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Abstract: Aberrant hippocampal morphology plays an important role in the pathophysiology of
aging. Volumetric analysis of the hippocampus has been performed in aging studies; however,
the shape morphometry—which is potentially more informative in terms of related cognition—has
yet to be examined. In this paper, we employed an advanced brain mapping technique, large de-
formation diffeomorphic metric mapping (LDDMM), and a dimensionality reduction approach,
locally linear diffeomorphic metric embedding (LLDME), to explore age-related changes in hippo-
campal shape as delineated from magnetic resonance (MR) images of 302 healthy adults aged
from 18 to 94 years. Compared with the hippocampal volumes, the hippocampal shapes clearly
showed the nonlinear trajectory of biological aging across the human lifespan, where the variation
of hippocampal shapes by age was characterized by a cubic polynomial. By integrating of
LDDMM and LLDME, we were also able to illustrate the average hippocampal shapes in each
individual decade. In addition, LDDMM and LLDME facilitated the identification of 63 years as a
threshold beyond which hippocampal morphological changes were accelerated. Adults over 63
years of age showed the inward-deformation bilaterally in the head of the hippocampi and the
left subiculum regardless of hippocampal volume reduction when compared to adults younger
than 63. Hence, we demonstrated that the shape of anatomical structures added another dimen-
sion of structural morphological quantification beyond the volume in understanding aging. Hum
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INTRODUCTION

Magnetic resonance-based volumetric assessment of the
hippocampus has been widely employed in studying nor-
mal aging and various neurodegenerative diseases, includ-
ing mild cognitive impairment, Alzheimer’s disease (AD),
and geriatric depression [Apostolova et al., 2006a,b; Carde-
nas et al., 2003; Convit et al., 1997; Csernansky et al., 2005;
Frisoni et al., 2005, 2006, 2007; Qiu et al., 2009c; Shenton
et al., 2001; Wang et al., 2003, 2006; Whitwell et al., 2007].
Thus far, it has been widely accepted that the hippocam-
pal volume declines as age increases. However, the ques-
tion of whether age-related patterns of hippocampal
morphology are linear or curvilinear is debatable, even
though voxel-based morphometric analysis revealed non-
linear aging processes in the whole brain [Jernigan and
Gamst, 2005; Walhovd et al., 2005]. Additionally, it is not
yet known whether studies of hippocampal morphology
alone can identify a critical time window when aging
processes are accelerated.

Investigations of the hippocampus in normal aging have
thus far been limited to examination of volumetric
changes. Existing studies have yielded conflicting results
on patterns of age-related hippocampal volume reduction,
where some have found the relation of the hippocampal
volume with age occurs in a nonlinear fashion (e.g., cubic
or quadratic polynomial) [Allen et al., 2005; Jernigan and
Gamst, 2005; Kennedy et al., 2009; Raz et al., 2005; Sullivan
et al., 1995; Terribilli et al., 2011; Walhovd et al., 2005],
while others found a linear or no reduction of the hippo-
campal volume with age [Hackert et al., 2002; Jack et al.,
1997; Malykhin et al., 2008; Pruessner et al., 2001; Ta et al.,
2011]. These discrepancies may stem from the sample
characteristic or the time window studied, or from evi-
dence that the hippocampal volume in young adults is as
variable as that in older persons [Lupien et al., 2007].

Converging data from structural and functional imaging
studies suggest an anterior–posterior gradient of age-
related volume and functional reduction along the hippo-
campal longitudinal axis in normal aging [Chen et al.,
2010; Driscoll et al., 2003; Malykhin et al., 2008; Ta et al.,
2011]. The structure of the hippocampus is complex, and
subtle differences in small subvolumes could well have
aging implications, even if they are not large enough to
affect the overall volume. This indicates that the global
size of the hippocampus represented by its volume may
not be a sufficiently sensitive measure for characterizing
normal aging processes related to the hippocampal mor-
phology. Regionally specific morphological changes of the
hippocampus, such as the hippocampal shape character-
ized using brain mapping techniques, may be a key for
understanding patterns within the age-hippocampus rela-
tion in normal aging.

In the last decade, brain mapping techniques have been
widely used in neuroimaging studies for identifying differ-
ent patterns of hippocampal shape changes distinguishing
early AD from healthy aging [Apostolova et al., 2006b;

Cardenas et al., 2003; Fox et al., 1996; Ridha et al., 2006;
Wang et al., 2003]. Conversely, there have been limited
investigations on hippocampal shape analysis to distin-
guish stages of normal aging, especially regarding the con-
cept of the evolution of hippocampal shape change across
the lifespan. This may be because the hippocampal shape
is characterized by high-dimensional measures, rendering
it less straightforward to intuitively visualize or study its
relation with age as compared to simple hippocampal vol-
umetric analysis.

In this study, we investigated evolution patterns of the
hippocampal shapes in 302 normal adults aged from 18 to
94 years. We showed the average hippocampal shape in
each individual decade and determined a critical age when
the changes of the hippocampal morphology are acceler-
ated. We hypothesized the nonlinear evolution of the hip-
pocampal shape across the lifespan, which is similar to that
of the whole brain found in previous studies [Jernigan and
Gamst, 2005; Walhovd et al., 2005]. Even though this non-
linear relationship with age may not be directly observed
using studies based on the hippocampal volume, this rela-
tionship is observed in studies based on the local shape
changes of the hippocampus. As we will see later, this
property is helpful for distinguishing different trajectories
of hippocampal aging processes in young and older adults.

To test our hypothesis, we first chose an advanced brain
mapping technique, large deformation diffeomorphic metric
mapping (LDDMM) [Miller and Qiu, 2009], to study shape
variations of individual hippocampi referenced to an atlas
shape because of its mapping accuracy [Vaillant et al.,
2007]. The use of LDDMM for studying hippocampal
shapes allows their placement in a metric space, provides a
diffeomorphic (one-to-one, reversible smooth) transforma-
tion characterized by vector fields (called initial momenta)
and defines a metric distance that can be used to quantify
the similarity between two hippocampal shapes. Because of
the high dimensionality of the initial momenta that charac-
terize individual hippocampal shapes referenced to the
atlas shape, we then employed our recently developed
dimensionality reduction approach, locally linear diffeomor-
phic metric embedding (LLDME) [Yang et al., 2011b], to
seek a parsimonious representation of hippocampal shapes
in an Euclidean space. This allowed us to represent the hip-
pocampal shapes using a scalar variable such that their
relation with age can be easily visualized and statistically
analyzed. The integration of LDDMM and LLDME facili-
tated the investigation of (i) the relation between age and
hippocampal shapes; (ii) average hippocampal shapes in
each decade; (iii) critical time when changes of hippocam-
pal shapes start to be accelerated.

METHODS

Subjects

This study included 302 healthy right-handed subjects
(age range: 18–94, mean age = 44.5 � 23.8 years; gender:
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114 males and 188 females). All subjects were recruited
from the general Washington University community and
also from the longitudinal pool of the Washington Univer-
sity Alzheimer Disease Research Center (ADRC). All sub-
jects gave informed consent and participated in
accordance with guidelines of the Washington University
Human Studies Committee.

The screening for subject inclusion was detailed by Mar-
cus et al. [2007]. Briefly, young and middle-aged adults
were questioned by a trained technician about their medi-
cal histories and use of psychoactive drugs. Adults aged
60 and older underwent the ADRC’s full clinical assess-
ment described by Marcus et al. [2007]. Subjects with a
primary cause of dementia other than AD (e.g., vascular
dementia, primary progressive aphasia), active neurologi-
cal or psychiatric illness (e.g., major depression), serious
head injury, history of clinically meaningful stroke, and
use of psychoactive drugs were excluded, as were subjects
with gross anatomical abnormalities evident in their MRI
images (e.g., large lesions, tumors). Among all subjects
aged 60 years and above, the clinical dementia rating scale
(CDR) was zero and a Mini Mental Status Examination
(MMSE) was greater than 25 (range, 25–30).

MRI Acquisition and Hippocampal Delineation

T1- weighted MP-RAGE scans were acquired using a 1.5
T Siemens Vision scanner at Washington University at St.

Louis. MP-RAGE parameters were empirically optimized
for gray-white contrast [TR = 9.7 ms, TE = 4 ms, flip angle
= 10�, inversion time (TI) = 20 ms, delay time (DT) = 200
ms, 256 � 256 (1 � 1 mm2) in-plane resolution, one hun-
dred twenty-eight 1.25-mm slices without gaps]. Head
movement was minimized by cushioning and a thermo-
plastic facemask. All MR images used in this study are
available in open access [http://www.oasis-brains.org,
(Marcus et al., 2007)].

As illustrated in Figure 1, we first employed FreeSurfer
to delineate the hippocampus from the intensity-inhomoge-
neity corrected T1-weighted MR images [Sled et al., 1998]
using a Markov random field (MRF) model [Fischl et al.,
2002]. Since the MRF model was performed in the image
volume without constraints on topology of the segmented
hippocampal volume, it introduced irregularities and topo-
logical errors (e.g., holes) at the hippocampal boundary
(arrows in Fig. 1). This increased shape variation and thus
reduced statistical power to detect group differences. To
address this potential pitfall, we generated smooth hippo-
campal shapes of individual subjects with correct topology
by injecting a hippocampal atlas shape using the large de-
formation diffeomorphic metric mapping (LDDMM) algo-
rithm [Miller and Qiu, 2009; Qiu and Miller, 2008]. The
hippocampal atlas shape was created from 41 manually la-
beled hippocampi via a large deformation diffeomorphic
atlas generation algorithm in our previous study [Qiu et al.,
2010]. Each hippocampal volume was approximated by the
transformed atlas through the LDDMM transformation. The

Figure 1.

Schematic of the hippocampal segmentation. The left panel shows the volume and surface views

of the hippocampus segmented using FreeSurfer, while the right panel illustrates those after

injecting the atlas hippocampal shape. Arrows in the left panel point out segmentation errors

from FreeSurfer.
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reader is referred to [Qiu and Miller, 2008] for the mathe-
matical derivation of this atlas injection procedure and its
evaluation as well as the segmentation accuracy on the hip-
pocampus. This delineation approach has been successfully
applied to investigate the hippocampus and other subcorti-
cal shapes in AD [Qiu et al., 2009b].

Hippocampal Shape Analysis

Figure 2 illustrates the schematic of hippocampal shape
analysis. First, we constructed triangulated surfaces using
the matching cubes algorithm (left hippocampal surfaces
with 1,184 vertices and 2,364 triangles; right hippocampal
surfaces with 1,231 vertices and 2,458 triangles) by com-
posing the LDDMM transformation on the atlas surface
[Qiu et al., 2010]. Then, the hippocampal atlas surface (the
same atlas as that was used in the hippocampal segmenta-
tion) was registered to individual subjects’ hippocampal
surfaces using the LDDMM-surface mapping algorithm
[Zhong et al., 2010; Zhong and Qiu, 2010]. This mapping
algorithm provided a diffeomorphic transformation that is
a one-to-one, reversible smooth transformation which
aligns the atlas to the subject. It yielded initial momentum
vectors defined at each vertex of the atlas surface that
characterized shape variations of individual hippocampi
referenced to the atlas (see an example in Fig. 2a). The
initial momentum, similar to the concept in physics,
uniquely determined the diffeomorphic flow deforming
the atlas to individual hippocampi [Miller et al., 2006].

Unlike the volumetric measure of the hippocampus,
whose relation with age can be easily visualized using a
scatter plot, the dimensionality of the initial momentum
was high (left hippocampus: 3x1184 (vertices); right hippo-
campus: 3x1231 (vertices)). This made it challenging to vis-
ualize the relation of the hippocampal shape with age
using a scatter plot. We thus performed locally linear dif-
feomorphic metric embedding (LLDME) analysis [Yang
et al., 2011b] that reduced the dimensionality of the initial
momentum and projected the shape into a Euclidean space
with a few dimensions, as illustrated in Figure 2b. In the
LLDME analysis, we denoted 302 hippocampal surface
shapes as Si, i = 1,2, : : : , 302, where Si is the hippocampal
surface of subject i. (aðiÞl )n

l¼1 are the initial momentum vec-
tors found using LDDMM to map the atlas surface to the
ith subject’s surface. These momentum vectors are defined
on the atlas surface with n vertices. We assumed that their
age-related variations characterized by (aðiÞl )n

l¼1 are not ran-
dom, but instead can be characterized using a small subset
of unknown parameters in a Euclidean space, where the
relationship of neighborhood hippocampal shapes can be
preserved. The first step of LLDME was to compute pair-
wise metric distances of these hippocampal shapes using
LDDMM and identify neighbors of each hippocampal
shape based on its metric distances to other hippocampi
[Yang et al., 2011a]. In order to reduce the number of pair-

wise LDDMM mappings
302
2

8>:
9>; among 302 subjects to

302 LDDMM mappings [Yang et al., 2011a], we estimated
the metric distance between surfaces Si and Sj (q(Si,Sj))
using the first order approximation given in the form of

Figure 2.

Schematic of hippocampal shape analysis. Panel (a) shows the

large deformation diffeomorphic metric surface mapping

(LDDMM-surface) from a hippocampal surface atlas to subjects’

surfaces, Si and Sj, and obtained the initial momentum character-

izing shape variations of Si and Sj relative to the atlas surface.

Panel (b) illustrates the representation of hippocampal shapes of

302 healthy subjects into a two-dimensional Euclidean space that

was obtained using locally linear diffeomorphic metric embed-

ding (LLDME). Panel (b) also illustrates real hippocampal shapes

at six different locations marked as set 1, 2, : : : , 6.

r Yang et al. r

r 3078 r



qðSi; SjÞ2 ¼
Xn

l¼1

Xn

q¼1

ðaðjÞl � aðiÞl Þ
T

kvðxl; xqÞðaðjÞq � aðiÞq Þ
h i

;

where xl is the coordinate of the lth point on the atlas sur-

face and kv is the kernel associated with a Hilbert space of

the initial momentum to ensure that the deformation is

diffeomorphic. T denotes the transpose operation. The

metric distance from this first order approximation is

highly correlated with one directly computed using

LDDMM to deform Si to Sj (r = 0.975, P < 0.0001) [Yang

et al., 2011a]. The second step of LLDME was to find a 302

� 302 matrix of weights, W = [Wij], that approximated

each hippocampal shape as a linear combination of its

neighbors. This was made possible by the linearity prop-

erty of the initial momentum and its role of representing

shape variation of any two hippocampi [Yang et al.,

2011b]. We hence defined

eðWÞ ¼
X302

i¼1

ðaðiÞ �
X
j2Ni

Wija
ðjÞÞT kvðaðiÞ �

X
j2Ni

Wija
ðjÞÞ

6664
7775;

subject to
P

j Wij = 1 and Wij = 0 when j =2 Ni. a(i) = (aðiÞl )n
l¼1

represents the initial momentum vectors that encode the
shape variation of Si relative to the atlas, which is obtained
from LDDMM. The coefficients, W = [Wij], summarize the
contribution of the other subjects’ anatomical shapes to that
of Si and can be found via minimizing e (W). The last step
of LLDME was to find a Euclidean low-dimensional repre-
sentation of the hippocampal shapes that preserved their
neighborhood relations. This was implemented by looking

for a Euclidean vector, y(i) = [y
ðiÞ
1 ,y

ðiÞ
2 , . . . y

ðiÞ
p ] with dimen-

sionality p, representing Si such that y(i) could be approxi-
mated by a linear combination of the same neighbors when
weights in W were given. This was achieved by minimizingP302

i¼1 ||yi �
P

j2Ni
Wijyj||

2 subject to
P

302
i¼1 yi = 0,

1
302

P302
i¼1 yiy

T
i is an identity matrix. The dimensionality of the

Euclidean vector (p) was determined when p gave the max-
imal similarity between the neighborhood relations of the
hippocampal shapes characterized by using the initial mo-
mentum and y(i), that is, p was determined by maximizing
R(q1,q2), where R(q1,q2) is the absolute correlation between
the pair-wise metric distance matrix computed based on
the initial momentum and distance matrix computed based
on y(i). In this study, the intrinsic dimension of the hippo-
campal shape among the 302 subjects was p = 2. These two
dimensions were referred to as the first and second shape
indexes and used to investigate age-related hippocampal
trajectory across the lifespan. Observe that these two shape
indexes characterized local shape variations of the hippo-
campus beyond global increase or decrease of the hippo-
campal volume.

In addition to the reduction of dimensionality of the
hippocampal shapes, LLDME also provided a simple

scheme to compute a mean hippocampal shape among
multiple subjects by first averaging their shape indexes,
and then finding its neighbors and linear interpolation
weights in the Euclidean space. Such neighborhood rela-
tion and weights were applied to the hippocampal shape
space and used to compute the mean initial momentum
that characterized the mean hippocampal shape deviation
from the atlas [Yang et al., 2011b]. In our study, we
employed this technique to visualize the hippocampal
shape, averaged among subjects in each age decade.

Statistical Analysis

Hippocampal volume

The total hippocampal volume, a sum of the left and
right hippocampal volumes, was first adjusted for the total
intracranial volume (TIV, computed using FreeSurfer) and
gender using linear regression, and then converted to a Z-
score reflecting the standard deviations above or below
the population mean. To investigate patterns of nonlinear-
ity in the relationship between the hippocampal volume
and age, regression analysis was performed where age
was a fixed factor and the dependent variable was the Z-
score of the hippocampal volume. The goodness of fit of
first, second, and third order polynomial expansions was
assessed and results were reported only if at least one of
the regression models achieved the significance level at
p < 0.05. The coefficient of determination, R2, was used to
measure how well the model is likely to fit the hippocam-
pal volume data.

Hippocampal shape

To investigate patterns of nonlinearity in the relation-
ship between the hippocampal shape and age, Pearson’s
correlation analysis was first performed to select a subset
of the hippocampal shape indexes that were deemed to be
significantly correlated with age. Similar to the hippocam-
pal volume analysis, regression analysis was then per-
formed with age as a fixed factor, the dependent variables
were individual shape indexes, and gender was a
covariate.

To identify a critical age when age-related changes of
the hippocampal shape are accelerated, linear discriminant
analysis (LDA) was employed to optimize a classification
error rate such that subjects above this critical age (older
group) were best distinguished from those below this criti-
cal age (young group). Employing shape indexes with sig-
nificant correlation with age as features in LDA, leave-one-
out cross validation was applied to compute the classifica-
tion error rates at each age and the critical age was deter-
mined as the age where the classification error rate was
minimal. To examine the shape differences between the
young and older groups regardless of the size of the hip-
pocampus, regression was performed with age group as
the fixed factor, displacement at each vertex relative to the
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atlas as the dependent variable, and gender and hippo-
campal volume as covariates. The statistical results were
corrected for multiple comparisons using permutation
tests to determine the overall significance of the shape dif-
ference map. In each permutation trial, the group factor
was randomly assigned to each subject and the number of
points with significant group shape difference (P < 0.05)
was recorded. After 10,000 permutation trials, the overall
significance was computed as the fraction of the time the
suprathreshold area was greater in the randomized maps
than in the real effect [Nichols and Holmes, 2002].

RESULTS

Age Effects on Hippocampal Volumes

Figure 3a illustrates the scatter plot of the hippocampal
volume and age, showing the distribution of the hippo-
campal volume across the lifespan. Figure 3b illustrates a
scatter plot of age and its z-score. The age-related decline
of the hippocampal volume was best represented by the
quadratic polynomial model after removing effects of TIV
and gender (t = �2.16, P < 0.05) (see the red line in Fig.
3b). R2 associated with this model was small (R2 = 0.03).
This suggested that the variation of hippocampal volume
across age among this sample (Table I) might not be well
characterized by the quadratic polynomial even though
this quadratic polynomial was significantly correlated with
the hippocampal volume.

Age Effects on Hippocampal Shapes

Figure 2b illustrates the representation of the 302 hippo-
campal shapes in the two-dimensional shape index space
obtained using LLDME. Intuitively, the hippocampal
shapes of older adults are in the location with a larger first

shape index, while the hippocampal shapes of young
adults are in the location with a smaller first shape index.
Several sets of the hippocampal shapes at different age
ranges are also shown in Figure 2b for the intuitive
illustration.

Pearson’s correlation analysis revealed significant corre-
lation of age with the first shape index (r = �0.76, P <
0.05). However, this was not the case with the second
shape index (r = �0.03, P < 0.82). This suggested that the
age-related variation in hippocampal shape was repre-
sented by the first shape index only. Figure 4 illustrates
the scatter plot of the first shape index and age. The plot
depicts the first shape indexes among young adults
(18�30 years) as restricted to a narrow range regardless of
their hippocampal volumes (which was highly variable as
graphed in Fig. 2). The standard deviation and the range
of the first shape index are given in Table II. This distribu-
tion suggested an increasing variation in hippocampal
shapes with age. The regression model with gender as a
covariate revealed a significant third order polynomial
function of the first hippocampal shape index with age
(t = �2.00, P < 0.05; R2 = 0.66). This relationship remained
significant (t = �1.96, P = 0.05, and R2 = 0.68) when the

TABLE I. Mean, standard deviation (SD), minimal and

maximal values of the hippocampal volume (a sum of

the left and right hippocampal volumes)

Age range
(years) Subjects, N

Mean � SD
(mm3)

Min
(mm3)

Max
(mm3)

18–30 139 8286 � 681 6,512 9,700
31–50 50 8137 � 754 6,637 9,517
51–65 39 8160 � 674 7,059 9,817
66–80 47 8039 � 759 6,514 9,810
80–94 30 7682 � 805 6,360 9,762

Figure 3.

Panels (a,b) respectively show the relation of age with the hippocampal volume and its z-score

after controlling for gender and total intracranial volume. Red and blue lines on panel (b) are the

quadratic and linear polynomial fittings, respectively.
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hippocampal volume was considered as a covariate in the
regression. The R2 values of these two regression models
with and without the hippocampal volume (with: R2 =
0.68; without: R2 = 0.66) as a covariate suggested that the
hippocampal volume contributed little to age-related vari-
ation of the hippocampal shapes.

Figure 5 shows the hippocampal shapes averaged over
subjects in each age decade and intuitively illustrates the
hippocampal shapes along the nonlinear trajectory shown
by the red line in Figure 4. Individual hippocampal surfa-
ces are colored by their displacement relative to the aver-
aged hippocampal surface among subjects in the 20 s. In
particular, the head and subiculum of the bilateral hippo-
campi showed increasing surface inward-deformation with
increased age. At the same time, the average hippocampal
shape in each age decade was slightly bent along the lon-
gitudinal axis of the hippocampus.

The pattern of the local changes in hippocampal shapes
due to age identified by the first shape index was also
used to determine a critical age when acceleration of the
hippocampal degeneration process occurs. At 63 years of
age, the leave-one-out validation of LDA gave the mini-
mum classification error of 9.9% for distinguishing subjects
aged above and below this threshold age. When the two

shape indexes were both used as features in LDA, the clas-
sification error was not improved. This observation further
supported the regression results of the hippocampal shape

Figure 5.

Mean hippocampal shapes among subjects in each age decade.

Columns (a,b) respectively show left and right mean hippocam-

pal shapes colored by their displacement relative to the mean

hippocampal shapes among subjects aged at 20 s. The outward

and inward displacements of individual mean hippocampal shapes

are respectively colored in red and blue with respect to the

surfaces on the first row. The inferior and superior views of the

hippocampus are given on each panel.

TABLE II. Mean, standard deviation (SD), minimal and

maximal values of the first shape index of the

hippocampal shape

Age range (years) Subjects, N Mean � SD Min Max

18–30 139 0.57 � 0.23 �0.01 0.94
31–50 50 0.21 � 0.53 �1.43 0.89
51–65 39 0.11 � 0.76 �3.06 0.92
66–80 47 �0.72 � 0.95 �2.89 1.06
80–94 30 �1.99 � 0.97 �3.14 �0.24

Figure 4.

The relation between age and the hippocampal shape repre-

sented by the first shape index obtained from LLDME. The red

line represents the third order polynomial fitting.
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indexes, i.e., the first shape index was the one characteriz-
ing nonlinear age-related changes of the hippocampal
shapes as shown in Figure 4.

Figure 6 shows the hippocampal shape differences
between the adults with age below and above 63 after con-
trolling for gender and the hippocampal volume. Regard-
less of the reduction of hippocampal volumes, adults
above 63 showed the regionally specific inward deforma-
tion in the head of the bilateral hippocampi and the left
subiculum field when compared with adults below 63.
Permutation tests revealed that the overall significance (P-
value) of the maps in Figure 6 was less than 0.0001.

DISCUSSION

The present large-scale neuroimaging study examined
age-related hippocampal shapes across a wide age range
(age, 18–94 years). Traditional volumetric analysis revealed a
reduction of the hippocampal volume as a quadratic func-
tion of age. However, this age-related quadratic polynomial
could only characterize limited variation of the hippocampal
volumes across the lifespan. In contrast, as shown in this pa-
per, the advanced brain mapping technique, LDDMM, com-
bined with the data reduction approach, LLDME, clearly
showed a nonlinear trajectory of the hippocampal shapes
across the lifespan, which was characterized by the cubic
polynomial function of age. In addition, we identified 63
years as a critical age when the hippocampal morphological
changes were accelerated. Compared with young adults
with age below 63, older adults with age above 63 showed
the inward-deformation in the head of the bilateral hippo-
campi and the subiculum of the left hippocampus regardless
of the hippocampal volume reduction.

Hippocampal Volume

Previous studies that included young adults (age below
45 years) [Pruessner et al., 2001] or older adults (age above

45 years) [Chen et al., 2010; Hackert et al., 2002; Jack et al.,
1997; Raz et al., 2010] suggested a linear relationship
between age and hippocampal volumes. The inclusion of
the middle-aged adults in our study allowed us to reveal
that age-related nonlinear reduction exists in the hippo-
campal volume, which is in line with some previous stud-
ies targeting the same age range as ours (18–90 years)
[Allen et al., 2005; Lupien et al., 2007; Walhovd et al.,
2005]. Nevertheless, not all previous studies with the age
range from 18 to 90 years found nonlinear relationships
between the hippocampal volume and age. Good et al.
[2001] applied voxel-based morphometric analysis on 465
normal adults from 18 to 80 years and showed preserva-
tion of the hippocampal volume in aging. The authors dis-
cussed that their data included relatively few subjects over
65 years and these subjects could be considered to be
‘‘super normal’’ such that they could be missing the non-
linear trend of the aging processes in the hippocampus.
Interestingly, this is not the only study reporting no
change of the hippocampal volume in aging [Sullivan
et al., 1995].

A few possible explanations have been raised to address
the conflicting results described above. For instance, char-
acteristics of the samples and the time window studied
could have contributed to the contradictory findings. Raz
et al. [2005] showed that both linear and quadratic trends
in incremental age-related shrinkage of the hippocampal
volume were limited to subjects with hypertension. Fjell
et al. [2010] proposed that the age range studied could
dramatically influence the quadratic relation between the
hippocampal volume and age. Beyond these two factors,
high variability of the hippocampal volume among young
and older adults could be considered as another potential
complication. Our study, as well as others [Lupien et al.,
2007] demonstrated that the hippocampal volume is as
variable in young as in older adults even after adjusting
for the total intracranial volume. In our study, the quad-
ratic polynomial only characterized subtle variation of the
hippocampal volumes in our samples, which was close to
that obtained from linear fitting (quadratic: R2 = 0.03; lin-
ear: R2 = 0.01, Fig. 2b). As a consequence, it is difficult to
conclude that the quadratic polynomial function would be
the best fit for representing age-related nonlinear trajectory
of the hippocampal volume across the lifespan, although
the relationship between age and hippocampal volume
was found to be significant with fitting a quadratic curve.
Thus, it is important to interpret existing reported data
based on both the level of significance as well as the good-
ness of fit between age and hippocampal volume.

Hippocampal Shape

Converging evidence from postmortem, structural, and
functional imaging studies have suggested heterogeneous
aging effects over different regions of the hippocampus.
Postmortem studies on quantifying the neuronal number

Figure 6.

Group difference in hippocampal shapes between adults with

age below and above 63 years. Panels (a,b) show the group dif-

ferences in the left and right hippocampal shapes, respectively.

When compared with adults younger than 63 years old, adults

older than 63 years old showed statistically significant inward-

deformation in regions colored in red. The inferior and superior

views of the hippocampus are given on each panel.
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suggested significant age-associated neuronal loss in hip-
pocampal subiculum and CA1 [Simic et al., 1997; West,
1993]. Anatomical and functional MRI studies indicated
differential age-related vulnerabilities of the anterior and
posterior hippocampi, even though there are some dis-
crepancies regarding whether the posterior hippocampus
has a greater vulnerability to aging than the anterior or
vice versa [Driscoll et al., 2003; Hackert et al., 2002; Jack
et al., 1997; Kalpouzos et al., 2009; Malykhin et al., 2008;
Raz, 2000; Ta et al., 2011]. Thus far, all of these MRI-based
anatomical and functional studies have been limited to
volumetric analysis by dividing the hippocampus into the
anterior and posterior segments or the head, body, and
tail and then assessing the volume of each region. Hence,
the precise anatomical definition of the hippocampal seg-
regation becomes crucial, making comparison amongst dif-
ferent studies difficult. Moreover, the large variation of the
hippocampal volume as mentioned above still exists in the
volumes of its subregions. As a result, it is not surprising
that the conflicting findings were reported on patterns of
the hippocampal subregional volumes in aging.

Our study employed the shape analysis techniques of
LDDMM and LLDME and yielded a succinct shape index,
independent of the hippocampal volume, shedding light
on the discrepant findings on the hippocampal volumes.
Our results suggested that the local hippocampal atrophy
described by its shape shows a nonlinear pattern across
the lifespan regardless of the hippocampal volume. This is
congruent to previous findings of a heterogeneous pattern
of age-related volume changes with region-specific nonlin-
ear features yielded from the whole brain studies [Terri-
billi et al., 2011; Walhovd et al., 2005]. We further
extended the notion of nonlinear age-associated volume
changes of individual structures and/or the whole brain
morphometry by showing that such patterns clearly occur
within the hippocampus but based on its local shapes, and
not its size. This implies that the local shape information
added another dimension of structural morphological
quantification beyond the volume.

Our findings further suggested that the hippocampal
shape appeared to remain relatively stable until the age of
63, after which its changes were rapid. The value of this
threshold age is unsurprising, given the increased preva-
lence of AD in individuals beyond 65; however, this is the
first time that the specific timing of biological aging is
identified using hippocampal shape alone. The group com-
parison between adults aged above and below 63 sug-
gested that the head and subiculum of the hippocampus
were crucial subregions associated with the accelerated
aging process. The surface inward-deformation in these
two subregions is in conjunction with the hippocampal
shape differences between normal elderly and patients
with AD [Apostolova et al., 2006a; Csernansky et al., 2000;
Qiu et al., 2009a]. Previous postmortem studies firmly
established the association of the hippocampal neuron loss
with the reduction of the hippocampal volume in both AD
and normal aging, and identified neuronal loss in the sub-

iculum and CA1 as key features in normal aging [Kril
et al., 2004; West, 1993]. Taken together with our shape
comparison results, these findings support the idea of the
continuum trajectory of the brain anatomy from normality
to the earliest signs of AD, regardless of the presence of
AD neuropathology. Furthermore, these results confirm
the usefulness of shape morphology as an indirect mea-
sure of neurodegeneration in normal aging.

We have thus far discussed the contribution of the first
shape index for understanding age-related hippocampal
shapes. Even without association with age, the second
shape index (Fig. 1b) showed a large variability of the hip-
pocampal shapes among young adults. Nevertheless, the
cause of the shape variability in the young remains uncer-
tain. The significant interindividual variability in the hip-
pocampal shape that we observed in young adults could
arise from both genetic and experiential factors. A twin
study [Sullivan et al., 2001] estimated that genetics can
contribute about 40% of the variance in the hippocampal
volume among older adults, while experiential factors can
account for the other 60%. Buss et al. [2007] have shown
significant association of birth weight and the hippocam-
pal volume in adulthood of female subjects related to poor
maternal care, suggesting that the postnatal environment
modulates the neurodevelopmental consequences of pre-
natal risk. Animal studies have demonstrated that such
environmental enrichment is a potent inducer of changes
in neurogenesis and dendritic arborization in the hippo-
campus, which lead to changes of the hippocampal vol-
umes in late life [Kempermann et al., 1998; Mlynarik et al.,
2004]. All of these imply that understanding causes of
large variation of the hippocampal shapes in the young
could be very important.

Technical Strength

In the present study, LDDMM was successful in charac-
terizing small differences of individual hippocampal
shapes relative to the atlas in the scale of small subvo-
lumes even if they are not large enough to affect the over-
all volume. Thus, it is a very sensitive measure of the
hippocampal morphology. Additionally, it defines the
shape differences of individual hippocampi as a function
of the atlas coordinates such that the segregation of the
hippocampus into multiple regions is not needed if hippo-
campal subregions are regions of interest. This avoids the
anatomical ambiguity of arbitrarily defining hippocampal
subregions. Integrated with LDDMM, LLDME was able to
embed the hippocampal shapes (Fig. 2a) into a two-dimen-
sional plane (Fig. 1b) where the first dimension of the
shape index is highly associated with aging. This makes
the visualization and investigation of the relation of the
hippocampal shapes with age as straightforward as those
for the hippocampal volume. Moreover, the shape index is
a convenient representation that makes it possible to
directly compute the mean shape using the scalar
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averaging operation and to also interpolate the hippocam-
pal shapes of missing data. The use of LDDMM and
LLDME has great potential for studying anatomical mor-
phological shapes and their association with clinical
measures.

Limitations

This study was conducted based on a publicly available
dataset [OASIS, (Marcus et al., 2007)]. It provides opportu-
nities to compare anatomical findings across studies
employing different brain mapping techniques. Neverthe-
less, the limited availability of comprehensive clinical data
in this dataset restricts the ability of incorporating covari-
ates, for instance, the education level and presence of
hypertension, that do not invalidate the association of the
hippocampal shapes and age but are likely to mediate this
relationship. These covariates can help interpret variances
of the hippocampal shapes among young and older adults
that cannot be characterized by aging alone. Additionally,
our segmentation approach may not be superior to recent
segmentation methods [Leung et al., 2011], which needs
further investigation.

CONCLUSIONS

This large-scale neuroimaging study revealed that the
evolution of the hippocampal morphology is nonlinear
across the lifespan. This nonlinear age-related association
is obviously seen in local shape changes in the subiculum
and the head but not the size of the hippocampus. Hence,
the shape of anatomical structures added another dimen-
sion of structural morphological quantification beyond the
volume in understanding aging.
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