly, our application of this methodology to a mid-sagittal
callosal image occurs in two dimensions rather than three,
although the Laplace equation is equally mathematically
valid to describe a contour connecting two points in both
circumstances, as the Laplace operator may be defined in
any number of dimensions and the nested sublayers that
are derived using Laplace’s equation can occur in two or
three dimensions. Furthermore, the robust measurement of
cortical thickness requires the careful measurement of the
inner cortical boundary, which requires careful segmenta-
tion of outer grey from inner white matter (usually based on
voxel intensity), and errors in segmentation can result in
incomplete surfaces. Due to the nature of the mid-sagittal
image of the callosum, with a large continuous region of
high-intensity white matter voxels with a well-defined
edge, the superior and inferior boundary of the callosum is
very well-defined using histogram segmentation.

One additional departure from [Hutton et al., 2008; Jones
et al., 2002; Schmitt and Böhme, 2002; Yezzi and Prince,

2003], is that, unlike in the cerebral cortex, the superior and
inferior boundaries of the corpus callosum do ultimately
meet at its anterior and posterior endpoints. This raises the
question of how to accurately measure thickness near
the callosal endpoints. The inset of Figure 1(A) displays the
behaviour of the streamlines near the endpoints, where a
denser sampling of the midline was used to make the prop-
erties more obvious. Because the angle between the bounda-
ries becomes obtuse, the streamlines must become
increasingly curved and their endpoints must converge
until ultimately colliding at the intersection between the
boundaries. Arguably these streamlines do not make cross-
sectional traversals and, although these streamlines may be
used in shape descriptors, therefore their lengths should not
be interpreted as thickness measures. We used the 39-point
subdivision because the extreme contours were sufficiently
distant from the endpoints to make cross-sectional traver-
sals. It is notable that no significant differences were found
in thickness measures at the endpoints, positive findings in
future analyses at these endpoints would need to be inter-
preted cautiously.

Attempts to improve the validity and robustness of neu-
roimaging methodologies are aimed at allowing research-
ers to enhance their capacity to detect true differences
between diseased and healthy brains, and to monitor
changes in brain structure and function with illness pro-
gression or in response to treatment.

Through utilization of the Laplace equation to robustly
measure thickness of the callosum across its entire struc-
ture, including more highly curved regions near its end-
points, a more valid measure of regional callosal thickness
may allow us to undertake more biologically meaningful
and relevant analyses of regional callosal changes that
occur in disease states.

The medial representation (M-rep) method of Pizer et al.
(2003) is an alternative technique to produce non-overlap-
ping, cross-sectional contours for CC thickness measure-
ments. For the CC, the thickness is measured using
‘‘spoke’’ contours that emanate from a medial axis, which
bisects the CC from the genu to the splenium. This model
was applied to the CC by Yushkevich et al. [2001] and the
continuous version (cm-reps) [Yushkevich et al., 2008],
which uses the same ‘‘spoke’’ contours for thickness com-
putation was applied by Sun et al. [2006]. However,
although the contours emanating from the medial axis are
linear, the cross-sectional contours, formed by concatenat-
ing two ‘‘spoke’’ contours originating from the same node,
is only piecewise-linear. Nonetheless, both the M-rep and
the Laplace are computationally elegant models of thick-
ness and do not necessarily reflect the underlying anatomy
of the CC. Therefore, neither of these methods are inher-
ently superior in calculating biologically valid thickness
measurements.

The novel aspect of the recent work of Yushkevich et al.
[2008] is that the callosal segmentation was extended later-
ally, beyond the midsagittal slice and this work examined
the 3D callosal morphology. The Laplace equation
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thickness model is also applicable in this context. An ave-
nue for future work is to investigate whether this extended
definition of callosal geometry, using both thickness mod-
els, leads to a more informative description of disease
states.
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Walterfang M, Yücel M, Barton S, Reutens D, Wood A, Chen J,
Lorenzetti V, Velakoulis D, Pantelis C, Allen N (2009b):

r Thickness Profile Generation for the Corpus Callosum r

r 2139 r



Corpus callosum size and shape in individuals with current
and past depression. J Affect Disord 115:411–420.

Walterfang M, Yung A, Wood A, Reutens D, Phillips L, Wood S,
Chen J, Velakoulis D, McGorry P, Pantelis C (2008b): Corpus
callosum shape alterations in individuals prior to the onset of
psychosis. Schizophr Res 103:1–10.

Woods R, Grafton S, Holmes C, Cherry S, Mazziotta J (1998):
Automated image registration I: General methods and intra-
subject, intramodality validation. J Comput Assist Tomogr
22:155–165.

Yamauchi H, Fukuyama H, Nagahama Y, Katsumi Y, Hayashi T,
Oyanagi C, Konishi J, Shio H (2000): Comparison of the pat-
tern of atrophy of the corpus callosum in frontotemporal de-

mentia, progressive supranuclear palsy, and Alzheimer’s
disease. J Neurol Neurosurg Psychiatry 69:623–629.

Yezzi AJ Jr, Prince JL (2003): An Eulerian PDE approach for com-
puting tissue thickness. IEEE Trans Med Imaging 22:1332–1339.

Yushkevich P, Pizer S, Joshi S, Marron JS (2001): Intuitive, Local-
ized Analysis of Shape Variability. Information Processing in
Medical Imaging. pp 402–408.

Yushkevich PA, Zhang H, Simon TJ, Gee JC (2008): Structure-spe-
cific statistical mapping of white matter tracts. NeuroImage
41:448–461.

Zeng X, Staib LH, Schultz RT, Duncan JS (1998): Segmentation
and Measurement of the Cortex from 3D MR Images. MICCAI
1998 – LNCS 1496. pp 519–526.

r Adamson et al. r

r 2140 r


