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Seeing Touch and Pain in a Stranger Modulates the
Cortical Responses Elicited by Somatosensory but
not Auditory Stimulation
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Abstract: Viewing other’s pain inhibits the excitability of the motor cortex and also modulates the neu-
ral activity elicited by a concomitantly delivered nociceptive somatosensory stimulus. As the neural ac-
tivity elicited by a transient nociceptive stimulus largely reflects non nociceptive-specific, multimodal
neural processes, here we tested, for the first time, whether the observation of other’s pain preferen-
tially affects the brain responses elicited by nociceptive stimulation, or instead similarly modulates
those elicited by stimuli belonging to a different sensory modality. Using 58-channel electroencepha-
lography (EEG), we recorded the cortical responses elicited by laser and auditory stimulation during
the observation of videoclips showing either noxious or non-noxious stimulation of a stranger’s hand.
We found that the observation of other’s pain modulated the cortical activity consisting in an event-
related desynchronization in the B band (B ERD), and elicited by nociceptive laser stimuli, but not by
auditory stimuli. Using three different source analysis approaches, we provide converging evidence
that such modulation affected neural activity in the contralateral primary sensorimotor cortex. The
magnitude of this modulation correlated well with a subjective measure of similarity between the
model’s hand and the onlooker’s representation of the hand. Altogether, these findings demonstrate
that the observation of other’s pain modulates, in a somatosensory-specific fashion, the cortical responses
elicited by nociceptive stimuli in the sensorimotor cortex contralateral to the stimulated hand. Hum Brain
Mapp 33:2873-2884, 2012.  © 2012 Wiley Periodicals, Inc.
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Neurophysiological studies indicate that first-hand expe-
rience of painful stimuli and observation of pain in others
elicits largely overlapping neural activity [see Hein and
Singer, 2008; Jackson et al., 2006]. This overlap between cort-
ical structures responding to both nociceptive pain and the
observation of other’s pain is not only present in structures
usually interpreted as reflecting the affective-motivational
aspects of pain, such as the anterior cingulate cortex (ACC)
and the anterior insula [e.g., Lamm et al., 2007; Singer et al.,
2004], but also in structures usually interpreted as reflecting
the sensory-discriminative aspects of pain (e.g., SI and SII)
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[e.g., Bufalari et al., 2007; Cheng et al., 2007, 2008; Lamm
et al., 2007; Moriguchi et al., 2007]. Moreover, single pulse
transcranial magnetic stimulation (TMS) studies demon-
strated that the mere observation of a syringe needle
penetrating deeply the hand of a stranger model causes a
reduction of the motor cortex excitability. Such reduction is
reflected in a decrease of the amplitude of the motor-evoked
potentials (MEPs) recorded from the onlooker’s muscles
corresponding to those penetrated in the model [Avenanti
et al., 2005, 2006, 2009; Fecteau et al., 2008; Minio-Paluello
et al., 2006, 2009], an effect reminiscent of what observed
during actual experience of pain [Farina et al., 2001].

Relevant to the current study is the suggestion that even
the earliest cortical activity elicited by nociceptive stimuli
is inhibited in the onlooker [Valeriani et al., 2008], as indi-
cated by a reduction of the N1 wave of the laser-evoked
potentials (LEPs), a wave thought to reflect the early corti-
cal processing of the ascending nociceptive input [Lee
et al., 2009]. It has been recently suggested that the neural
activity measured using different functional neuroimaging
techniques in response to transient nociceptive stimulation
largely reflects non nociceptive-specific, multimodal cogni-
tive processes [lannetti and Mouraux, 2010; Legrain et al.,
2011; Mouraux and Iannetti, 2009; Mouraux et al., 2011].
Thus, also on the basis of the notion that perception is an
inherently multimodal experience [Aglioti and Pazzaglia,
2011], it is surprising that no study to date has examined
whether the brain representations elicited by observation
of other’s pain affects the cortical processing not only of
nociceptive information, but also of sensory information
transmitted in other sensory modalities.

Here, using high-density EEG, we tested whether the
observation of nociceptive stimuli delivered to the hand of
another individual preferentially affects the brain
responses elicited by nociceptive stimulation, or instead
similarly modulates those elicited by stimuli belonging to
a different sensory modality.

METHODS
Subjects

Twelve healthy subjects (six women) aged 22-35 years
(25.3 + 4.2, mean +SD) participated in the study. All par-
ticipants gave their written informed consent. This study
conformed to the standards required by the Declaration of
Helsinki and was approved by the local ethics committee.

Interpersonal Reactivity Trait-Measures

Before the experimental session, interpersonal reactivity
linked to personality traits was assessed by asking the sub-
jects to complete the Interpersonal Reactivity Index ques-
tionnaire [IRI; Davis, 1983], The IRI is one of the most
widely used self-report measures of dispositional empathy
(i.e., a person’s stable personality trait). In particular, the IRI

is a 28-item questionnaire that consists of four subscales that
assess (1) self-oriented aspects of interpersonal reactivity
(e.g., the extent to which an individual feels distress as a
result of witnessing another’s distress, Personal Distress,
PD), (2) other-oriented interpersonal reactivity such as the
tendency to experience feelings of sympathy and compas-
sion for others in need (Empathic Concern, EC), (3) the dis-
position of an individual to adopt the perspective of another
(Perspective Taking, PT), and (4) the propensity of an indi-
vidual to become imaginatively involved with fictional
characters and situations (Fantasy Scale, FS).

Nociceptive and Auditory Test Stimulation

Radiant heat stimuli were generated by an infrared neo-
dymium yttrium aluminium perovskite (Nd:YAP) laser
with a wavelength of 1.34 pm (Electronical Engineering,
Florence, Italy). At this wavelength the laser pulses activate
directly the Ad and C-fiber nociceptive terminals located in
the superficial layers of the skin [Baumgartner et al., 2005].
The laser beam was transmitted via an optic fiber and its di-
ameter was set at ~8 mm (50 mm?) by focusing lenses. The
duration of the laser pulses was 4 ms. Laser pulses were
directed at the dorsum of the right hand, on a squared area
(5 x 5 cm) defined prior to the beginning of the experimen-
tal session. The spot location was automatically controlled
by a computer that used two servo-motors (HS-422; Hitec
RCD; angular speed, 60°/160 ms) to orient the laser beam
along two perpendicular axes [see Lee et al., 2009 for
details]. To familiarize subjects with the nociceptive stimu-
lus, ten low-energy laser pulses were delivered to the right-
hand dorsum. The energy of the laser stimulus was then
adjusted individually using the method of limits, in order to
elicit a clear pricking pain sensation (3.1 £ 0.3 ]), related to
the activation of Ad nociceptors [Treede, 1995].

Auditory stimuli were brief, 800 Hz tones (50 ms dura-
tion; 5 ms rise and fall times) delivered through a speaker
(VE100AO, Audax, France) placed in front of the partici-
pant’s right hand (~55 cm from the subject and ~50 cm
from the midline). At the beginning of the experiment the
intensity of auditory stimulation was adjusted to match
the intensity of the laser stimulation.

The intensity matching procedure consisted in two steps
[Gescheider, 1997; Valentini et al., 2011]. First, immediately
after setting the intensity of the nociceptive stimulus, a se-
ries of tones of increasing loudness was presented to the
subjects, to familiarize them with the auditory stimuli. Sec-
ond, subjects were asked to try and match the perceived
intensity of the auditory sensation to the perceived inten-
sity of the nociceptive sensation, by self-adjusting the in-
tensity of the auditory stimulation.

Laser pulses were delivered shortly before and shortly
after the auditory stimulus to make sure that the matching
was not related to the order of occurrence of the two stim-
uli. This matching procedure was repeated at the end of
each recording block, to ensure that the perceived intensity
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of the auditory and nociceptive sensations remained
matched throughout the experiment. The average intensity
of auditory stimulation was 86 + 3 dB.

Visual Presentation of Pain and Touch Stimuli

Two types of visual stimuli, extracted from the sample
used in Avenanti et al. [2005], were used to induce pain
and touch empathic resonance. These stimuli consisted of:
(1) “Pain” videoclips showing a needle penetrating the
first dorsal interosseous (FDI) muscle at the dorsal surface
of the right hand (between the thumb and index finger),
from a first person perspective; (2) “Touch” videoclips
showing a Q-tip gently touching the same hand at the
level of the FDI muscle. Only videoclips showing the right
hand were presented. This allowed us to achieve a com-
plete congruency between the onlooker’s stimulated hand
and the model’s hand penetrated by the needle or touched
by the Q-tip. To minimize habituation effects, nine Pain
and nine Touch videoclips where the syringe or the Q-tip
could have one out of three different sizes or colors, were
presented in each block. Also, to avoid neural responses
related to action observation rather than to the somatosen-
sory event represented in the clip [Avikainen et al., 2002;
Rizzolatti et al., 2001], the hand of the person holding the
syringe or the Q-tip was not visible.

Experimental Design and Procedure

A schematic illustration of the experimental design is
shown in Figure 1. Event related potentials (ERPs) were col-
lected in a single session. The Pain and Touch videoclips
were presented in four blocks of visual stimulation. Only
one type of videoclip (either Touch or Pain) was presented
in each block. Touch and Pain blocks were alternated, and
their order was balanced across subjects. The duration of
each block was ~8 min, and an interval of ~8 min separated
two consecutive blocks. Each stimulation block consisted of
30 trials (15 laser trials and 15 auditory trials). Thus, a total
of 120 trials were delivered. Laser and auditory trials were
pseudorandomized (no more than three consecutive stimuli
belonging to the same modality) and intermixed within each
block. Each trial started with a fixation cross presented for 2
s, followed by a 2-s videoclip. Laser and auditory test stim-
uli were delivered in a jittered fashion (rectangular distribu-
tion) during the second half of the clip (between 1.2 and 1.9
s), only after the effector (either the syringe or the Q-tip)
touched the hand. At the end of the videoclip, a black screen
lasting between 6 and 12 s (rectangular distribution) pre-
ceded the beginning of the following trial. At the end of the
30 trials composing each block, the subject was asked to rate
the intensity, the unpleasantness and the saliency of both
the nociceptive and the auditory sensation, using a visual
analogue scale (VAS) ranging from 0 (no sensation/not
unpleasant/not salient at all) to 100 (as much intense/

Ratings
Ratings

b ~8 min ~8 min Time

single auditory stimulus
jittered within 0.7s long window

single laser stimulus
jittered within 0.7s long window

J

Figure I.

Experimental design. Event-related potentials (ERPs) were col-
lected in a single session and elicited by either nociceptive somato-
sensory stimuli delivered to the hand dorsum (in red) or by
auditory stimuli delivered in the same area (in blue). ERPs were
recorded in four observational blocks, whose order was counter-
balanced across subjects. In each block, one of the two possible
modulatory visual stimuli, representing either a painful stimulation
(infliction of a syringe—Pain—in red) or a tactile stimulation (touch
with a Q tip—Touch—in blue) of a model’s hand, were presented.
In each block, I5 laser and |5 auditory stimuli were delivered in
pseudorandom order. Each trial started with a fixation cross pre-
sented for 2 s, followed by 2 s movie. After each block, subjects
were asked to rate the intensity, saliency, and unpleasantness of
both nociceptive and auditory sensation. This procedure allowed us
to explore the possible modulation exerted by others’ pain obser-
vation on the cortical responses elicited by nociceptive and audi-
tory stimuli in the onlooker. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

unpleasant/salient as possible in this context). The order of
ratings was counterbalanced across subjects.

Between each laser pulse, the target of the laser beam
was displaced by a motor arm. The direction was balanced
in each session following a proximal-distal spatial dis-
placement. This procedure allowed to minimize the varia-
tion in thickness and innervation of the irradiated skin and,
consequently, the intensity of the nociceptive stimuli [Schler-
eth et al., 2001]. Because variations in baseline skin tempera-
ture could bias results [Baumgartner et al., 2005], an infrared
thermometer was used to ensure that baseline skin tempera-
tures were similar at the beginning of each block.

During the whole procedure, a wooden screen was
interposed between the participants and their right hand.
Thus, the participants could not see the stimulated hand
or the stimulation devices (i.e. the laser motor and the
loudspeaker). Participants were instructed to relax and
pay attention to the clip, independently of its content and
of the sensory modality of the test stimuli.
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To obtain information on state reactivity towards the
displayed hand, at the end of the experiment, subjects
were asked to rate the perceived similarity of the dis-
played hand with a prototypic human male hand by using
a VAS scale, where 0 and 100 corresponded to “not similar
at all” and “extremely similar,” respectively. The evalua-
tion was done while the subjects were looking at the pic-
ture of the hand alone, i.e. without the syringe or the Q-
tip approaching to it.

EEG Recording

Participants were seated on a comfortable chair in a
silent, temperature-controlled room. They were asked to
keep their eyes open and stare at the computer screen in
front of them (1 m distance). The electroencephalogram
(EEG) was recorded using 58 scalp Ag—AgCl electrodes,
placed according the International 10-20 system. The nose
was used as reference. The electro-oculogram (EOG) was
recorded from two surface electrodes, one placed over the
right lower eyelid, the other placed lateral to the outer
canthus of the right eye. Signals were digitized at a sam-
pling rate of 1,024 Hz and a conversion of 12 bit, giving a
resolution of 0.195 pV (SD32; Micromed, Treviso, Italy).

EEG Analysis
Preprocessing

EEG data were pre-processed and analyzed using Lets-
wave (http://amouraux.webnode.com) [Mouraux and Ian-
netti, 2008] and EEGLAB [Delorme and Makeig, 2004].
EEG data were segmented into epochs using a time win-
dow ranging from 1 s pre-stimulus to 1 s post-stimulus.
Each epoch was baseline corrected using the pre-stimulus
interval from —0.5 to 0 s as reference, and band-passed
from 0.3 to 80 Hz using a fast Fourier transform filter.
Although peak latencies and peak amplitudes are prone to
high frequency noise, we decided to maintain the band-
pass filter similar to the previous literature [Valeriani et al.,
2008] to optimize the comparison with previous results.
EOG artifacts were subtracted using a validated method
based on independent component analysis [ICA, Jung et al.,
2000]. In all datasets, ICs related to eye movements had a
large EOG channel contribution and a frontal scalp distribu-
tion. After ICA, epochs were baseline corrected once more,
using the pre-stimulus interval from —0.5 to 0 as reference.
Epochs with amplitude values exceeding +65 uV (ie,
epochs likely to be contaminated by an artifact) were
excluded from further analyses. These epochs constituted
4% =+ 0.7% of the total number of epochs.

Data Extraction in the Time Domain

Epochs belonging to the same experimental condition
and the same modality of the test stimulus were averaged

time-locked to the onset of the test stimulus. This proce-
dure yielded four average waveforms (one for each experi-
mental condition: nociceptive/touch, nociceptive/pain,
auditory/touch, and auditory/pain) in each subject. Sin-
gle-subject waveforms were finally averaged to obtain
group-level average waveforms. For each peak and each
subject, the top 10% of time points displaying the highest
increase or decrease in amplitude were extracted [Luck,
2005]. N1, N2, and P2 peak amplitudes and latencies were
measured as follows. The N2 and P2 waves were meas-
ured at the vertex (Cz) referenced to the nose. The N2
wave was defined as the most negative deflection after
stimulus onset. The P2 wave was defined as the most posi-
tive deflection after stimulus onset. The N1 wave was
measured at both the temporal and the central electrode
contralateral to the stimulated side (T7 and C3), referenced
to Fz [Hu et al.,, 2010; Tarkka and Treede, 1993]. It was
defined as the most negative deflection preceding the N2
wave, which appears as a positive deflection in this mon-
tage. For auditory evoked potentials (AEPs), N1 and P2
waves were measured at the vertex (Cz) referenced to the
nose. The N1 wave was defined as the most negative
deflection after stimulus onset. The P2 wave was defined
as the most positive deflection after stimulus onset.

Data Extraction in the Time-Frequency Domain

An estimate of the amplitude of oscillatory activity as a
function of time and frequency was obtained for each EEG
epoch, according to the modality of the test stimulus (noci-
ceptive or auditory) and the content of the modulatory vis-
ual stimulus (Pain or Touch). Because this estimate is a
time-varying expression of oscillation amplitude regardless
of its phase, averaging these estimates across trials disclo-
ses both phase-locked and non-phase-locked modulations
of signal amplitude, provided that these modulations are
both time-locked to the onset of the event and consistent
in frequency (i.e., the latency and frequency at which they
occur are reproducible across trials). Therefore, we applied
a Morlet wavelet of which the initial spread of the Gaus-
sian envelope was set to 2.5/nwy (0 being the central fre-
quency of the wavelet) [Mouraux and Iannetti, 2008;
Mouraux et al., 2003]. The transform expressed the oscilla-
tion amplitude as a function of time and frequency.
Across-trial averaging of these time-frequency representa-
tions produced a spectrogram of the average EEG oscilla-
tion amplitude as a function of time and frequency. For
each estimated frequency, results were displayed as an
event related percentage (ER %) increase or decrease of os-
cillation amplitude relative to a pre-stimulus reference
interval (—0.5 to —0.1 s before the onset of each test stimu-
lus), according to the following formula: ER¢ s % = [Aif —
R¢]/R¢, where A is the signal amplitude at a given time ¢
and at a given frequency f, and Rg is the signal amplitude
averaged within the reference interval [Pfurtscheller and
Lopes da Silva, 1999].
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Source Analysis

Single trial oscillatory activity was further analyzed
using Brain Electrical Source Analysis software (BESA
5.3) [Scherg, 1992; Scherg and Berg, 1996]. To minimize
the limitations of source analysis approaches, we used
three different strategies to estimate the location of the
significant differences between the activity recorded dur-
ing the two experimental conditions (i.e. the observation
of others’ pain and touch), as implemented in BESA.
First, we calculated the significant differences between
the activity in the Touch condition and the activity in the
Pain condition (see next paragraph for details). Second,
we estimated the generators of the significant differences.
The locations of the estimated sources are reported in
Talairach coordinates (x, y, and z, in mm). Three different
approaches were used to estimate the source locations.
(1) A minimum norm algorithm to obtain a surface Mini-
mum Norm Image (MNI). This algorithm is commonly
used to estimate a distributed electrical current image at
each time and frequency sample [Hadmaéldinen, 1984].
Since the number of sources is much larger than the
number of sensors, the inverse problem is highly under-
determined and must be stabilized by a mathematical
constraint, the minimum norm. Out of the many possible
current distributions that can account for the recorded
data, BESA provides the minimum current solution (i.e.,
the L2 minimum norm). As opposed to the other
approaches (which provide 3D images), the surface mini-
mum norm image is not computed on a volumetric MR
image, but on the brain surface. Thus, the results of the
minimum norm image resemble a classical scalp topogra-
phy of cortical currents. The source image is expressed
as the total root mean square of the regional sources (0%
to 100% activity) (2) A spatial scanning method called
Multiple Source Beamformer (MSBF). This approach is
commonly used to estimate the sources of the neural ac-
tivity in a user-defined time—frequency range, time-locked
to a stimulus event. The BESA beamformer is a modified
version of the linearly constrained minimum variance
vector beamformer in the time—frequency domain, as
described by Gross and colleagues [2001]. The algorithm
computes complex cross spectral density matrices, result-
ing in a normalized output power (+£4%). (3) A distrib-
uted source analysis based on Classical LORETA (low
resolution brain electromagnetic tomography) Analysis
Recursively Applied (CLARA). CLARA allows an itera-
tive distributed source analysis method, by performing a
weighted LORETA with a reduced source space at each
iteration. As compared to LORETA [Pascual-Marqui et al.,
1994], this iterative approach reduces the blurring of the
estimated sources while keeping the advantage of a prede-
fined distributed source model, thus making it easier to
determine the location of the source with maximal activity
[Hamalainen et al., 2010]. A default minimum regulariza-
tion cut-off was used. Source image is expressed as cur-
rent density within a standard MRI image (nAm/cm®).

Statistical Analysis

Preliminary assessment of outlier data revealed that one
subject had amplitude values above three standard devia-
tions, and was thus excluded from further analysis in both
time and time—frequency domains. Differences in the sub-
jective and electrophysiological responses between the ob-
servation of pain and touch in the stranger model were
assessed using two-tailed student’s paired t test. Results
are reported as mean =+ standard error of mean (SEM).
Statistical differences were considered significant at P <
0.05.

In the time-frequency domain, as we had no a priori
hypothesis on where the modulatory differences might
take place in time, frequency and space, we explored all
the pixels composing the time-frequency matrix in each
channel. In other words, we adopted a data-driven,
assumption-free approach to identify the time, the fre-
quency, and the scalp topography of experimental differ-
ences. This approach required particular attention to the
statistical correction of multiple comparisons. First, we
applied a correction for multiple comparisons by dividing
the standard P value for significance (P = 0.05) by the
number of pixels in the epoched spectrogram (n = 2,048
pixels on the temporal axis multiplied by 80 pixels on the
frequency axis, resulting in an area of 163,840 pixels). The
resulting corrected p value (P = 3 x 1077) was subse-
quently divided by the number of EEG electrodes (n =
58). This operation provided a final corrected p value of
P =5 x 10 Y, corresponding to a t value of 18.3 (similarly
to statistical correction in neuroimaging technique)
[Frackowiak, 2004].

Spearman rank correlation coefficients were used to
compute the correlation between significant differences in
electrophysiological activity and subjective and personality
data. Statistical correlations were considered significant at
P < 0.05.

RESULTS
Personality Measures and Subjective Ratings

The average scores of the four IRI subscales (ranging
from 0 to 28) were as follows: EC: 20.0 (£0.13); FS: 21.7
(£0.18); PD: 17.9 (£0.15); PT: 23.7 (£0.14).

Subjective ratings of stimulus intensity (nociceptive
stimulation during Pain and Touch: 56 + 1.20 and 56 +
1.30; auditory stimulation during Pain and Touch: 48 +
1.16 and 50 £ 1.12), unpleasantness (nociceptive stimula-
tion during Pain and Touch: 52 £ 1.30 and 57 + 1.19; audi-
tory stimulation during Pain and Touch: 31 4+ 1.39 and 36
+ 1.44) and saliency (nociceptive stimulation during Pain
and Touch: 56 + 1.36 and 58 + 1.34; auditory stimulation
during Pain and Touch: 53 + 1.18 and 54 + 1.23) were
never different between the two observational conditions
(all P values > 0.05).
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Nociceptive and Auditory Related Activity in the
Time-Frequency Domain

Group average time—frequency spectrograms of both
laser- and auditory-induced modulation of EEG oscillation
amplitudes during the observation of Touch and Pain con-
- ditions are shown in Figure 3.
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effect on the time-frequency responses induced by auditory
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Group-level average LEP (upper panel) and AEP (lower panel)
waveforms in the two experimental conditions. Displayed signals
were recorded at electrode Cz referenced to the nose (AEPs;
N2-P2 waves of LEPs) and T7 referenced to Fz (NI wave of
LEPs). x axis, time (s); y axis, amplitude (nV). Waveforms
extracted during observation of others’ pain and touch are rep-
resented in red and blue, respectively. The vertical dashed lines

mark the onset of the test stimulus. Scalp maps at peak latency
0 0_:?5 0_‘5 0_%.-5 and relative peak amplitudes (+SEM) are shown in the insets.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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Figure 3.

Group-level average time—frequency representation of nocicep-
tive (left panel) and auditory (right panel) related brain activity
in the two experimental conditions. Spectrograms represent the
response obtained at electrode C3. x axis, time (s); y axis, fre-
quency (Hz); color scale represents baseline corrected oscilla-
tory amplitude (ER%). The top and middle panels show the
group-level time—frequency response during the observation of
touch (blue color, Touch) and pain in others (red color, Pain),
respectively. Note that the  ERD observed at 21.5-26.5 Hz
and 365-435 ms in the Touch condition is significantly reduced

during Pain. The bottom panel shows the results of the point-
by-point paired t test statistics obtained on the time—frequency
representations of nociceptive (left) and auditory (right) related
brain activity. The significant difference in the p ERD between
Touch and Pain, present only in the time—frequency response eli-
cited by nociceptive stimuli (left), displayed a frontocentral scalp
topography, as shown by the time series of scalp maps, plotted
every 5 ms. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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Figure 4.

Source localization of the difference between the oscillatory
responses during the observation of other’s pain and other’s
touch (B ERD, see Fig. 3). Three different source localization
approaches were used: Minimum Norm Image (MNI), Multiple
Source Beamformer (MSBF), and Classical LORETA Analysis
Recursively Applied (CLARA). The results are projected onto a
standard MRI in Talairach space. Left panel: MNI. Maximal activ-
ity was located at x = 28, y = —25, z = 67 (corresponding to
the precentral gyrus, BA 4). Middle panel, MSBF. Maximal activity
was distributed over the sensorimotor area, with two maxima.

recorded during other pain and other touch observation
were used (Fig. 4). The Minimum norm surface image local-
ized the statistically significant difference at coordinates cor-
responding to the precentral gyrus (BA 4; x =28, y = —25, z
= 67). The spatial beamforming approach provided a vol-
ume image of the statistically significant difference over sen-
sorimotor cortex, with maximal explained variance in the
precentral gyrus (BA 6; x = 27, y = =9, z = 67) and in the
postcentral gyrus (BA 2; x = 27, y = —34, z = 67). Finally,
CLARA distributed source image also localized the differ-
ence in the precentral gyrus (BA 4; x = 20, y = —23, z = 54).

Correlation analysis

A positive significant correlation between the mean ER%
difference of Pain and Touch conditions and the ratings of
similarity of the displayed hand was found (p = 0.68; P <
0.05; Fig. 5) indicating that the Pain—Touch ER% difference
was higher in the subjects who reported higher similarity
between the observed and the “represented” hand (the
group average rating of similarity was 6.67 + 0.12).

There were no significant correlations between the index
of electrophysiological activity recorded during the obser-
vation of others’ pain or touch and the interpersonal reac-
tivity subscales or subjective pain ratings (all P; > 0.5).

DISCUSSION

By recording the laser- and auditory-evoked EEG
responses during the observation of videoclips showing
others” pain and touch, we demonstrate a modulation of
the cortical activity elicited by nociceptive laser stimuli, but
not of the cortical activity elicited by auditory stimuli
(Fig. 3). The EEG response modulated by the observation of

One located at x = 27, y = —9, z = 67 (corresponding to the
precentral gyrus, BA 6) and the other located at x = 27, y =
—34, z = 67 (corresponding to the postcentral gyrus, BA 2).
Right panel, CLARA. Maximal activity was located at x = 20, y
= —23, z = 54 (corresponding to the precentral gyrus, BA 4).
Note that all three different source analysis approaches support
a source located in the sensorimotor cortex, with a peak of ac-
tivity corresponding to the precentral gyrus. [Color figure can
be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

other’s pain was an event-related desynchronization in the
beta band (B ERD), with a scalp maximum on the fronto-cen-
tral electrodes contralateral to the stimulated hand (Fig. 3,

Mean 3 ERD% (Pain-Touch)

p=0.68; P<0.05
10 20 30 40 50 60 70 80 90 100 110
Subjective rating of hand similarity

Figure 5.

Spearman Rho (p) rank correlation between subjective rating of
hand similarity (x axis) and significant differences in B oscillatory
amplitude (ER%, y axis). The scatterplot shows how the higher
the rating of similarity, the higher the difference in 3 oscillations
between pain and touch observational conditions (p = 0.68; P <
0.05), with lower B ERD during others’ pain observation. In
other words, the more the subjects perceived the observed
hand as similar to their own representation of a male hand, the
higher the sensorimotor inhibition (as indexed by a reduction of
B desynchronization). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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bottom panel). By using three different source analysis
approaches, we provide converging evidence that such mod-
ulation affects neural activity in the contralateral primary
sensorimotor cortex (see Fig. 4). Finally, the magnitude of
this specific modulation correlates with a subjective measure
of similarity between the model’s hand and the onlookers’
representation of the hand (see Fig. 5).

Altogether, our findings demonstrate that the observation
of others’ pain modulates, in a somatosensory-specific fash-
ion the cortical responses elicited by nociceptive stimuli in
the sensorimotor cortex contralateral to the stimulated hand.

Observation of Pain in Others Modulates 8
Desynchronization in Sensorimotor Regions

Postsynaptic potentials in pyramidal cortical neurons
are known to generate patterns of event-related synchroni-
zation/desynchronization (ERS/ERD) of scalp EEG oscilla-
tions at different frequencies [Pfurtscheller and Lopes da
Silva, 1999]. Suppression of oscillatory amplitude in the
15-35 Hz band ( ERD) has been related to an increased
excitability of a thalamocortical gate, which can be
“opened” by endogenous or exogenous events [Steriade
and Llinas, 1988]. Animal and human studies indicate that
a reduction of magnitude of B oscillations (i.e., p ERD)
occurs in a large number of brain regions, including the
basal ganglia [Alegre et al., 2005; Courtemanche et al.,
2003], the thalamus [Paradiso et al., 2004], and the poste-
rior parietal cortex [Brovelli et al., 2004; MacKay and Men-
donca, 1995], and is associated to actual or imagined
motor activity. It is worth noting that the most prominent
source of B ERD is located in the contralateral perirolandic
region [Formaggio et al., 2008; Pfurtscheller, 1989; Sanes
and Donoghue, 1993; Schnitzler et al.,, 1997]. Moreover,
faster reaction times to target stimuli are associated to low
magnitude of ongoing P oscillations over the sensorimotor
cortex [Senkowski et al.,, 2006; Tzagarakis et al., 2010;
Zhang et al., 2008]. These findings are consistent with the
notion that while B band synchronization (ERS) reflects a
state of maintenance of posture, p band desynchronization
(ERD) reflects preparation to act [Androulidakis et al.,
2007; Gilbertson et al., 2005]. Studies indicate that f ERD
over the sensorimotor cortex is present not only during
voluntary movement [Stancak and Pfurtscheller, 1995;
Toma et al., 2000] and movement imagery [Babiloni et al.,
2002; Cochin et al., 1999; Pfurtscheller and Neuper, 1997],
but also during the observation of others’” movements
[Hari et al., 1998; Neuper et al., 2006, 2009].

B ERD has also been found during nociceptive stimula-
tion [Hauck et al., 2007; Mouraux et al., 2003; Ohara et al.,
2004; Ploner et al., 2006; Raij et al., 2004] and linked to a
possible motor preparatory response to the laser stimulus.
Interestingly, the reduction of B ERD during observation of
other’s pain (Figs. 3 and 4) is opposite to what found during
first-person pain perception and thus suggests a reduced
motor preparatory response to nociceptive stimuli received

during other’s pain observation. It is relevant that three
independent source analysis methods indicate the  ERD
effect involves neural activity in primary motor and somato-
sensory cortices. Relevant to the aim of the present study is
that the B ERD reduction occurred during nociceptive but
not during auditory stimulation, thus showing that the
reactivity to others’ pain has a specific effect on the brain
responses elicited by nociceptive somatosensory stimulation
(see Fig. 3).

Importantly, converging evidence from three different
source analysis approaches indicates that the somatosen-
sory-specific modulation is likely to arise from the inter-
play between primary somatosensory and motor
structures in the hemisphere controlateral to the stimu-
lated body district. Indeed, all three source analysis
approaches (see Fig. 4) estimated the highest difference
between pain and touch observation in the hemisphere
contralateral to the stimulated hand, in a region including
the primary sensorimotor cortex, the premotor cortex and,
possibly, the supplementary motor cortex. In particular,
the spatial scanning beamformer showed the presence of a
double pre- and post-rolandic source. This observation was
confirmed by CLARA iterative analysis, which, by estimat-
ing the overall strength of the field instead of its variance
(as the beamformer does) [Vrba and Robinson, 2001], indi-
cated that the highest difference between pain and touch
observation was arising in a cortical area located in between
the two sources estimated with the beamformer approach,
and in full agreement with the source image estimated
using the Minimum Norm approach (see Fig. 4). Notably,
the location of these cortical sources is consistent with pre-
vious EEG and magnetoencephalographic (MEG) reports on
the origin of the brain oscillations occurring in the B band
(~15-35 Hz) in the sensorimotor region during both the
performance and the observation of movements [Hari et al.,
1998; Kilner et al., 2009; Neuper and Pfurtscheller, 2001;
Pfurtscheller and Berghold, 1989; Salmelin and Hari, 1994].

In keeping with a previous MEG study [Betti et al., 2009]
the present study complements and expands TMS [Ave-
nanti et al., 2005, 2009] and somatosensory evoked potential
[Bufalari et al., 2008] reports indicating that vision of noci-
ceptive stimuli delivered to others induces changes of neu-
ral activity also in the primary sensory and motor cortices.
Given that no overt motor reaction was allowed during the
experimental task, the reduced sensorimotor reactivity is
likely to reflect a inhibitory response to the observed pain
in the sensorimotor structures, making them less sensitive
to the incoming nociceptive test stimulus.

It is highly likely that nociceptive specific modulation of
B ERD entails a strong attentional modulation. Indeed, our
subjects were instructed to pay attention to the visual
stimuli while they were receiving either a nociceptive laser
or a non-nociceptive auditory stimulus. Thus, an interac-
tion between top-down (i.e., endogenous) and bottom-up
(i.e., exogenous) attentional processes may result in a spe-
cific inhibition of the onlooker motor preparatory
response, reflected by the reduction of the B ERD. That is,
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the exogenous cue represented by the laser stimulus deliv-
ered to the onlookers” hand was contrasted by the syringe
penetrating the model’s hand, which was more effective in
keeping onlookers’ attention focused on the sensory event
taking place on the strangers’ hand [Sambo et al., 2009;
Simon-Dack et al., 2009]. The latency of the observed B
ERD effect (i.e., 350450 ms post-stimulus, Fig. 3) is indeed
compatible with the interaction of top-down and bottom-up
attentional processes, which are well represented by late
neural responses (e.g., the P300 wave) evoked by a wide
range of sensory stimuli, and classically associated to both
involuntary re-orienting of attention, contextual update and
conscious appraisal [Polich, 2007; Valentini et al., 2011]. It is
also worth emphasizing that, as indicated by the correlation
analysis (see Fig. 5), the p ERD reduction upon others” pain
observation was higher in the participants who perceived
the models” hand as similar to a typical hand. This observa-
tion is in keeping with accounts of empathy highlighting
that appraisal of body representation may regulate auto-
matic interpersonal reactivity [Decety and Lamm, 2006;
Goubert et al., 2005; Hein and Singer, 2008].

Lack of Influence of Pain Observation on
Laser-Evoked Potentials

The only LEPs study on empathy for pain performed so
far [Valeriani et al., 2008] reports that observing pain in
others does not cause any modulation of the N2-P2 wave.
Our results (1) confirm this lack of a modulatory effect of
observing others’” pain on the main LEP vertex complex (i.e.,
the N2-P2 biphasic wave), but (2) show a lack of modulation
of its early contralateral activity (i.e., the N1 wave) (see Fig.
2). Thus, we cannot confirm the inhibitory effect of observing
others” pain reported by Valeriani et al. [2008] on the ampli-
tude of the early-latency N1 wave of the LEP. Although we do
not have an obvious explanation for this discrepancy, an im-
portant methodological difference between the two studies
has to be noted. Whereas we reported raw LEP amplitudes,
the previous study expressed the N1 amplitude measured
during others” pain observation as percent change compared
to the N1 amplitude measured during the observation of a
static hand. It is known that the measurement of the N1 in sin-
gle subjects often yields near-to-zero values [Hu et al., 2010],
and that percent changes using near-to-zero values are prone
to produce extreme values that can bias the results. However,
even assuming that the modulation observed by Valeriani
et al. [2008] was causally related to the observation of others’
pain, the conclusion that it affected cortical activities specifi-
cally related to nociceptive processing was not justified, as no
control stimulus was employed.

CONCLUSION

Our experiment shows, for the very first time, the specific-
ity of the modulation induced by the observation of others’
pain on the neural activity elicited by nociceptive stimuli,
while controlling for the modulation of the neural activity eli-

cited by stimuli belonging to a different sensory modality.
Though simple, this control comparison had never been per-
formed by researchers claiming the existence of a specific
effect on the nociceptive system of the onlooker [Singer et al.,
2004; Valeriani et al., 2008]. We thus demonstrate that the ex-
perience of others’ pain mediated by vision modulates specif-
ically the neural activity in the onlookers’ sensorimotor
cortex, and that this modulation significantly occurs only in
the neural activity elicited by stimuli belonging to the noci-
ceptive, rather than to another sensory modality.
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