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Abstract: The goal of the present study was to investigate the neuroanatomical basis of arithmetic fact re-
trieval. The rationale was that areas playing a crucial role in arithmetic fact retrieval should show a sys-
tematic increase of activation with increasing retrieval effort. To achieve this goal, we utilized the
problem-size effect as this is known to be systematically related to retrieval effort. In contrast to many
previous studies, we here took a parametric approach to account for the continuous increase of retrieval
effort with problem size. BOLD signals were modeled with problem size as parametric regressor and
negative slow waves of the EEG were categorized into six levels of problem size. The fMRI data showed
that activation in the angular gyrus and ACC/SMA increased parametrically with problem size. The
ERP data showed a systematic amplitude increase with increasing problem size, especially at fronto-cen-
tral electrodes. Consistent with the fMRI data, source modeling localized this effect to the ACC. While
these findings support previous notions about the crucial role of the angular gyrus during fact retrieval,
they also provide evidence that the medial frontal cortex is involved when single-digit multiplications
are solved. Thus, both parietal and frontal structures seem to be integral parts of a system that enables
and controls arithmetic fact retrieval. Hum Brain Mapp 32:51–59, 2011. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

Single-digit multiplication problems are mainly solved
by directly retrieving a solution from memory. It is com-
monly assumed that the underlying representation is a
network structure in which problems and solutions are
associated [for review, see Ashcraft, 1992; Domahs and
Delazer, 2005; or the introduction of Verguts and Fias
2005]. While the characteristics of this network structure
have been the topic of numerous behavioral and simula-
tion studies [see e.g., Campbell, 1987; Campbell and
Oliphant, 1992], the neural basis of the memory
representation is still not completely understood. Several
neuroimaging studies on mental calculation and number
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processing reported the activation of a network involving
frontal and parietal structures [e.g., Gruber et al., 2001;
Menon et al., 2000b; Rickard et al., 2000; Rueckert et al.,
1996]. Whereas activation in the frontal cortex has been
attributed mainly to working memory and attentional con-
trol demands during calculation, the activation of parietal
areas seem to be directly associated with number-related
processes. Within the parietal cortex, it has been suggested
that three distinct circuits mediate specific subcomponents
of number processing [Dehaene et al., 2003]. The left angu-
lar gyrus has been considered responsible for arithmetic
fact retrieval. However, its contribution has been ques-
tioned by some authors [e.g., Zago et al., 2001]. In the
present study, we will use the so-called problem-size effect
and its neural correlates as a tool to gain more insight into
the neural basis of arithmetic fact retrieval.

Error rates and response times (RT) increase with
increasing size of the operands of single-digit arithmetic
problems [see e.g., Campbell and Graham, 1985; Stazyk
et al., 1982]. This problem-size effect is well replicated in
almost all studies on mental arithmetic and can be found
with all four basic arithmetic operations [e.g., Ashcraft and
Battaglia, 1978; Campbell and Graham, 1985; LeFevre and
Morris, 1999; Seyler et al., 2003]. For multiplication prob-
lems the problem-size effect has been ascribed mainly to
the special network structure of the underlying memory
representations, which makes the retrieval of larger prob-
lems’ solutions less efficient.

Several explanations of the problem-size effect have
been proposed within the network account, such as prob-
lem frequency, which leads to stronger connections
between operand and answer nodes for frequent problems
[Ashcraft, 1987], or retrieval interference. According to the
network interference model [Campbell, 1995, for an earlier
version, see Campbell and Oliphant, 1992], a problem is
not only associated with its correct answer, but also with
incorrect answers that share features with the correct one
(i.e., being a multiple of the same number, numerical size).
For instance, the problem 6 � 4 not only activates the
node of the correct solution 24, but also nodes represent-
ing the numbers 18, 20, 28, and 30, which are all multiples
of the problem’s operands. Accordingly, the retrieval pro-
cess is affected by interference from incorrect solutions.
Campbell further assumes that a magnitude code is acti-
vated during the retrieval process, which approximates
the size of the answer. This code is specified as a logarith-
mic function of the number size, such that large magni-
tude codes activate more numbers. The problem-size effect
arises because problems with larger numbers activate
more neighbors than problems with smaller numbers (i.e.,
because of the logarithmically compressed number line),
which, in turn, results in more interference. Verguts and
Fias [2005] stressed another aspect of the network struc-
ture, i.e., neighborhood consistency. Their ‘‘interacting-
neighbors’’ model assumes that retrieval efficiency
depends on decade and unit consistency, i.e., whether the
correct product and related incorrect answers activate the

same decade or unit position. Products that are highly
consistent with neighboring answers can be retrieved
faster and more accurately than less consistent products.
Accordingly, the problem-size effect emerges because
products of small problems tend to be more consistent
with their neighboring answers regarding decades than
products of large problems. For instance, the problem 6 �
4 ¼ 24 has two decade-consistent neighbors (5 � 4 ¼ 20, 7
� 4 ¼ 28) and two decade-inconsistent neighbors (6 � 3 ¼
18, 6 � 5 ¼ 30), whereas the problem 8 � 7 ¼ 56 has only
inconsistent neighbors (8 � 6 ¼ 48, 8 � 8 ¼ 64, 7 � 7 ¼
49, 9 � 7 ¼ 63). Simulations have shown that the described
network structure and the concept of neighborhood consis-
tency can indeed explain the problem-size effect [Verguts
and Fias, 2005, for behavioral and ERP evidence see
Domahs et al., 2007]. To conclude, the reported evidence
shows that the problem-size effect reflects the increasing
effort of retrieving multiplication solutions from a network
structure when problems become larger. Here we made
use of this effect to investigate which brain areas are
involved in arithmetic fact retrieval. The rational is that
areas playing a crucial role in arithmetic fact retrieval
should show a systematic increase of activation with
increasing retrieval effort and hence with problem size.

In contrast to many previous studies we took a paramet-
ric approach. The reason is that retrieval difficulty seems
to increase gradually. Systematic investigations have
revealed that response times increase monotonically with
problem size [e.g., Ashcraft and Battaglia, 1978; Campbell,
1994; LeFevre and Morris, 1999]. For instance, problems of
the two-operand family are solved faster than those of the
three-operand family, which, in turn, are solved faster
than problems of the four-operand family etc. (with the
exception of problems of the five-operand family, which
are solved faster than predicted on the basis of their size).
Despite this gradual increase, the typical way to investi-
gate the effects of problem size is to classify the problem
set (single-digit problems) into two groups including small
or easy and large or difficult problems. An often-used cut-
off point is at a product size of 25 [see e.g., Campbell,
1999], as this leads to two groups of equal numbers of
problems (when problems with 1 or 0, as well as ties, are
excluded). Although a simple categorization proved to be
helpful to dissociate small and large problems on behav-
ioral and neurophysiological levels [see e.g., Jost et al.,
2004, 2009; Kiefer and Dehaene, 1997; Zhou et al., 2007], it
bears the risk of disregarding relevant features of numbers
and arithmetic problems. As described above, not all prob-
lems of a group are equal in difficulty. It can be assumed
that there is a monotonic increase of RTs with problem
size even within a category, suggesting that neighborhood
consistency and interference also differ for the problems
within a category. Strictly speaking, a categorical analysis
of problem size is not appropriate, because it disregards a
substantial portion of the systematic variation in the rele-
vant dimension ‘‘problem size’’ and considers this varia-
tion as measurement error, even though the variation
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within a category might be as large as the variation
between the categories. Therefore, we reanalyzed brain
signals evoked by single-digit multiplications in a para-
metric way. This parametric analysis accounts for the sys-
tematic increase in problem size and should capture
arithmetic fact retrieval in a more appropriate way. Theo-
retically, a categorical analysis of multiplication problems,
i.e., contrasting problems with small and large operands,
could bias the evidence for involved brain areas. Here, we
analyze data of two experiments—an ERP and an fMRI
study—to delineate the parametric activation increase with
problem size for two independent datasets with two dif-
ferent methods. In addition, we validated the correspond-
ing findings from the two datasets by means of source
estimations of the parametric ERP effect.

In the present study, we are primarily interested in the
involvement of parietal and frontal brain areas. These
areas have been most commonly found to be activated
during arithmetic processing, although results are some-
what inconsistent. In our previous fMRI study, in which
participants had to (silently) produce the solution of sin-
gle-digit multiplication problems, we observed, in accord-
ance with other studies, that simple fact retrieval activates
the angular gyrus and also regions in the cerebellum and
subcortical structures [see Jost et al., 2009]. According to
the triple-code model, the angular gyrus is part of a sys-
tem that mediates verbal aspects of arithmetic fact retrieval
[Dehaene et al., 2003]. However, inconsistent with this
notion, several studies did not support an involvement of
the angular gyrus [e.g., Dehaene et al., 1996; Pesenti et al.,
2000]. We hope to shed more light on this issue. Regarding
frontal areas, a number of studies found activations, but
ascribed these to working-memory demands and strategy
selection rather than to fact retrieval per se. One reason
for this interpretation is that rather complex problems had
to be solved in these studies. Accordingly, frontal activa-
tions were attributed to control processes and general task
difficulty [see e.g., Delazer et al., 2003; Gruber et al., 2001;
Rueckert et al., 1996; Zago et al., 2001]. With the present
analysis, however, we show that at least some of the acti-
vations in frontal structures seem to be closely related to
the demands imposed by fact retrieval.

MATERIALS AND METHODS

Participants

For this article the datasets of two experiments, an ERP
study [Jost et al., 2004] and an fMRI study [Jost et al.,
2009], have been reanalyzed. Participants took part either
in one or the other study. They were all right-handed,
native speakers of German, had normal or corrected-to-
normal vision, and had no history of neurological illness.
The ERP dataset consisted of 18 participants (mean age 23
years, nine female) and the fMRI dataset consisted of 16
participants (mean age 24.5 years, 10 female).

Stimuli, Task, and Procedure

In both studies participants solved single-digit multipli-
cations in a modified production task. Ties as well as oper-
ations with 1 were excluded. Thus, the dataset comprised
56 different multiplication problems with operands rang-
ing from two to nine (i.e., problems ranging from 2 � 3 to
9 � 8) and 16 different problems with zero as an operand.
Note that in these studies we were interested in distinct
solution processes (i.e., rule application versus fact re-
trieval) and their neurophysiological and neuroanatomical
correlates, whereas here we are interested solely in fact re-
trieval. Zero problems, therefore, which are assumed to be
solved by rule application (e.g., n � 0 ¼ 0), are not in the
focus of the present study and were excluded from the
analysis.

Multiplication problems were embedded in a chain-cal-
culation task: Participants were asked to silently produce
the solution of the multiplication problem and use it for
the next operation, i.e., a simple addition or subtraction.
At the end of the sequence a final result was presented
that had to be verified (e.g., ‘‘4 � 7 þ 3 ¼ 30’’, for the com-
plete sequence). The multiplication equation was pre-
sented for 500 ms and participants had sufficient time to
produce the solution, i.e., 3.3 s in the ERP study and 4 s in
the fMRI study. The stimulus sequence continued with the
presentation of the additional operation (for 600 ms), fol-
lowed by a 200-ms blank screen and the final result [for
details about stimulus presentation and timing, see Jost
et al., 2004, 2009]. This procedure has the advantage that
participants produce the solution without any overt
response, which prevents movement artifacts that often
arise when the solution has to be named. Moreover, the
chain calculation guarantees that participants really pro-
duced the solution, because otherwise they could not con-
tinue with the next step.

Problems were presented interspersed with a baseline
condition (about 50% of the trials) in which the operands
of the multiplication problem only had to be stored. This
condition was not analyzed in the present study.

ERP-Data Acquisition and Analysis

The EEG was recorded with 61 Ag/AgCl electrodes ref-
erenced to the nose tip. The horizontal and vertical EOG
was monitored with appropriate electrode pairs. The left
mastoid served as ground. Impedances were kept below
7 kX. Signals were sampled with two 32-channel ampli-
fiers (SYNAMPS, NeuroScan) at 200 Hz and filtered with a
band-pass filter (DC to 40 Hz). Drift artifacts were cor-
rected by a regression method [Hennighausen et al., 1993].
Eye blinks were detected by means of cross-correlation
with a template and corrected using linear interpolation.
The EEG was segmented into epochs that covered the pro-
duction phase, i.e., starting with the presentation of the
multiplication problem and ending with the onset of
the additional operation. A 100-ms time epoch before the
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onset of the first operand was taken for baseline correc-
tion, because the operands were presented sequentially.

In the original study by Jost et al. [2004] negative slow
waves measured in the production phase were sensitive to
the difficulty of an arithmetic problem as well as to the
used solution process (fact retrieval versus rule applica-
tion). Negative slow waves are tonic deflections in the
EEG that last for at least a couple of hundred milliseconds
and have two important features: Their amplitudes
increase with task-difficulty or mental load and their to-
pography is material- and task-specific [see Rösler et al.,
1997]. In our previous study, the analysis of problem size
was integrated in a comparison of different problem types
(assumed to be solved by distinct solution processes) and
was run in a categorical way [see Jost et al., 2004]. When
comparing problems with small and large operands, we
observed both amplitude and topographical differences.
Here, we will extend these findings on problem size by
running a parametric analysis. This was achieved by
extracting six levels of problem size based on the size of
the product, i.e., products <13, 14–18, 20–25, 27–32, 35–45,
and >45. With this categorization, the numbers of prob-
lems are similar across the levels (i.e., 8 or 10 different
problems per level); commutative pairs of problems (e.g.,
2 � 5 and 5 � 2) belong to the same level, as well as do
problems with the same product size (e.g., 3 � 4 and 2 �
6). Only trials with correct responses were used for the
averages. All in all, participants solved 392 multiplication
problems (7 � 56), providing a sufficient number of trials
for this kind of analysis. ERPs for each level of problem
size are based on at least 33 trials (57 trials on average).

The statistics (repeated measurement ANOVAs) was
done with 17 standard electrodes uniformly distributed
over the scalp (i.e., FPz, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, T6, and Oz) and for 200-ms-time win-
dows covering the negative slow wave (i.e., starting 900
ms after the onset of the production phase).

FMRI-Data Acquisition and Analysis

Functional imaging was performed with a 1.5 T scanner
equipped with a quadrature head coil. Functional images
were acquired with a T2*-weighted EPI sequence (TR ¼ 2
s, TE ¼ 60 ms, flip angle ¼ 80�). In each volume, 19 hori-
zontal slices (5 mm slice thickness, 0.5 mm inter-slice gap)
were scanned in ascending order (FOV: 240 mm �
240 mm, acquisition matrix: 64 � 64, in-plane resolution:
3.75 mm � 3.75 mm). Preprocessing and statistical analy-
ses were performed with SPM2 [for details see Jost et al.,
2009]. Preprocessed data were normalized to the MNI tem-
plate and spatially smoothed with an isotropic gaussian
kernel (FWHM ¼ 6 mm).

The BOLD responses for multiplications with operands
from two to nine were modeled with a single parametric
regressor [instead of two separate dummy predictors for
small and large problems as in the previous study by Jost

et al., 2009] based on the product size of each problem.
Zero multiplications and storage trials were modeled with
two separate predictors. These three regressors marked the
onset of the production phase. The second phase (contain-
ing additional operation and verification) was modeled
with a single predictor. To delineate areas that show a
parametric signal increase with problem size, a random-
effects analysis was computed for the main effect of the
parametric regressor. Initial threshold was set to P <
0.0001 (uncorrected). Only clusters with a minimum of 15
voxels are reported.

The parametric analyses we have run here for the
BOLD signal and the ERPs are different methodological
approaches to capture increasing brain activation with
increasing problem size. The relatively large number of tri-
als in the EEG part allowed computing an average ERP for
each of six distinct bins (levels of problem size). These six
bins cover adequately the full range of problem size. At
the same time the signal-to-noise ratio of each average
ERP is large. In contrast to the ERP study, in the fMRI
study participants solved only 56 different multiplication
problems. This number is too small to analyze the fMRI
data in the very same manner as the ERP data. Therefore,
we decided to use a single parametric regressor based on
product size. This optimally models the increase of the he-
modynamic response and handles in an elegant way a
dataset with trial frequencies that are too small for defin-
ing a larger number of bins. Thus, the methods are both
optimally adapted to the specific signal types and the
number of trials in the two study parts.

RESULTS

ERP Data

Figure 1 shows the ERPs during the production phase at
four midline electrodes. The negative slow wave starts
around 1,000 ms, following the parietal P3, and stays until
the end of the production phase. Its amplitude is sensitive
for problem size, with more negative potentials for large-
number than for small-number problems. To test for this
increase, we calculated ANOVAs with the factors problem
size (6 levels) and electrode (17 levels) separately for 200-
ms time windows starting 900 ms after the onset of the
production phase. The most pronounced effects were
observed between 1,100 and 1,900 ms, with significant
main effects of product size, minF(5, 85) ¼ 3.81, P ¼ 0.004,
e ¼ 0.99; maxF(5, 85) ¼ 4.16, P ¼ 0.002, e ¼ 0.99 [the terms
minF and maxF refer to the smallest and largest F-values
of the reported time interval; e according to Huynh and
Feldt, 1976]. Later, from 1,900 to 3,100 ms, the effects are
generally smaller and in some time windows only margin-
ally significant, minF(5, 85) ¼ 2.22, P ¼ 0.071, e ¼ 0.85;
maxF(5, 85) ¼ 2.83, P ¼ 0.028, e ¼ 0.85. On the basis of
this superordinate analysis, we defined the time window
between 1,100 and 1,900 ms as critical time window, on
which all further analyses are based. Moreover, this time
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window corresponds to the window of maximum effect
size in our previous analysis of this dataset [Jost et al.,
2004].

The amplitude increase with problem size is widely dis-
tributed, but most pronounced over frontal sites, especially
at electrode Fz. The bar graphs in Figure 1B, showing
mean voltage values from the critical time window, illus-
trate this: The amplitude at Fz increases systematically
with problem size, whereas the increase is less systematic
at posterior electrodes. To substantiate this increase we
ran ANOVAs and tested which trend described the main
effect of problem size best. Amplitude increases with
problem size should be captured by a linear trend, while

polynomial trends of higher order should not reach signifi-
cance. That is exactly what we found: Electrode-wise
ANOVAs disclosed that the amplitude increase followed a
linear trend at all analyzed electrodes, with F(5, 85) values
ranging from 6.50 (P ¼ 0.002) to 39.37 (P < 0.001). Higher
order polynomial trends were not significant.

The topographic map in Figure 1D displays the percent-
age of variance that is explained by the linear trend, i.e.,
SSlinear/SStotal. As can be seen, the contribution of the lin-
ear trend is largest at Fz. Another maximum can be seen
at right temporal electrodes. This strong increase especially
at frontal electrodes appears as a redistribution of the neg-
ative slow wave toward frontal sites (see the topographic
maps from left to right in Fig. 1C).

FMRI Data

The analysis of the fMRI data revealed a parametric sig-
nal increase with problem size in a distributed network
consisting of frontal, parietal, and subcortical areas (see
Table I and Fig. 2). This pattern fits with the activations
observed with the categorical analysis of problem-size
effects [Jost et al., 2009], but extends these findings,
because here the increase with problem size proved to be
parametric. In the parietal cortex, the left angular gyrus
showed a parametric increase. The locus of this activation
nicely corresponds to findings from a metaanalysis by
Dehaene et al. [2003], in which activation for fact retrieval
was localized to the angular gyrus with coordinates x ¼
�41 (SD ¼ 9), y ¼ �66 (SD ¼ 6), and z ¼ 36 (SD ¼ 4).

Note, that with the present dataset differences are char-
acterized by increasing activation [for details see the
event-related BOLD-signal plots in Fig. 3B of Jost et al.,
2009] rather than by decreasing deactivations as reported
in other studies especially for the angular gyrus [see e.g.,
Ischebeck et al., 2006]. Accordingly, all the mentioned
parametric effects represent increasing activation with
increasing problem size.

The most pronounced parametric signal increase was
found in the frontal cortex. There, activation in the left in-
ferior frontal and precentral gyrus (see Fig. 2A), as well as
in the medial frontal cortex (see Fig. 2B), significantly cor-
related with problem size. This finding strongly corre-
sponds with the parametric increase found for the ERP
data, where the frontal electrode Fz showed the most pro-
nounced effect.

To further substantiate the corresponding findings of the
two methods, we tested whether the parametric increase
of EEG slow-potential amplitudes could be the result of a
parametric neural activation in those areas that have been
found with fMRI. Therefore, we used the sLORETA soft-
ware (standardized low resolution brain electromagnetic
tomography; KEY Institute for Brain-Mind Research, Uni-
versity Hospital of Psychiatry, Zurich, Switzerland) and
estimated sources of the parametric slow-wave effect. We
computed five LORETA images for difference potentials

Figure 1.

A. ERPs for the production phase at four midline electrodes.

Shown are curves for six levels of problem size. The production

phase starts at time point 0. Negativity is plotted upwards. B. Bar

plots showing amplitude increase with problem size. The values

are extracted from the time window from 1,100 to 1,900 ms (i.e.,

the shaded area in A), which proved to be most sensitive for

problem size. A strict monotonic increase was found at electrode

Fz. C. Topographic maps (derived from 61 electrodes) for the six

levels of problem size in the critical time window, showing a shift

of the negative maximum (blue) from posterior to frontal electro-

des with increasing problem size. D. Map displaying for each

electrode the percentage of variance explained by the linear trend

of the variable problem size, i.e., SSlinear/SStotal. The largest

percentage of explained variance was found at Fz.
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representing the increase from one level of problem size to
the next higher level (i.e., from level 1 to level 2, level 2 to
level 3, etc.). Data points for this analysis were obtained
from the critical time window (see above). To obtain a
source estimation of those brain areas that are generally
relevant for increases of slow-wave amplitude with
increasing problem size, we integrated the information of
the five LORETA maps by averaging. The resulting map
(see Fig. 2C) shows that the strongest source strength was
localized to the ACC.

DISCUSSION

We analyzed ERP and fMRI data on single-digit multi-
plications regarding a parametric activation increase with
problem size, with the objective to determine the neural
basis of arithmetic fact retrieval. Most of the previous
studies investigated problem-size effects by comparing
two categories (i.e., small versus large problems) instead
of treating problem size as a continuum. Detailed analyses
of behavioral data, however, indicated that RT increases
monotonically. Accordingly, a parametric approach is
more adequate to account for the underlying network
structure.

The parametric analysis of the ERP data revealed an
increase of the amplitude of a negative slow wave with
increasing problem size. This increase was present at
almost all electrodes, but most pronounced at electrode Fz.
Source localization indicated that this effect is most prob-
ably generated in the ACC. The fMRI data support this
finding: A parametric increase was found in a cluster cov-
ering parts of the ACC and the SMA, though this was not
the only activation. Further activations were observed in
parietal, subcortical, and frontal structures. Overall, the
parametric data highly correspond to the findings obtained
with the categorical analysis of problem size [Jost et al.,

TABLE I. Peak location, number of voxels, and maximum t value of activations found

with the parametric analysis of the fMRI data

No. Brain region

Peak location

Voxels tx y z

1 Left precentral, postcentral, and inferior frontal gyrus �36 �6 39 334 12.13

2 Left SMA, anterior and middle cingulate cortex extending to right SMA �3 6 54 547 10.53

3 Left thalamus and basal ganglia extending to right homologues �6 �21 �3 324 10.46

4 Left angular gyrus extending to middle and superior occipital gyrus �45 �63 39 305 9.18

5 Right inferior frontal gyrus (orbital part) and insula 36 24 �12 52 8.50

6 Right angular gyrus extending to middle occipital gyrus 42 �57 39 33 6.73
7 Left cerebelum �12 �84 �18 15 6.65
8 Left inferior frontal gyrus (orbital part) and insula �30 27 �9 45 6.30

Initial threshold: P < 0.0001, uncorrected. Reported are only clusters with an extent of at least 15 voxels. Peak location indicates the
coordinates in MNI space where the maximum t value of the cluster was observed. T values in bold are also significant with P < 0.05
FWE-corrected. Labeling of activated regions is based on the AAL (automatic anatomical labeling) atlas (Tzourio-Mazoyer et al., 2002).

Figure 2.

A,B. Brain areas showing a parametric signal increase with prob-

lem size. Pronounced activations were found in the left precen-

tral, inferior frontal, and angular gyrus (see A), as well as in the

anterior and middle cingulate cortex and the SMA (see B). C.

Distributed source-density maps (LORETA) for the amplitude

increase observed in the slow negative wave of the ERP. The fig-

ure displays the average of five LORETA maps, i.e., maps for the

amplitude increases from problem-size levels 1 to 2, 2 to 3, 3 to

4, 4 to 5, and 5 to 6, respectively. The strongest source strength

was obtained in the ACC. This pattern fits with the ACC/SMA

activation observed in the fMRI data (see B).
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2004, 2009], but extends these, because it shows that the
activation increase found with problem size is parametric
at some particular electrodes and brain areas. This finding
is of interest for theories on mental calculation in general
and fact retrieval in particular.

Multiplication facts are assumed to be stored in a verbal
format. It has been proposed that the fact-retrieval process
is mediated by a verbal processing loop involving left-
hemispheric language areas, the thalamus, and the basal
ganglia [see Dehaene and Cohen, 1995]. In recent years a
central role for the verbal aspects of fact retrieval has been
ascribed to the angular gyrus [see Dehaene et al., 2003],
because several studies reported left angular gyrus activa-
tion for simple multiplication problems when compared
with other operations or control tasks such as number
comparison [see e.g., Chochon et al., 1999; Delazer et al.,
2003; Gruber et al., 2001; Lee, 2000; Stanescu-Cosson et al.,
2000]. By referring to studies that found angular gyrus
activation in other types of language-mediated processes,
Dehaene et al. [2003] suggested that the angular gyrus is
part of a language system which mediates fact retrieval by
phonological processing. Also in the study of Jost et al.
[2009], the angular gyrus, together with regions in the cer-
ebellum and subcortical structures, including the thalamus
and the basal ganglia, was more activated for fact-retrieval
problems (small multiplications) than for a high-level con-
trol condition not involving any kind of calculation. This
pattern supports the notion that arithmetic fact retrieval is
mediated by a cortico-subcortical loop and that verbal
processing plays a crucial role. The finding of a parametric
increase in a large number of these areas including the
angular gyrus suggests that the effort within the fact-re-
trieval system increases systematically with problem size.

Our findings regarding the involvement of the angular
gyrus in arithmetic fact retrieval are in accordance with a
cortical stimulation study reporting a selective impairment
of multiplication-fact retrieval when the anterior parietal
cortex (apparently close to the angular gyrus) was stimu-
lated [Whalen et al., 1997]. Corresponding findings are
also reported by Menon et al. [2000a]. They found decreas-
ing activation in the angular gyrus with increasing exper-
tise: During calculation, perfect performers showed
smaller activation in the angular gyrus than less skilled
performers, presumably because of their higher automatic-
ity in retrieving arithmetic facts. Moreover, a recent study
by Grabner et al. [2009] provided direct evidence by
means of self-reported use of fact retrieval during arithme-
tic problem solving that the left angular gyrus mediates
the retrieval of arithmetic facts. Taken together, the evi-
dence from our and previous studies shows that the acti-
vation in the angular gyrus varies with the involvement of
search processes in associative arithmetic networks, i.e.,
the more intensive the search process, the stronger the
angular gyrus activation. This suggests that the angular
gyrus is part of a system that mediates the search in asso-
ciative networks and confirms its crucial role in arithmetic
fact retrieval.

Although there is wide agreement about the important
role of the angular gyrus for arithmetic fact retrieval, it
has to be mentioned that our findings are at variance with
previous studies: While other studies reported deactivation
in the angular gyrus compared to baseline [see e.g., Grab-
ner et al., 2007; Ischebeck et al., 2006; Rickard et al., 2000]
we observed activation. At this point we can only specu-
late about possible causes of the discrepancy. The most
obvious difference between our study and others concerns
the task and the design. While most other studies used
variants of the verification task, we here investigated result
production. Whether this could explain the divergent
results needs to be clarified in future research. Moreover,
there is also evidence for decreased angular gyrus activa-
tion with increasing problem size [Stanescu-Cosson et al.,
2000; Zhou et al., 2007]. At first glance, this seems to be
inconsistent with the hypothesis that the angular gyrus
mediates arithmetic fact retrieval and that activation
increases with increasing search in the network. However,
at least in the study by Stanescu-Cosson et al., the inverse
problem-size effect for addition problems has been attrib-
uted to a change of solution mechanisms. For larger prob-
lems automatic fact retrieval plays a minor role and
quantity-based processing becomes more important. Dif-
ferent solution processes could also be responsible for the
findings reported by Grabner et al. [2007]. There, the angu-
lar gyrus was more strongly activated in single-digit prob-
lems (presumably solved by fact retrieval) than in multi-
digit problems that cannot be solved by direct retrieval.

The present data also revealed that not only regions in
the parietal cortex, but also regions in the frontal cortex
show a parametric signal increase, among them the left in-
ferior frontal gyrus and a cluster covering parts of the
ACC and the SMA. Activations in these areas have been
repeatedly reported for arithmetic and number problems.
However, in the majority of cases they have been inter-
preted in terms of working-memory demands and strategy
selection, because activation have been found with rela-
tively complex tasks or multi-digit operations [see e.g.,
Delazer et al., 2003; Gruber et al., 2001; Rueckert et al.,
1996; Zago et al., 2001]. Although some multiplication
problems may have been solved by backup strategies and
the frontal-cortex activations might reflect the associated
greater load on working memory and control functions
[see Jost et al., 2004, 2009], the parametric increase is
nevertheless striking. The application of backup strategies
when fact retrieval fails holds especially for problems with
large numbers [e.g., 7, 8, and 9, see LeFevre et al., 1996].
However, as shown with the ERP data, an activation
increase can be observed even within the group of small
problems with products <25, suggesting that the paramet-
ric increase reflects more likely increased effort within the
fact-retrieval system than a shift to strategic processes. As
the amplitude increase of the EEG data most probably
stems from activation increase in the ACC, the results sug-
gest that also the medial frontal cortex contributes to arith-
metic fact retrieval.
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In a large number of studies the medial frontal cortex
has been found to respond to conflicts during information
processing [for reviews, see e.g., Botvinick et al., 2004; Rid-
derinkhof et al., 2004]. Beside its engagement in overriding
prepotent responses and error processing, the medial fron-
tal cortex (ACC) signals conflict also in situations of
‘‘underdetermined responding’’ [see Botvinick et al., 2004],
i.e., when a stimulus is associated with more than one
response, such as in stem-completion [Palmer et al., 2001]
and verb generation [Barch et al., 2000; Thompson-Schill
et al., 1997]. Arithmetic fact retrieval is a similar situation:
According to the network approach of arithmetic fact re-
trieval, a problem not only activates the correct solution,
but also other associated solutions [e.g., Campbell, 1995;
Verguts and Fias, 2005]. Moreover, interference by incor-
rect solutions increases with operand and product size
[see Campbell, 1995], while neighborhood consistency
decreases [Verguts and Fias, 2005]. This makes the fact-re-
trieval process ‘‘underdetermined’’ and less efficient for
larger problems. It is therefore plausible to assume that
the parametric activation increase in the medial frontal
cortex reflects this increasing conflict when selecting an
answer among competing alternatives.

Taken together, the present study provides evidence
that the angular gyrus and the ACC/SMA are integral
parts of the system that mediates arithmetic fact retrieval.
While the role of the angular gyrus has been discussed in
previous studies [see Ansari, 2008; Dehaene et al., 2003],
our findings provide evidence that also the medial frontal
cortex is involved. We therefore propose that both parietal
and frontal structures contribute to arithmetic fact re-
trieval. The use of a parametric analysis technique was
critical for this conclusion. Moreover, for the fMRI data
the parametric analysis revealed much stronger and more
accentuated activation foci than the categorical analysis
[Jost et al., 2009]. This especially holds for activation in the
left inferior and angular gyrus. For the ERP data, the para-
metric analysis helps to understand how the shift from
posterior to anterior electrodes emerges with increasing
problem size, i.e., at least in part, by a steeper amplitude
increase at frontal than at posterior electrodes. All in all,
the present study demonstrates the usefulness and applic-
ability of parametric methods [see also Wood et al., 2008],
not only for fMRI, but also for EEG data. An open ques-
tion and an issue that we did not address in the present
study is whether the correct product is the best predictor
of physiologically expressed problem-size effects or
whether other indices, such as the sum of the operands
[cf. Stazyk et al., 1982] or the logarithm of problem size
would explain more variance of brain activation data.
Likewise, using neighborhood-consistency properties [see
e.g., Domahs et al., 2007; Verguts and Fias, 2005] as the
regressor/item-grouping factor could be an interesting
extension of a parametric analysis. It might be promising
to compare such different regressor models to delineate
more precisely which predictor function best captures the
activation increases of distinct brain areas. This, however,

would go far beyond the scope of the present study and
should be pursued with a fresh set of data and a design
tailored specifically to the question of model contrasts.

Furthermore, the present study is another example of a
strong correspondence of EEG slow waves and the fMRI
BOLD signal in terms of parallel parametric activations
and similar topographic distributions [for review, see
Khader et al., 2008]. By means of this convergent multi-
method approach, we were able to gain new insight into
the neural basis underlying arithmetic fact retrieval.
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