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Abstract: The ability to detect neuronal activity emanating from deep brain structures such as the hippo-
campus using magnetoencephalography has been debated in the literature. While a significant number of
recent publications reported activations from deep brain structures, others reported their inability to detect
such activity even when other detection modalities confirmed its presence. In this article, we relied on real-
istic simulations to show that both sides of this debate are correct and that these findings are reconcilable.
We show that the ability to detect such activations in evoked responses depends on the signal strength, the
amount of brain noise background, the experimental design parameters, and the methodology used to
detect them. Furthermore, we show that small signal strengths require contrasts with control conditions to
be detected, particularly in the presence of strong brain noise backgrounds. We focus on one localization
technique, the adaptive spatial filter (beamformer), and examine its strengths and weaknesses in recon-
structing hippocampal activations, in the presence of other strong brain sources such as visual activations,
and compare the performance of the vector and scalar beamformers under such conditions. We show that
although a weight-normalized beamformer combined with a multisphere head model is not biased in the
presence of uncorrelated random noise, it can be significantly biased in the presence of correlated brain
noise. Furthermore, we show that the vector beamformer performs significantly better than the scalar
under such conditions. We corroborate our findings empirically using real data and demonstrate our abil-
ity to detect and localize such sources.Hum Brain Mapp 32:812–827, 2011. VC 2010Wiley-Liss, Inc.
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INTRODUCTION

Neuroimaging of cognitive functioning, such as memory
processes, requires detection of neuronal activity emanat-
ing from deep brain structures, such as the hippocampus.
Numerous experiments spanning several imaging modal-
ities including functional MRI (fMRI) and positron emis-
sion tomography (PET) have demonstrated involvement of
the hippocampus in a wide range of memory-related
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processes. For example, hippocampal activation had been
detected during memory encoding and retrieval [Davachi
and Wagner, 2002; Henke et al., 1997], working memory
[Ranganath and D’Esposito, 2001], relational problem solv-
ing [Astur and Constable, 2004; Greene et al., 2006; Heck-
ers et al., 2004; Meltzer et al., 2008; Moses et al., 2010;
Nagode and Pardo, 2002], and spatial navigation [Astur
et al., 2005; Iaria et al., 2003].

While many imaging modalities can be used to detect
activity from deep brain structures, magnetoencephalogra-
phy (MEG) and electroencephalography (EEG) are unique
in being noninvasive techniques that can directly observe
neuronal currents, thus providing millisecond time resolu-
tion, orders of magnitude higher than the time resolution
of fMRI and PET. Unlike the electrical signals measured
by EEG, the magnetic fields measured by MEG pass
through the various head tissue and scalp relatively undis-
torted. The ability to track the source time course with
such high resolution provides the means for examining
the contributions of various frequency bands to the source
power spectrum, allowing exploration of the underlying
processes responsible for these neuronal currents. For
example, y-band oscillations have been implicated in hip-
pocampal activity using this technique [Cornwell et al.,
2008; Tesche and Karhu, 2000].

A large body of empirical evidence has recently accu-
mulated demonstrating the ability of MEG to detect sig-
nals from deep brain structures such as the hippocampus
during a variety of memory processes such as memory
encoding and retrieval [Breier et al., 1998, 1999; Papanico-
laou et al., 2002; Riggs et al., 2009], working memory
[Tesche and Karhu, 2000], prospective memory [Martin
et al., 2007], relational problem solving [Hanlon et al.,
2003, 2005; Moses et al., 2009], and spatial navigation
[Cornwell et al., 2008]. However, the debate over these
results continued as other experiments examining hippo-
campal activity with MEG yielded mixed results. For
example, experiments that attempted to detect spontane-
ous epileptic discharges using MEG, while simultaneously
recording them using subdural electrodes yielded mixed
results [Mikuni et al., 1997]. Sources found to have low
strength as recorded by the subdural electrodes were less
likely to be detected by MEG, with only 13% of such sour-
ces detected when their signal strength was below 100
nAm. As epileptic discharges span source strengths over
an order of magnitude higher than stimulus-evoked sour-
ces [Stephen et al., 2005], this led some to believe that
detection of stimulus-evoked sources with MEG is
unlikely. Such generalizations, however, are inaccurate as
several distinctions exist between the detection of sponta-
neous brain activity and stimulus-evoked activity.

In this article, we rely on realistic simulations of stimu-
lus-evoked activity to show that while smaller signals are
more difficult to detect, when the design parameters and
methodology are optimized, and in the context of group-
averaged stimulus-evoked activity, signals below 10 nAm
can be detected. We examined how the detectability and

localization of hippocampal signals depend on several fac-
tors in addition to source strength, including random noise
and brain noise backgrounds, the experimental design pa-
rameters such as the number of trials and the number of
subjects, the analysis techniques, and, in particular, whether
control conditions are used. We focused on the ability of
the adaptive spatial filter combined with a multisphere
head model to properly localize hippocampal signals in the
presence of visual field backgrounds and carefully exam-
ined its biases in the presence of brain noise. We demon-
strated that while the weight-normalized [and hence, unit-
noise-gain (UNG)] adaptive spatial filter combined with a
multisphere head model is not biased in the presence of
random noise, it can be biased in the presence of brain noise
resulting in hippocampal activations being localized out-
side the hippocampal structure, particularly for small sig-
nals. We also conducted a comparison between scalar and
vector beamformers and demonstrated that scalar beam-
formers have a higher failure rate in detecting hippocampal
signals in the presence of visual fields. Finally, we applied
our findings to real data and empirically demonstrated our
ability to detect and localize hippocampal sources.

THEORY AND METHODS

Adaptive Spatial Filtering Formalism

Beamformers are based on the concept of spatial filter-
ing, where the aim is to pass the signal from the location
of interest while blocking signals from all other locations.
The operator of a spatial filter is a weight vector, w(r),
which when applied to the measurement vector creates a
weighted sum representing an estimate of source activity
from the desired location, r. A functional image, therefore,
requires N such weight vectors, where N is the number of
brain locations (voxels) in the image. For a brain location
of interest, r, the source activity at time t is the output of
the spatial filter and is given by

sðr; tÞ ¼ wTðrÞbðtÞ; (1)

where b(t) is the measurement vector given by

bðtÞ ¼ ½b1ðtÞ; b2ðtÞ; b3ðtÞ; : : : ; bMðtÞ�T (2)

for an MEG system with M sensors. In this article, we fol-
low the convention that plain italics indicate scalars, bold-
face lower-case letters represent vectors, whereas boldface
upper-case letters represent matrices.

Defining a lead field vector, l(r), as the output of the sen-
sor array corresponding to a source of unit moment at loca-
tion r, the desired effect of passing signals from location rp
while blocking signals from other locations requires that

wTðrpÞlðrqÞ ¼ 0; (3)

where rp and rq represent any two distinct locations, and
where for simplicity, we assume that a fixed source
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direction at each location has been determined. We return
to this topic below where we consider a more general
case.

In reality, it is impossible to satisfy Eq. (3) and fully attenu-
ate all sources outside the spatial location of interest. The
exercise of designing an optimum spatial filter, therefore,
amounts to minimize the contribution from sources outside
the location of interest. This is achieved either through a MV
or least-mean-squares technique, and in all cases, the solu-
tion to this problem takes the form [Reddy et al., 1987]

woptðrÞ ¼ cR�1lðrÞ; (4)

where c is a scalar whose value depends on the details of
the method used, and R is the second-order moment ma-
trix about the mean (often referred to as the covariance
matrix) given by

R ¼ bðtÞbTðtÞ� �
; (5)

where hi indicates the expectation value.
The MV-based beamformers find a set of weights, w(r),

which minimize the variance at the filter output,

min
w

wTðrÞRwðrÞ; (6)

subject to a constraint; the choice of this constraint deter-
mines the beamformer properties in terms of location bias,
resolution, and the presence of artifacts. One popular
choice is the unit-gain (UG) constraint, where the signal
from the location of interest, rp, is required to satisfy

wT
UGðrpÞlðrpÞ ¼ 1; (7)

to preserve the source magnitude. While this choice yields
a good image resolution, it can be shown to be biased and
can result in strong artifacts near the center. The constraint

wT
LFðrpÞlðrpÞ ¼ ||lðrÞ||; (8)

on the other hand, results in the same high resolution and
can be shown to be unbiased with no artifacts near the
center [Sekihara et al., 2005], although it applies a variable
gain to the source amplitude depending on its location.
This type of beamformer is often referred to as a lead-field
(LF) constrained or array-gain constrained. A third type of
beamformer, the UNG beamformer imposes a constraint
on the gain such that the weights satisfy

wT
UNGðrpÞwUNGðrpÞ ¼ 1; (9)

and results in no localization bias and significantly higher
resolution than the other two constraints above.

The bias of the UG constrained beamformer has been
corrected in the literature by dividing the source power by

the noise power [Van Veen et al., 1997], resulting in a
quantity described in units of pseudo-z scores [Robinson
and Vrba, 1999]. In the presence of uncorrelated random
noise that is identical across all channels, this modification
is equivalent to normalizing the weights so that

wPZ ¼ wx

rN½wT
xwx�1=2

; (10)

where r2N is the noise variance and wx represents either
wUG, wLF, or wUNG. It is worth noting that this normaliza-
tion makes the UG beamformer or the LF normalized
beamformer equivalent to the UNG constrained beam-
former in terms of resolution and localization accuracy as

wUNG ¼ wx

½wT
xwx�1=2

: (11)

In terms of the constraints, this means that the normal-
ization in Eq. (11) effectively removes the constraint in Eq.
(7) [or Eq. (8)] and replaces it with the condition in Eq. (9).
The performance of any adaptive spatial filter also
depends on the parameters affecting the accuracy of the
covariance matrix such as the frequency bandwidth and
the integration time. For a detailed assessment of these pa-
rameters on the beamformer performance, we refer the
interested reader to the recent publication by Brookes
et al. [2008].

The minimization in Eq. (6) subject to the constraint in
Eq. (7) can be shown to satisfy the condition in Eq. (3) for
a limited number of point sources in the absence of noise
and, hence, block signals from other locations. In the pres-
ence of noise, however, this minimization serves only to
reduce interference from such signals even when consider-
ing only two point sources. Strong sources from other
locations may still make significant contributions to the so-
lution, a phenomena often termed leakage. Reddy et al.
[1987] derived an expression for the power output of two
fully uncorrelated point sources and showed that in the
presence of noise, the complete blocking of signals from
outside the location of interest may not be achieved. In
this article, we will show how leakage presents a serious
challenge for the beamformer when the source of interest
is a weak source and other strong sources are present, by
attempting to localize hippocampal activation in the pres-
ence of primary visual sources, a case that is typical in
such experiments.

The solution to the optimization problem in Eq. (6) can
be achieved using the method of Lagrange multipliers,
which determines c in Eq. (4) to be

cUG ¼ ½lTðrÞR�1lðrÞ��1; (12)

for the UG constrained beamformer. The solution with the
LF constrained beamformer has the same format with l(r)
replaced by l0(r) in Eq. (4), where
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l0ðrÞ ¼ lðrÞ
||lðrÞ|| : (13)

The UNG constrained beamformer gives

cUNG ¼ ½lTðrÞR�2lðrÞ��1=2: (14)

The formalism presented so far assumes the source
direction to be known and, hence, applies to a scalar
beamformer for which the source direction is determined
by a separate procedure. The techniques usually used to
calculate the source direction, however, integrate over a
wide time range often involving hundreds of milliseconds.
As sources are typically active over a short range, this
results in averaging over significant amounts of noise
(instrumental noise, brain noise, and leakage) which may
or may not be isotropic. This issue becomes particularly
significant for small SNR sources. In addition, by integrat-
ing over a wide time range, one assumes that only one
source with a constant orientation is active at a given
voxel over the entire time range. Using a vector beam-
former one can avoid such assumptions and biases by cal-
culating the three components of the weight vector to
track the three components of the source activity vector.
However, as radial components of source activity inside a
conducting sphere are not detectable outside the sphere,
one can switch to spherical coordinates and track the tan-
gential (y and /) components only. In this case, the
weights, source activity, and forward solution are given by

WðrÞ ¼ ½w#ðrÞ;wuðrÞ�; (15)

sðr; tÞ ¼ ½s#ðr; tÞ; suðr; tÞ�; (16)

and

LðrÞ ¼ ½l#ðrÞ; luðrÞ�; (17)

respectively. The minimization in Eq. (6) and its constraint
Eq. (7) now become

min
w#

wT
#ðrÞRw#ðrÞ subject to : wT

# ðrÞl#ðrÞ ¼ 1 crwT
#ðrÞluðrÞ ¼ 0; ð18Þ

and

min
wu

wT
uðrÞRwuðrÞ subject to :wT

uðrÞluðrÞ ¼ 1

wT
uðrÞl#ðrÞ ¼ 0; ð19Þ

yielding the solution

WðrÞ ¼ R�1LðrÞ½LTðrÞR�1LðrÞ��1: (20)

In the analysis below, we use a spatiotemporal or
‘‘event-related’’ weight-normalized MV vector beamformer
[Sekihara et al., 2001], where the weights are calculated

using Eq. (20) and normalized as described in Eq. (10).
The two components of the source activity at a given
instant in time are calculated using Eq. (1) for each of the
two orthogonal directions where b(t) is the trial-averaged
MEG data. Following the approach of Sekihara et al.
[2001], the metric

sðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2#ðr; tÞ þ s2uðr; tÞ

q
(21)

is used to construct the functional images.
As beamformers are known to be susceptible to source

interference due to temporal correlations, we implemented
the coherent source suppression model proposed by Dalal
et al. [2006], which relies on specifying additional con-
straints in deriving the beamformer weights. As shown in
Eq. (3), the condition to block signals from outside the
location of interest is not explicitly specified but rather one
relies on the minimization in Eqs. (18) and (19) to achieve
it. As this is not achieved in the presence of correlated
sources, one can explicitly add constraints to demand it to
be achieved. In particular, the constraints

wT
#ðrÞl#ðriÞ ¼ 0

wT
#ðrÞluðriÞ ¼ 0

(22)

and

wT
uðrÞluðriÞ ¼ 0

wT
uðrÞl#ðriÞ ¼ 0

(23)

are added to Eqs. (18) and (19), respectively, where ri is
the location of the interfering source. The solution to this
constrained minimization problem takes the form [Seki-
hara, 2008]

WðrÞ ¼ ½CTðrÞR�1CðrÞ��1R�1CðrÞc; (24)

where

c ¼ ½1; 0; 0; : : : ; 0�T; (25)

and C is the composite lead field matrix given by

CðrÞ ¼ ½l#ðrÞ; luðrÞ; l#ðriÞ; luðriÞ�T: (26)

Implementations of this model can, therefore, allow the
user to specify the location of the suspected correlated
source to be suppressed or suppression point, ri. The algo-
rithm can then calculate the lead fields for the location of
interest, as well as the location of the suppression point, to
formulate the composite matrix [Eq. (26)], which in turn is
used to calculate the weights [Eq. (24)]. When the precise
location of the interfering source is not known a priori, or
the source is expected to have a large spatial extent, a sup-
pression region (i.e., a collection of adjacent suppression
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points) can be specified. In this case, constraints similar to
those of Eqs. (22) and (23) are added to correspond to the
locations to be suppressed, and the composite lead field
[Eq. (26)] would have two additional columns per extra
suppression point. As more suppression points are added,
however, the number of degrees of freedom in the minimi-
zation is quickly reduced, hence, impacting the perform-
ance of the model. A detailed assessment of the
performance of this model and its application to auditory
and visual data can be found in Quraan and Cheyne
[2010].

SIMULATIONS

To establish the ability to detect evoked deep brain ac-
tivity, several sets of simulations were conducted under
various conditions with simulated sources placed in the
left and right hippocampus. In one set of simulations,
uncorrelated random Gaussian noise was added to the
field at levels typical in an MEG system (5 fT/HHz). For
the remaining sets, the noiseless simulations were added
to real visual evoked field (VEF) data acquired from each
of 15 subjects. This allowed the inclusion of the actual
brain noise background as well as its variation across trials
and subjects. As experiments examining deep brain activa-
tions (such as hippocampal activations) often use visual
stimuli, the choice of embedding simulated sources in
datasets obtained from VEF data represents a real case sce-
nario, a condition vital to the evaluation of the detectabil-
ity and localization accuracy of such signals. This is
particularly the case when beamformers are used, as they
can fail to effectively attenuate strong sources from outside
the region of interest, resulting in leakage. In the case of
hippocampal activity in the presence of visual activations,
for example, the detected visual activation can be more
than an order of magnitude larger than the hippocampal
activation. Despite the primary visual activation being dis-
tant from the hippocampus (>50 mm away for a typical
adult subject), strong leakage into the hippocampus is
observed. We demonstrated this effect by placing simu-
lated sources on the baseline of these VEF datasets at
latencies sufficiently far from the visual activation (�800
ms away from the stimulus onset) where brain noise and
leakage effects are small, as well as at latencies close to the
visual activation (�200 ms away from the stimulus onset)
where brain noise and leakage are strong (see Fig. 2).

The left and right hippocampal signals were simulated
at latencies well separated in time to avoid temporal corre-
lations that can negatively impact the performance of the
beamformer. This is particularly important for weak sour-
ces where a small attenuation resulting from temporal cor-
relations may cause them to fall below noise levels. We
have previously shown, however, that some correlation–
suppression models are partially effective at reducing in-
terference effects between correlated sources, which would
otherwise result in signal attenuation and localization inac-
curacies [Quraan and Cheyne, 2010].

A simulated source was added to each subject’s data,
placed in the anterior hippocampus as determined from
each individual subject’s MRI. Each source was simulated
as a 50 ms segment of a 10-Hz sinusoid, with a source
strength in the range of 10–40 nAm. Investigation of vari-
ous datasets acquired within our neuroimaging group
expected to evoke hippocampal activation, as well as infor-
mation obtained from the literature [Kirsch et al., 2003;
Martin et al., 2007; Tesche et al., 1996] showed the strength
of reconstructed evoked hippocampal responses to be
mostly below 30 nAm. Two publications have reported
source strengths of up to 200 nAm (averaging at �100
nAm) in control subjects [Hanlon et al., 2003, 2005]. As
one of our studies uses a similar paradigm and does not
replicate these source strengths, we concluded that these
very large source strengths are likely due to the localiza-
tion model used. Source strengths in the range 100–200
nAm, however, were reported in hippocampal epilepsy, as
expected in epileptiform discharges. As the radial compo-
nent is practically undetectable by MEG, the MEG-recon-
structed source strength does not constitute the actual
source moment but rather its tangential component.
Hence, if a large component of the hippocampal source
dipole moment is radial, the actual source magnitude may
be much larger than what is detected with MEG. Further-
more, the neuronal current distributions within the hippo-
campus can lead to magnetic field cancellations at the
position of the sensors due to the geometry of the hippo-
campus. As both of these effects are head-geometry de-
pendent, high subject-to-subject variability would be
expected.

A survey of the literature [Hamada et al., 2004; Martin
et al., 2007; Mikuni et al., 1997] showed various orienta-
tions for the localized hippocampal sources; however, for
our simulations, we chose orientations similar to those
obtained by Mikuni et al. [1997] as they were determined
from epileptiform discharges and are, therefore, large
enough to be reliably determined. These orientations were
also reproduced by successive measurements, and the
presence of signals was confirmed with simultaneous sub-
dural electrode measurements. As these orientations are
determined using MEG, they constitute the tangential
component of the signal and, hence, in the absence of
noise, the simulated source strength is entirely detectable.

To account for latency variability from subject to subject,
the simulated signals were delayed by 2 ms in each subject
relative to the previous subject, thus, covering a range of
30 ms for the 15-subject datasets. All data were filtered to
a band-pass of 1–40 Hz and analyzed using a vector beam-
former with a scanning resolution of 5 mm except where
explicitly indicated. A multisphere head model fit to the
inner skull surface of each subject’s MRI was used to com-
pute the forward solution. Images were generated for ev-
ery sample then averaged over a 40 ms range
encompassing all sources.

The VEF datasets were recorded during a colored-pat-
tern perception task that activates bilaterally symmetric
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sources in the visual cortex, using a 151-channel CTF sys-
tem (first-order radial gradiometer system) and analyzed
in a synthetic third-order gradient configuration. The pat-
terns were foveally presented for an interval of 200 ms
with a random interstimulus interval between 1,250 and
1,500 ms. Each dataset contained 150 trials of 1,000 ms du-
ration recorded at a sample rate of 625 samples/s. Core-
gistration of the MRI and MEG data was achieved by
identifying the locations of the head localization coils on
each subject’s MRI. The origin of the coordinate system
was calculated from these locations and a reconstruction
grid was chosen to be large enough to encompass the whole
brain. For group averaging, the functional images were first
normalized to the MNI (T1) template brain (http://www.
fil.ion.ucl.uk/spm/software/spm2). Linear and nonlinear
warping parameters were obtained from each individual’s
T1-weighted MR scans then applied to the volumetric func-
tional images to put each image in the Talairach stereotaxic
space. A group average of these images was then computed
for each condition and latency range.

Random Gaussian Noise

For the first set of simulations, only uncorrelated ran-
dom Gaussian noise was added to the field at levels typi-
cal in an MEG system (5 fT/HHz). By doing so, we
avoided correlated brain noise, which may include strong
sources that result in significant leakage into the hippo-
campus and may have thus impeded the detection and
accurate localization of such sources. All other aspects of
these simulations are otherwise equivalent to the simula-
tions with brain noise, including the parameters of the
simulation and the location of the simulated sources with
respect to each subject’s MRI (as discussed above), as well
as all aspects of the analysis including head models. A
comparison of simulations generated with random Gaus-
sian noise and those with brain noise allowed us to quan-
tify the effect of correlated brain noise and leakage on the
detection and localization of hippocampal sources.

Group averages were computed for the random Gaus-
sian noise scenario with sources simulated at strengths of
40, 30, 20, and 10 nAm. The group averages include all 15-
subject datasets with 150 trials/dataset. The hippocampal
activation was detected and localized for all simulated
source strengths, and the localization varied by a maximum
of 6 mm among the four group averages. Figure 1 shows
the localization error for each subject (defined as the Euclid-
ean distance between the simulated source location and the
detected source location) at 40 and 10 nAm. The localization
error was also computed at 30 and 20 nAm then averaged
over all subjects. At 40 nAm, the average localization error
was 7.5 mm and went up to 10 mm at 10 nAm. To detect
possible systematic biases, histograms of x, y, and z coordi-
nate errors (e.g., Xerror ¼ Xreconstructed � Xsimulated) were con-
structed. Small biases (of few millimeters) were observed
and are within the errors expected from various sources of
error such as head models.

Low Brain Noise

For the second set of simulations, the simulated sources
were placed in the latency range 800–830 ms following vis-
ual stimulus presentation, thus well after the VEF activity
has subsided, to investigate the ability to detect and local-
ize sources in the presence of low brain noise and weak
leakage. Figure 2 shows the channel-by-channel trial-aver-
aged data as well as the global field power (GFP) for
simulated source strengths of 40 and 10 nAm, confirming
low brain noise in the latency range over which these
sources were placed. While sources simulated with a
strength of 40 nAm are visible on these plots, those simu-
lated with a strength of 10 nAm cannot be distinguished
from noise, even in this fairly low brain noise latency
range. Simulations with source strengths of 20 nAm show
similar results to the 10 nAm simulations, whereas those
with 30 nAm are slightly above noise levels. Based on our
studies, since many hippocampal signal strengths are
below 20 nAm, they will not be visible on a GFP plot or a
trial-averaged data plot. Localization techniques capable of
attenuating sources from outside the region of interest
such as spatial filters, advanced multiple equivalent cur-
rent dipole models, or other advanced techniques that are
capable of localizing weak sources in the presence of
strong backgrounds are therefore required to detect such

Figure 1.

Localization error (defined as the Euclidean distance between

the simulated hippocampal signal location and the reconstructed

location) for each subject at 40 and 10 nAm, as labeled on each

plot. Uncorrelated random Gaussian noise was added to the

simulated signals at levels typical in an MEG system (5 fT/HHz).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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weak sources. In the literature [Hamada et al., 2004; Han-
lon et al., 2005; Tesche et al., 1996], many hippocampal
activations were identified later than 300 ms relative to the
visual stimulus onset, which represents a latency suffi-
ciently far from the visual stimulus and comparable with
what we simulate in this section.

Dependence on the signal strength

Figure 3 shows a group-averaged glass-brain plot of
source activity in the Talairach coordinate system for sour-
ces simulated at 40, 30, 20, and 10 nAm, thresholded at
50% of the maximum. The group averages include all 15-
subject datasets with 150 trials/dataset. As can be seen
from this figure, the hippocampal activation was detected
and localized for all simulated source strengths, and the
localization varied by a maximum of 7 mm among the
four group averages. At 10 nAm, however, the signal to
noise ratio is low resulting in the appearance of broad
bands and artificial peaks that are likely driven by random
noise and leakage.

Dependence on the number of trials

To investigate the effect of the number of trials on the
ability to localize such sources, we decreased the number
of trials from 150 to 100, 50, and 10 trials and computed
the group average for each of the four cases with a simu-
lated source strength of 15 nAm. The choice of 15 nAm

was based on estimates of hippocampal source magnitude
from a 15-subject dataset acquired using an n-back para-
digm which evoked hippocampal activity (see Application
to real data). All 15-subject datasets were used to construct
the group average. Figure 4a shows a group-averaged
image for each case, where a subset of the 150 trials start-
ing with trial 1 were used to construct the images. The

Figure 3.

Group-averaged functional images in the Talairach coordinate

system of signals simulated at 40, 30, 20, and 10 nAm as indi-

cated on the figures. The simulated signals were placed in the

anterior hippocampus and added to VEF datasets obtained from

15 subjects at a latency sufficiently far from the active region

(800–830 ms). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 2.

Channel-by-channel epoch-averaged data and global field power from a VEF dataset of a single

subject with simulated signals added to the data at �700 ms (right anterior hippocampus) and

�800 ms (left anterior hippocampus) indicated by the vertical arrows. The simulated sources

had a signal strength of 40 nAm (top) and 10 nAm (bottom). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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hippocampal activation was detected and localized in all
cases. Figure 4b shows the change in the peak location of
the hippocampal activation as the number of trials is
reduced (i.e., Euclidean distance between the peak location
for each case and that for 150 trials). When only 50 trials
were used the peak location changed by 11 � 4 mm,
where the error represents the standard deviation of three
distinct sets of 50 trials. With only 10 trials the peak loca-
tion changed by 18 � 10 mm, where the error represents
the standard deviation of five distinct sets of 10 trials. The
increase in the standard deviation indicates the poor local-
ization accuracy with reduced number of trials.

Dependence on the number of subjects

Figure 5 shows the change in position of the localized
peak as the number of subjects is reduced from 15 to 12, 9,
6, and 3 subjects (i.e., Euclidean distance between the peak
location for each case and that for the15-subject group av-
erage). While the localization changed by <2 mm as the
number of subjects was reduced from 15 to 12, a system-
atic increase in distance away from the 15-subject group

average is seen as the number of subjects is reduced below
12 reaching 7 mm for a group average of three subjects.
The values for each group average were determined by
computing the mean over several permutations of subjects
(wherever possible, for example, there is only one permu-
tation when all 15 subjects are used). The error bars are
the standard deviations resulting from these permutations.

Although these results indicate that even six subjects are
sufficient to localize hippocampal activations for the case
at hand, we emphasize several issues here: (1) the purpose
of choosing a large number of subjects is aimed at having
a good representation of the population and guarding
against biases from atypical activations that are specific to
a single subject or a small subset of subjects; (2) although
these simulations are modeled to mimic real data including
trial-to-trial source amplitude variations, they do not take
into account the likelihood that some subjects may perform
the task poorly, and, hence, these results represent a best-
case scenario where all subjects are alert and performing
the task properly; (3) if hippocampal signals are highly ra-
dial (and/or field cancellations occur due to the shape of
the hippocampus), strong subject-to-subject variability
would be expected due to variations in head geometry, and
the hippocampal signal from some subjects may be too
small to measure; and (4) in this set of simulations, we
placed the signals at a latency sufficiently far from the
active latency range to reduce brain noise effects. This may
not be the case for some experiments, and the results from
the next section where we tackle the more challenging case
of the hippocampal activation being within the latency of
the active visual sources may be more relevant.

Individual subjects

Finally, we examined the ability to localize hippocampal
activations from individual subjects for this low brain
noise latency range. The localization error (defined as the
Euclidean distance between the simulated and detected
position) for each of the 15 subjects for simulated sources
at strengths of 40, 30, 20, and 10 nAm was computed for

Figure 4.

(a) Group-averaged functional images in the Talairach coordinate

system of signals simulated at 15 nAm. The simulated signals

were placed in the anterior hippocampus and added to VEF

datasets obtained from 15 subjects at a latency sufficiently far

from the active region (800–830 ms). The images were con-

structed using 150, 100, 50, and 10 trials/dataset, as indicated

on the panels. (b) Change in peak location of the reconstructed

hippocampal activation as the number of trials were reduced

from 150 to 10. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 5.

Change in peak location of the reconstructed hippocampal acti-

vation as the number of subjects is reduced below 15.
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both the vector and scalar beamformers and plotted in Fig-
ure 6a. As the source strength decreased, the ability to
properly detect and localize the simulated hippocampal
signal decreased. Figure 6b (top) summarizes these results
by showing the average of the localization error computed
over all the subjects. For the vector beamformer, the aver-
aged localization error increases from �15 mm at 40 nAm
to �18 mm at 20 nAm, whereas the scalar beamformer
results in an averaged localization error of �18 mm at 40
nAm increasing to �27 mm at 20 nAm. Figure 6b (bottom)
shows the number of failures for both the vector and
scalar beamformers as a function of simulated source
strength, where a failure is defined to be a case where the
localization error exceeds 20 mm. At 40 nAm, the vector
beamformer fails 20% of the time, whereas the scalar fails

40% of the time. While the failure rate of the vector beam-
former remains relatively unchanged as the simulated
source strength is reduced to 20 nAm (�20%), the scalar
beamformer fails 47% of the time at 30 nAm and 60% of
the time at 20 nAm. As the source strength is further
reduced, the signal strength drops well below the back-
ground noise level, and both beamformers fail equally at
identifying and properly localizing the sources.

Under these conditions, the weak performance of the
scalar beamformer relative to the vector beamformer is not
surprising. As discussed in Section 1 of Theory and Meth-
ods, scalar beamformers rely on a determination of the
source orientation and then construct only the component
of the source activity in this direction. The source orienta-
tion is typically determined either through a grid search

Figure 6.

(a) Localization error (defined as the Euclidean distance

between the simulated hippocampal signal location and the

reconstructed location) for each subject where the signals were

simulated at 40, 30, 20, and 10 nAm as labeled on each plot,

then added to individual-subject VEF data at a latency far from

the active region (800–830 ms). Scalar and vector beamformers

were used to perform the localization as indicated on the plot.

(b, top) Localization error as a function of source strength aver-

aged over 15 subjects (b, bottom) Number of localization fail-

ures for the same where a localization failure is defined as a

distance error exceeding 20 mm. (c) Histograms of the localiza-

tion error for the 40 nAm simulated source.

r Quraan et al. r

r 820 r



aimed at maximizing source power in each voxel [Robin-
son and Vrba, 1999] or through an eigendecomposition of
the source power, where the largest eigenvalue is identi-
fied as the one corresponding to the source originating
from that voxel [Sekihara et al., 2001]. The eigendecompo-
sition method is essentially equivalent to the grid-search
method but achieves the purpose in a more computation-
ally efficient fashion. In both methods, however, the power
is calculated over a wide time range, typically spanning
hundreds of milliseconds. Furthermore, the assumption is
made that all activity determined by the beamformer to
originate from a given voxel is indeed generated by brain
sources originating at that location. For cases where the
source of interest is weak and in the presence of other
strong sources that result in leakage into the region of inter-
est, as is the case in the problem at hand, this assumption
fails. In other words, in such cases, most of the activity in
the region of interest over a long time range results from
leakage from strong sources outside the region of interest,
and, hence, the determination of the source orientation
using either of these methods is subject to significant errors.
This error increases as the strength of the source of interest
decreases, as is evident in Figure 6b from the increased fail-
ure of the scalar beamformer as the source strength is
decreased. The scalar beamformer, therefore, ends up con-
structing the component of the source activity in a direction
different from that of the source of interest and dismissing
what might be a significant component of the source of
interest. The vector beamformer, on the other hand, con-
structs the source activity in the two tangential directions,
dismissing only the radial component which is typically
small. We emphasize here, however, that in many applica-
tions of the scalar beamformer, the source of interest is the
dominant one, and the effect of leakage is small or even
negligible. In this case, an accurate determination of the
source angle can be achieved, and the construction of the
source activity component in only this direction is justified.
However, constructing source activity of both tangential
components even in such cases guards against dismissing
unexpected components and provides verification that the
source orientation was properly computed.

Although in the case of a weak source in the presence of
strong leakage, the vector beamformer performs signifi-
cantly better than the scalar, both beamformers give large
localization errors, and so we proceeded to determine
whether such errors constituted systematic biases in any
particular direction or whether they were random. Figure
6c shows histograms of the localization error for each coor-
dinate at 40 nAm. While the x coordinate shows a large
random error, both the x and z coordinates show only
small localization biases (few millimeters). The y coordi-
nate (which corresponds to the Talairach x coordinate),
however, shows a fairly large localization bias of �9 mm,
in the lateral direction, toward the sensors. As the only
difference between the simulations here and those in the
previous section is the added brain noise (i.e., all other
aspects of the datasets and head models are identical as

well as the analysis techniques), this bias is partially
driven by brain noise/leakage. In the next section, we
lend further support to this conclusion by showing that
the bias increases with increasing brain noise.

High Brain Noise

For the third set of simulations, the simulated sources
were placed in the latency range 200–230 ms following vis-
ual stimulus onset, when VEF activity is still strong, to
investigate the ability to detect and localize sources in the
presence of high brain noise and strong leakage. In this la-
tency range, typical hippocampal sources would not be
visible on trial-averaged data plots or GFP plots similar to
those of Figure 2. We, therefore, attempted to detect such
sources by localizing them using the beamformer then
computing the group-averaged images as we did above.
As before, the images were averaged over 40 ms encom-
passing all sources.

Dependence on the signal strength

Figure 7a shows a group-averaged glass-brain plot of
source activity in the Talairach coordinate system for sour-
ces simulated at 40, 30, 20, and 10 nAm for this latency
range. The group averages include all 15-subject datasets
with 150 trials/dataset. As can be seen from this figure,
the 40 nAm hippocampal activation was detected as the
strongest activation but at 30 nAm, the primary visual acti-
vation was the strongest. Although hippocampal activation
is still visible, a leakage pattern resulting from the activa-
tion of the visual cortices and extending all the way to the
hippocampus is also visible. At 20 and 10 nAm, the hippo-
campal signal is no longer visible due to leakage from the
primary visual sources. As most hippocampal signals are
below the 30 nAm range, the ability to properly detect and
localize small signals is crucial.

As the inability to localize such weak sources is due to
beamformer leakage from the primary visual sources, if
we are able to subtract out this leakage, we would be
more likely to detect and localize hippocampal activations.
The easiest way to achieve this is by designing experi-
ments that include appropriate control conditions, where
the condition of interest (which we will call the experi-
mental condition) involves a task that is expected to acti-
vate the hippocampus, whereas the control condition
involves a task that is not expected to involve the hippo-
campus system to the same degree. For example, for
experiments that use visual presentations as stimuli, both
the experimental condition and the control condition
would include the visual activation. One can then con-
struct experimental and control images and subtract them.
As both images include the visual activation as well as its
leakage patterns, ideally, subtracting the two would also
subtract leakage from the primary visual sources that hin-
dered the detection and localization of the hippocampal
sources. Realistically, efficient subtraction of such sources
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relies on the way these control conditions are constructed
and the number of trials used. One would expect the best
subtraction of such leakage patterns to occur if the control
trials were interleaved with the experimental trials, to
ensure that the subject is responding to the visual stimuli
similarly in both cases. In addition, interleaving ensures
the capture of noise variations almost simultaneously for
both conditions as well as any head movement variations.
However, it is not always possible to interleave conditions
because achieving the experimental condition may require
separation from the control condition. In this case, one
would have to subtract images constructed from individ-
ual runs (one run for the experimental and one run for the
control), and while optimal leakage subtraction efficiency
is not achieved, a reasonable subtraction efficiency can still
be obtained as we demonstrate on both simulations and
real data.

We constructed individual images for the 15 subjects
from the VEF datasets discussed above, where simulated
hippocampal signals were added (experimental), as well

as 15 other VEF datasets acquired with the same subjects
with no simulated hippocampal signal added (control).
We then subtracted these images for every subject to
obtain the experimental-control (experimental minus con-
trol) images and constructed group–averaged images from
those. Figure 7b shows the experimental-control group–
averaged images for simulated signal strengths of 40, 30,
20, and 10 nAm. As is the case with no control condition,
hippocampal activation is successfully detected for the 40–
20 nAm range. Furthermore, while at 10 nAm the primary
visual activation is still present, its leakage patterns are
effectively reduced, allowing the detection of the hippo-
campal signal. For such signals, however, the localization
bias becomes fairly strong, as a result of the strong leakage
and brain noise relative to the hippocampal signal, and
the group-averaged image shows hippocampal activation
shifted laterally by 15 mm. As we have seen, this bias
arises from the localization algorithm in the presence of
noise and the subtraction of experimental-control images
does not eliminate this bias.

Figure 7.

(a) Beamformer localization error averaged over 15 subjects for

hippocampal sources simulated at various source strengths (as

indicated on the figure), then added to individual-subject VEF

data at a latency within the active region (200–230 ms). (b) The

same as in (a) but the images obtained from the control condi-

tion were subtracted from the experimental condition for each

subject prior to averaging. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Dependence on the number of trials

To investigate the effect of the number of trials on the
ability to localize such sources, we decreased the number
of trials from 150 to 100, 50, and 10 trials, respectively,
and computed the group average for each of the four cases
with a simulated source strength of 15 nAm. All 15-subject
datasets were used to construct the experimental–control
group-averaged images. Figure 8a shows the group-aver-
aged images for each case where a subset of the 150 trials
starting with trial 1 were used to construct the images.
While the simulated signals were detectable even with
only 10 trials, at such a low number of trials the beam-
former bias is large, placing the simulated signal �18 mm
away from the hippocampus. Figure 8b shows the change
in the group-averaged simulated signal localization as the
number of trials is reduced. When only 50 trials were
used, the peak location changed by 10 � 4 mm where the
error represents the standard deviation of three distinct
sets of 50 trials. With only 10 trials the distance changed
by 17 � 13 mm where the error represents the standard
deviation of five distinct sets of 10 trials. The increase in

the standard deviation indicates the poor localization accu-
racy with reduced number of trials.

Dependence on the number of subjects

Figure 9a shows the change in position of the localized
peaks on the group-averaged experimental-control images
as the number of subjects is reduced from 15 to 12, 9, 6,
and 3 subjects for a source strength of 15 nAm. While the
localization error remained below 10 mm as the number of
subjects was reduced from 15 to 12, a significant system-
atic increase in distance was seen as the number of sub-
jects was reduced to 9 and reached 15 mm with only six
subjects. As before, the values for each group average
were determined by computing the mean over several per-
mutations of subjects (wherever possible, for example,
there is only one permutation when all 15 subjects were
used). The error bars are the standard deviations resulting
from these permutations. We note that the standard devia-
tions are large even for 12 subjects and increase as the

Figure 8.

(a) Group-averaged functional images in the Talairach coordinate

system of signals simulated at 15 nAm constructed by subtract-

ing the control condition from the experimental condition as

shown in Figure 7b. The simulated signals were placed in the an-

terior hippocampus at a latency within the active region (200–

230 ms) and added to visual evoked field datasets obtained from

15 subjects. The images were constructed using 150, 100, 50,

and 10 trials/dataset, as indicated on the figures. (b) Change in

localization as a function of trial number relative to 150 trials.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 9.

(a) Change in position of the localized peak as a function of

number of subjects. The change in position is defined as the Eu-

clidean distance between the peak location of each case and

that of the 15-subject group average. Simulated signals with a

15-nAm strength were placed in the anterior hippocampus at a

latency within the active region (200–230 ms) and added to visu-

ally evoked field datasets obtained from each subject. (b)

Group-averaged functional images in the Talairach coordinate

system corresponding to the data in (a) constructed by subtract-

ing the control condition from the experimental condition as

described in Figure 7b. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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number of subjects is reduced. This indicates the wide var-
iability between subjects and emphasizes the need for a
large number of subjects to achieve localization that is not
highly dependent on a specific subject (or a small subset
of subjects). Furthermore, we note that a mean of �15 mm
and a standard deviation of �5 mm, for example, indicate
that for some subsets of six and nine subjects, the localiza-
tion error can be quite large (a probability of 33% that the
localization error will exceed 20 mm), indicating extremely
poor localization in such cases. As an example, Figure 9b
shows the group-averaged experimental-control images for
12, 9, 6, and 3 subjects for a single subset of subjects in
each group. The general trend observed in this subset is
generally common to other subsets, namely, with a large
number of subjects the hippocampal and visual activations
are the dominant ones (in this case the hippocampal acti-
vation being the strongest). As the number of subjects was
reduced, other activations were seen, and with only three
subjects the strength of the hippocampal signal observed
was around or below the strength of other activations.

Individual subjects

Finally, we constructed the functional images for the
individual subjects. In only three of the 15 subjects was a
hippocampal signal readily identified from these simula-
tion images.

APPLICATION TO REAL DATA

In this section, we chose an example from real data
where subjects were presented with a colored-pattern per-
ception task that activates bilaterally symmetric sources in
the visual cortex. In one block (experimental), the subjects
were asked to indicate whether the colored pattern pre-
sented to them was the same as the previous pattern by
pressing a button. In the second block (control) similar
patterns were presented, but the patterns did not repeat
and the subjects were not asked to remember whether the
pattern was identical to a previous one. The experimental
condition is expected to elicit greater hippocampal activa-
tion than the control condition due to its greater explicit
memory demand. The second block served as the control
condition and was used to subtract out the dominant VEF
activation and its leakage patterns as we discussed above.

The data were analyzed with the vector beamformer
and group averages were constructed over 40 ms time
ranges in a similar manner as discussed in the simulations
section. A half-interval (20 ms) sliding window was used
over the range of 80 to 400 ms, resulting in 16 group aver-
ages. Statistically significant hippocampal activation was
found in the 80–120 ms time interval when experimental-
control images were constructed in the same manner as
was done in the simulations.

When no control condition was used, no hippocampal
signals were observed. Figure 10a shows the experimental

group-averaged image for the range 80–120 ms at a thresh-
old of 80% of the maximum peak where only primary vis-
ual activation is seen. Lowering the threshold to 50% (Fig.
10b) still shows no hippocampal activation, but the long-
ranged primary visual leakage patterns are dominant and
stretch well into the hippocampus, thereby obscuring any
possible hippocampal activation. To reduce these leakage
patterns, we constructed the experimental-control group–
averaged image shown in Figure 10c plotted at a 50%
threshold. Although the visual activation is still visible
indicating limited subtraction efficiency, left hippocampal
activation is clearly visible and is the only other significant
activation in this time range throughout the entire head
volume. To explore the possibility that a lack of a right
hippocampal signal is due to the susceptibility of the
beamformer to temporal correlations, correlation correc-
tions were applied [Dalal et al., 2006; Quraan and Cheyne,
2010] but did not reveal the presence of a right hippocam-
pal source.

We then looked at the images from the individual sub-
jects. Of the 15 subjects, peaks in the proximity of the hip-
pocampus region were found in only two. This is in-line
with what we have already seen in the simulation and
indicates that the detected (tangential) component of the
hippocampal signals were generally small (below 20
nAm). Figure 11 shows the functional images from the
two subjects where hippocampal activation was observed.
The peak for this activation for subject 1 corresponds to a
source moment of 14 nAm and is within 10 mm of the
hippocampus. The peak for subject 2 corresponds to a
much lower source moment of only 5 nAm and results in
much lower signal to noise ratio. As we demonstrated in
the simulation, in such cases, the beamformer localizes the
hippocampal signal to a location lateral to the
hippocampus.

Figure 10.

Group-averaged image for the range 80–120 ms at a threshold

of 80% (a) and 50% (b) of the maximum for a memory task

known to activate the hippocampus. (c) Same as (b) but the

control condition images were subtracted out from each sub-

ject’s image before averaging. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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DISCUSSION AND CONCLUSIONS

Although MEG is often associated with the detection of
superficial cortical sources, based on extensive realistic
simulations, we have shown in this article that deep sour-
ces, such as the hippocampus, may also be detected with
MEG using stimulus-evoked activity, particularly when
group averages are constructed. In this respect, and due to
its superior time resolution, MEG can contribute to the
understanding of such sources and the underlying
mechanisms by exploring their time and frequency
characteristics.

All the simulations we presented in this article are based
on a first-order radial gradiometer system with a 50-mm
baseline. Successful detection of hippocampal sources has
been reported using this type of system [e.g.,Cornwell
et al., 2008; Moses et al., 2009; Riggs et al., 2009] as well as
planar gradiometer systems [e.g.,Hanlon et al., 2003, 2005;
Tesche, 1997; Tesche and Karhu, 2000; Tesche et al., 1996].
In the work of Mikuni et al. [1997], where hippocampal
signals were only detected 13% of the time in epileptic dis-
charges when the signal strength was below 100 nAm, a
planar gradiometer system was used. Such systems have a
reduced sensitivity to deep sources [Hamalainen et al.,
1993; Vrba and Robinson, 2001] compared to a radial gra-
diometer system with a 50-mm baseline, which may par-
tially explain the failure of some studies to detect deep
sources. In the past and in the absence of effective noise
reduction techniques, the use of planar gradiometers was
largely driven by their efficient noise subtraction capabil-
ities. More recent systems that use a planar gradiometer
design also provide magnetometer channels that have
even longer reach than radial gradiometer channels, thus
complementing the planar gradiometer channels. Success-

ful detection of hippocampal activation using these
systems has been reported [Martin et al., 2007]. The
effectiveness of magnetometer systems was very limited in
the past due to their higher sensitivity to noise, particu-
larly at sites where noise levels are high. More recently,
several noise-reduction mechanisms have demonstrated
the ability to significantly reduce the noise levels, allowing
magnetometer channels to be more effective. These noise-
reduction mechanisms include the design of active shield-
ing where shielded rooms are equipped with large (feed-
back) coils installed in their walls to generate noise
cancellation fields. Channels in the MEG system designed
to measure the noise levels actively drive these coils to
generate fields that counter (and thus reduce) the noise in
these channels. At the software level, signal space separa-
tion methods have also been used where the part of the
signal originating inside the MEG can be identified using
solutions to Laplace’s equation in spherical coordinates
[Jackson, 1999; Taulu and Simola, 2006]. Such develop-
ments will significantly aid the effort to explore deep
sources.

We have shown in this article that the ability to detect
typical hippocampal signals by exploring peaks in stimu-
lus-evoked data averages or GFP spectra is unlikely, as
such signals typically fall below the global noise levels.
The use of spatial filters, on the other hand, which rely on
attenuating signals from outside the region of interest
(combined with optimized experimental design and analy-
sis techniques), allows the detection of the tangential com-
ponents of fairly weak signals. In this article, we used an
event-related vector beamformer with correlation suppres-
sion capability [Quraan and Cheyne, 2010] to detect hippo-
campal sources. We showed that the largest impediment
in detecting hippocampal sources using beamformer tech-
niques, in the presence of strong noise backgrounds, were
leakage patterns that extend from the visual cortex into
the hippocampus. For the specific case that we explored
where stimulus-evoked visual sources were present in the
dataset, signals down to 30 nAm were detectable with
such sources while those at 20 nAm and below were not.
According to our estimates of hippocampal sources from
various stimulus-evoked paradigms designed to evoke ac-
tivity in the hippocampus, most of these source strengths
fall in the undetectable range in the presence of VEF sour-
ces. The threshold of detectable signals, however, becomes
lower if the beamformer leakage is subtracted out. In this
article, we used experimental-control image subtraction to
reduce the leakage, and showed that by doing so, and in
the context of group-averaged stimulus-evoked activity,
we were able to detect hippocampal signals below 10
nAm, which puts most hippocampal signals in stimulus-
evoked experiments within reach. The localization accu-
racy of the hippocampal signal, however, depends on the
number of trials, and the change in the peak location of
the reconstructed hippocampal signal relative to 150 trials
increased as the number of trials was decreased exceeding
11 mm below 50 trials.

Figure 11.

Functional images from those two subjects in which hippocampal

activation was observed.
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To generalize the results of a stimulus-evoked experi-
ment to the population considered with reasonable confi-
dence, a sufficient number of subjects must be considered.
However, the inclusion of a large number of subjects
serves another purpose at the technical level. In the ideal
case where all subjects’ responses are identical, the
increased number of subjects provides repeated measure-
ments. As there is a finite probability that weak signals
will not be detected, the repeated measurements provide
higher probability that they will be detected as well as
increased localization accuracy. Furthermore, as brain
noise varies from subject to subject while the activation of
interest is consistently present at some level in most (if not
all subjects), averaging over a large number of subjects
serves to enhance the activation of interest by reducing
brain noise backgrounds. As a consequence, detection of
weak activations in individual subjects is more challenging
as we have seen in the case of the simulated hippocampal
signal and the evoked hippocampal signal. For both simu-
lations and real data, and with the localization modality
we used (beamformer), the analysis technique (experimen-
tal-control image subtraction), and the experimental design
parameters (e.g., 150 trials), we were able to detect hippo-
campal signals in �20% of the subjects. As the ability to
detect signals in individual subjects is crucial in clinical
applications improving our localization modalities and
analysis techniques will help extend clinical applications
of MEG.

While the UNG beamformer combined with a multi-
sphere head model has been shown to be unbiased in the
presence of noise, a result arising from this analysis is that
such algorithms can be significantly biased when localiz-
ing weak sources in the presence of strong brain noise
backgrounds. For sources in the anterior hippocampus,
this bias can exceed 15 mm in the presence of strong brain
noise backgrounds, putting the sources at a location signif-
icantly lateral to the hippocampus. This emphasizes the
need to evaluate the localization models under conditions
comparable to real data to arrive at valid conclusions.

While the ability to detect hippocampal signals has been
debated based on the weak nature of such signals, leading
many to conclude that MEG is an unreliable method for
conducting such experiments, we have shown that the
detectability of such signals largely depends on the experi-
mental design parameters, the analysis techniques, and the
localization models. The weak nature of signals from deep
sources does not necessarily imply that such signals are
undetectable. We point to other quantitative fields that are
able to accurately infer the presence of weak signals. For
example, in the field of Nuclear and Particle Physics,
extremely small signals embedded in high noise back-
grounds have been successfully detected at high confi-
dence levels, leading to the discovery of new particles and
phenomena. In a recent and challenging experiment in
which the first author was involved, signals were meas-
ured at accuracies of 1 part in 104 [Jamieson et al., 2006;
MacDonald et al., 2008]. Recent progress in the MEG field

to properly quantify the mathematical models and test
their performance will pave the way for MEG to play a
wider role in neuroimaging. The analyses presented here
is a step toward a better understanding of the detectability
of deep sources and toward developing techniques that
help to improve their localization. In future work, we
hope to examine other localization modalities and analysis
techniques that may further improve our ability to detect
deep sources and reduce localization bias.
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