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Abstract: Learning efficacy depends on its emotional context. The contents learned and the feedback
received during training tinges this context. The objective here was to investigate the influence of con-
tent and feedback on the efficacy of implicit learning and to explore using functional imaging how
these factors are processed in the brain. Twenty-one participants completed 150 trials of a probabilistic
classification task (predicting sun or rain based on combinations of playing cards). Smileys or frowneys
were presented as feedback. In 10 of these subjects, the task was performed during functional magnetic
resonance imaging. Card combinations predicting sun were remembered better than those predicting
rain. Similarly, positive feedback fortified learning more than negative feedback. The presentation of
smileys recruited bilateral nucleus accumbens, sensorimotor cortex, and posterior cingulum more than
negative feedback did. The higher the predictive value of a card combination, the more activation was
found in the lateral cerebellum. Both context and feedback influence implicit classification learning.
Similar to motor skill acquisition, positive feedback during classification learning is processed in part
within the sensorimotor cortex, potentially reflecting the activation of a dopaminergic projection to
motor cortex (Hosp et al., 2011). Activation of the lateral cerebellum during learning of combinations
with high predictive value may reflect the formation of an internal model. Hum Brain Mapp 34:176–185,
2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Learning depends on the emotional context in which it

occurs [Cahill and McGaugh, 1996]. Pleasant cues with

positive valence are better remembered than unpleasant
ones with negative valence [Ali and Cimino, 1997;
Mneimne et al., 2010] and the opposite may be true for
directed forgetting [Minnema and Knowlton, 2008].
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Feedback in the form of reward or punishment provided
during trial-and-error learning also tinges the emotional
context. Wächter et al. [2009] showed that implicit motor
skill learning is more effective with positive than negative
feedback. Brain networks involved in feedback processing
include striatum, midbrain, amygdala, frontal, and cingu-
late cortices; positive and negative feedback are handled
by different circuits [Liu et al., 2010].

The hypothesis here was that positive feedback, content
of positive valence and high predictive value improve
implicit learning and that improved learning is associated
with stronger recruitment of brain networks encoding
rewards. Because implicit learning mechanisms form the
basis of many therapeutic interventions in rehabilitation, it
is important to know the effect of these modifiable factors.
We recruited subjects from middle to retirement age for a
later comparison with individuals after stroke.

We tested our hypothesis using a classification learning
paradigm, the weather prediction task [Knowlton et al.,
1996], in which subjects had to learn associations between
a certain combination of four different playing cards and a
dichotomous weather outcome, sun or rain. The associa-
tions were stochastic, that is, each combination of cards
predicted sun or rain with a certain probability. The sub-

ject was supposed to learn which combination predicted
which weather. Feedback was given in form of smiley or
frowney faces. The stochastic nature limited the subject’s
awareness of the association. Hence, learning this task was
considered to be mainly implicit.

MATERIALS AND METHODS

Subjects and Task

Twenty-one subjects were recruited via advertisements.
Participants (14 females, 7 males) were between 43 and 85
years old (mean � SEM: 64.6 � 2.1). Inclusion criteria
were mini mental state (MMS) �27 points and Beck’s
depression index (BDI) �11 points. Mean MMS was 29.5
� 0.2, SEM, and BDI was 5.1 � 0.8. Education quantified
by the number of years spent in primary and secondary
school was 11.7 � 0.3 years. Ten of the 21 subjects quali-
fied for (absence of claustrophobia and metal implants, six
females, four males, age 60.4 � 2.1 years, mean � SEM)
and agreed to undergo fMRI testing. The sample was
recruited as a control group for a later comparison to
stroke survivors. The study was approved by the Ethics
Committee of the University of Tübingen, Germany. All
participants provided written informed consent.

The weather prediction task (WPT) was performed as
described by Knowlton et al. [1996]. The task is a forced-
choice classification task with two alternative responses in
which participants learn probabilistic associations between
14 different combinations of four playing cards (Fig. 1)
and two weather outcomes, sun and rain. Each card was
linked to an outcome with a prespecified probability (for
sun: card 1–80%, card 2–54%, card 3–43%, card 4–20%).
For each trial, either one, two, or three cards were shown
composing 14 combinations that predicted the weather
each with a certain combined probability. Table I shows

Figure 1.

Set of playing cards. One to three cards were shown to form

the card combinations described in Table I.

TABLE I. Predictive value, frequency and probabilities for card combinations

Combination

Combination class
according to

predictive value

Card

Percent of trials
with combination

Probability for
predicting sun1 2 3 4

5 high 0 0 1 1 13% 0.08
1 medium 0 0 0 1 9.5% 0.11
7 medium 0 1 1 1 9.5% 0.11
3 low 0 1 0 1 6% 0.17
11 low 1 1 0 1 4.5% 0.22
6 low 0 1 1 0 4.5% 0.44
2 none 0 1 0 0 3% 0.5
13 none 1 0 1 1 3% 0.5
4 low 0 0 1 0 4.5% 0.55
9 low 1 0 0 1 4.5% 0.78
12 low 1 0 1 0 6% 0.83
8 medium 1 0 0 0 9.5% 0.89
14 medium 1 1 1 0 9.5% 0.89
10 high 1 1 0 0 13% 0.92
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for each combination of cards the probability and how of-
ten the combination was shown (as a fraction of 150 trials).
Presentation of combinations of cards, detection of button-
press responses and feedback were computer-controlled
using Matlab (Mathworks, Natick, MA) and Psychtoolbox
(www.psychtoolbox.org). The WPT was verbally explained
and demonstrated before the experiment. Participants
were instructed not to talk with the investigator during
the experiment. After presentation of a card combination,
the subject had to respond within 4 s or the trial was
scored as ‘‘incorrect.’’ After 3 s, a prompt (‘‘Please press a
button’’) appeared on the screen. After pressing either the
‘‘sun’’ or the ‘‘rain’’ button, feedback was shown for 2 s in
form of a smiley or a frowney face. Every 50 trials, a 1-
min break was allowed. The experiment continued until
150 trials were completed.

Analysis of Behavioral Data

Trials were considered as ‘‘correct’’ when subjects chose
the more probable weather (sun or rain) for the card combi-
nation presented. Trials in which subjects did not respond
were scored as ‘‘incorrect.’’ Missed responses were few and
an alternative analysis that excluded those responses
yielded results similar to the ones reported below.

To investigate the time course of learning, a learning
curve (performance over time) was constructed for each
subject using a two-step procedure. First, a cumulative per-
formance curve was computed by adding 1 for each ‘‘cor-
rect’’ and subtracting 1 from each ‘‘incorrect’’ trial. This
curve was then smoothed using spline interpolation (Mat-
lab’s spapi function, two knots). Second, to convert the cu-
mulative into a performance-over-time curve the first
derivative was computed (finder function). The resulting
curve showed that performance increased in a nonlinear
fashion over the course of training. Non-linear fitting of an
exponential function [Boltzmann function, p/(1 þ exp(k �
(a - x)))] was used to derive parameters of learning: the pla-
teau p, the turning point a of the sigmoid Boltzmann curve
and the steepness in the turning point k. The plateau values
were estimated for each card combination. A general linear
model was used to explore whether the variability of the
plateau was explained by sun versus rain, the combina-
tions’ predictive probability and its presentation frequency.
Predictive probability was classified as high, medium or
low (Table I). This stratification was done because some
combinations were presented less frequently than others
and by grouping we obtained prediction classed of approxi-
mately equal frequency. Whether or not a subject belonged
to the subgroup receiving fMRI or not was included as an
additional independent dichotomous variable to test for
systematic differences between the samples.

In a second analysis, we measured how well single card
combinations were remembered. We counted the number
of trials in which the subject responded identical to a pre-
ceding trial with the same card combination and a smiley

reward. The two trials could have been subsequent or
several trials apart. Trials with the same response after a
rewarded (smiley) trial will be referred to as ‘‘same-after-
smiley’’ trials (SAS), otherwise they will be termed ‘‘oppo-
site-after-smiley’’ (OAS). Conversely to examine, if subjects
remembered to change their response behavior after seeing
a frowney, we counted ‘‘opposite-after-frowney’’ (OAF) and
‘‘same-after-frowney’’ trials. The ratio of (SASþOAF)/all tri-
als was then used as an index of memory. Because memory
improved during training, only the last 60 trials of 150 were
considered to compute this index. Using the index as a de-
pendent variable, we tested for effects of combination (sun
versus rain), predictive value (high-medium-low, Table I)
and feedback. The independent variable feedback was
defined as the number of smileys - frowneys that a subject
saw during the initial 30 trials of training. It was assumed
that no relevant memory was formed during these initial 30
trials; hence, there was no bias towards smileys because
some combinations had already been memorized. In fact
frowneys were slightly but significantly more frequent dur-
ing the initial 30 trials (1.9 vs. 2.8, P ¼ 0.045) excluding a
bias towards smileys. Whether or not a subject belonged to
the subgroup receiving fMRI or not was included as an
additional independent dichotomous variable to test for
systematic differences between the samples.

JMP (version 8, SAS Institute, Cary, NC) was used for
statistical calculations.

Functional Magnetic Resonance Imaging (fMRI)

Using a 3 Tesla scanner (Trio-Tim with eight-channel
phased-array head coil, Siemens, Erlangen, Germany)
fMRI was performed in subjects without metal implants or
claustrophobia who agreed to participate. Visual cues
were presented via a projection system installed in the
scanner room; responses were collected using an MRI-
compatible button-box. All participants responded using
their right hand.

The WPT task was performed in participants naı̈ve to
this task as described above, except that the intertrial inter-
val was 5 s, subjects had to respond within 4 seconds and
did not receive the second prompt (‘‘Please press a but-
ton’’). Additionally, a control task was performed before
and after the WPT to record brain activity related to visual
processing and movement similar to the WPT. In the con-
trol task one, two or three cards were shown and subjects
were asked to respond with the right button when two
cards were presented and the left button when one or
three cards were shown. Thirty training trials of the WPT
were performed outside the scanner without feedback
stimuli to avoid learning before the actual experiment was
started. Brain activity during WPT was measured in three
blocks of 50 trials each separated by 30 s of fixation. Fifty
trials of the control task were performed before the WPT.

A high-resolution T1-weighted scan was acquired
for anatomical localization. Functional imaging used
gradient-echo planar T2*-weighted images (EPI) with
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blood oxygenation level (BOLD)-contrast (TR ¼ 2.4 s, TE
¼ 30 ms, flip angle ¼ 90�). Thirty-eight slices (slice thick-
ness 3 mm) were acquired to cover the entire brain.

fMRI Analysis

fMRI data were processed using Brainvoyager QX (ver-
sion 2.2, Brain Innovation BV, Maastricht, The Nether-
lands). BOLD-weighted EPI datasets were corrected for
slice acquisition timing and head motion. Motion correc-
tion parameters were used as confound predictors in first-
level GLM analyses. Datasets were registered to Talairach
space in correspondence to the anatomical dataset. Images
were spatially (Gaussian kernel, full-width at half-maxi-
mum of 8 mm) and temporally (three cycles, GLM-Fou-
rier-high-pass-filter) smoothed.

The statistical analysis modeled each trial as two events,
one before (presentation period) and one after the button
press (feedback period). Five general linear models were
computed:

1. In the first, the hemodynamic response was estimated
for each of the following conditions, control trial pre-
sentation, control trial feedback, WPT trial presenta-
tion, WPT trial feedback. Random effects second-level
analysis of variance (ANOVA) was used to construct
WPT versus control activation maps for the presenta-
tion and feedback periods.

2. The second model was constructed analogous to
Model 1 except for replacing the control trials with
chance trials (combination with no predictive value).

3. In the third model, the WPT trials were separated
according to whether the card combination predicted
sun or rain, and according to the predictive value of
the combination (prediction class, Table I). Random
effects of ANOVA were used to extract activation
maps for the effects of sun/rain, predictive value and
their interaction (F tests). Contrasts (t tests) were com-
puted for high > low predictive value and sun >
rain. This second model was computed for presenta-
tion and feedback periods separately.

4. A fourth model was computed separating trials in
which a smiley and a frowney feedback was received.
Random effects ANOVA was then used to extract the
activation map for smiley > frowney. Only the feed-
back period of the trial was included in this model.

5. In a fifth random effects ANOVA model we investigated
a potential interaction between sun/rain and smiley/
frowney as independent variables. This model did not
yield any results and is therefore not further mentioned.

To test for effects of age, the subject sample was split
according to the median age and the age group was
included as a between-subject predictor in all models. For
all random effects models the statistical threshold was set
P < 0.05 corrected for multiple comparisons using a false dis-

covery rate (FDR) method. Talairach coordinates and average
p-values were measured for each activation cluster equal or
larger than 10 voxels (10 � 3 mm � 3 mm � 3 mm).

RESULTS

Learning Depends on Repetition and Predictive

Value of the Combination and on the Content of

the Association Being Learned (Sun versus Rain)

During the task, performance (correct responses over
time) increased in a sigmoid fashion reaching a plateau
between trials 70 and 80 (Fig. 2A). For card combinations
predicting sun plateau performance was higher than for
card combinations predicting rain (general linear model,
effect of the dichotomous variable sun/rain: P ¼ 0.039,
Fig. 2B) indicating that combinations predicting sun were
better learned than those predicting rain. Plateau perform-
ance was also higher for combinations occurring more fre-
quently (general linear model, effect of frequency: P <
0.0001, r ¼ 0.97, Fig. 2C) and for those with higher predic-
tive value, i.e., a larger difference from chance probability
to predict either sun or rain (general linear model, effect of
probability: r ¼ 0.84, P < 0.0001, Fig. 2D). The latter effect,
however, did not remain significant if frequency was
included in the model. Whether or not the subject was in
the fMRI group had no significant effect.

Learning Depends on Feedback

To evaluate learning from positive feedback, we counted
how often a subject responded identical to a card combina-
tion that had occurred before and was rewarded with a
smiley (‘‘same-after-smiley,’’ SAS). Vice versa, to evaluate
learning from negative feedback we counted ‘‘opposite-af-
ter-frowney’’ (OAF) trials. SAS trials were significantly
more frequent than OAF trials (paired t test, P < 0.001,
Fig. 3a) indicating that card combinations leading to posi-
tive feedback were remembered better than those leading
to negative feedback.

Using the SAS-CAF index (see Methods) as a measure
of how well card combinations were remembered, learning
was better for sun than rain combinations (P ¼ 0.036) and
for combinations for which more smileys than frowneys
were received during the initial 30 trials of WPT training
(P ¼ 0.001, Fig. 3b). The interaction between the two inde-
pendent variables was not significant. Likewise the predic-
tive value of the combination (high-medium-low) had no
significant effect if the variables sun/rain and smiley-frow-
neys were included in the model. Whether or not the sub-
ject was in the fMRI group had no significant effect.

Brain Activation

During the presentation period, the control task was
associated with more activation in several brain areas as
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compared with the WPT (Table IIa). In contrast, during
the feedback period, WPT lead to stronger activation in
the left inferior frontal gyrus (Table IIb). In comparison
with WPT card combinations without predictive value
(chance trials), the combinations with a predictive value
lead to stronger activation in the left posterior cingulum,
Brodmann’s area 31, during presentation (Table IIc). No
differences between chance and predictive combinations
were observed during feedback.

The third random effects ANOVA model tested the effect
of combinations predicting sun- versus rain (content) and

the combinations’ predictive value (combinations grouped
in high—92%, medium—89%, and low—83%, 78%, 55% to
account for uneven frequency of presentation, Table I) on
activation. For the presentation period of the trial, no signif-
icant voxels were found related to either the interaction or
to the individual effects of content (sun/rain) or predictive
value. For the feedback period, estimating the effect of the
within-subject variable ‘‘predictive value’’ (high/medium/
low) using an F test as well as the contrast (t test) high >
low predictive value showed significant voxels in the right
lateral cerebellum (Fig. 4, Table IIIa).

Figure 2.

Influence on learning. (a) Learning curves constructed from cor-

rect-versus-incorrect responses (see Methods) and averaged for

all subjects are shown for the two card combinations with high-

est predictive value for sun (combination no. 10, red) and rain

(combination no. 5, blue). Plateau performance is reached after

approximately half the trials and is lower for rain than sun card

combinations. Values on the y-axis represent the steepness, i.e.,

the first derivative of the cumulative performance curve, see

Methods for details. (b) Plateau values estimated from the learn-

ing curves (examples in a) are shown for each card combination

(bars indicate estimated plateau, error bars reflect SE, probabil-

ities according to Table I). The plateaus are lower for card com-

binations predicting rain (blue) than for those predicting sun

(red). This indicates that the emotional value of the learned con-

tent has an influence on learning efficacy. (c) Plateau values also

depend on the frequency by which a card combination occurs

and (d) on the predictive value of the card combination (differ-

ence from chance).
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The forth random effects ANOVA model tested the

effects of smiley versus frowney feedback during the feed-

back period of the trial. Smiley rewards were related to

stronger activation in bilateral nucleus accumbens, bilat-

eral posterior cingulum, left primary motor cortex, right

postcentral gyrus, and right premotor cortex (Fig. 5, Table

IIIb). No brain region was identified in which frowneys

produced stronger activation than smileys.

Including age group (dichotomous variable by median
split according to age) into the smiley-frowney model as a
the between-subject variable revealed significant voxels in
left cingulate gyrus, medial frontal gyrus and putamen
(Table IV) for the interaction young>old � smiley>frow-
ney. Including age group as a between-subject variable in
the other statistical models did not reveal any significant
results.

TABLE II. Brain activation (a) during presentation period of card combinations when observing Control Task >
WPT Task (b) during feedback period when observing WPT Task > Control Task (c) during presentation period

when observing WPT Trials > Chance Trials

Region of interest Brodmann Side x y z t P

(a)
Somatosensory cortex 3 left �34 �23 42 �4.93 0.000109
Premotor cortex 6 left �10 �2 60 �5.79 0.000017
Premotor cortex 6 left �28 �2 45 �4.54 0.000254
Middle temporal gyrus 22 left �55 �35 6 �9.37 0.000000
Orbitofrontal cortex 47 left �49 31 �3 �6.94 0.000002
Thalamus left �1 �11 12 �5.97 0.000012
Putamen left �16 10 �6 �4.81 0.000141
Cerebellar hemisphere left �43 �47 �33 �4.91 0.000113
Premotor cortex 6 right 23 �5 45 �5.40 0.000040
Fusiform gyrus 20 right 50 �38 �24 �4.35 0.000385
Posterior cingulate 31 right 11 �32 33 �5.18 0.000064
Cerebellar hemisphere right 14 �56 �33 �4.74 0.000165

(b)
Inferior frontal gyrus 45 left �49 28 9 6.48 0.000004

(c)
Posterior cingulum 31 left �19 �26 36 4.20 0.000539

Figure 3.

(a) Smileys are better remembered than frowneys. If a smiley

was presented, the subjects were more likely to give the same

answer in the subsequent trial with the same card combination

(yellow bars). In contrast, frowneys did not motivate the sub-

jects to give the opposite answer (green bars, *P < 0.001).

(b) The index of memory, computed as shown in the y-axis

label, was related to how many smileys versus frowneys were

received during the initial phase of WPT training and to whether

sun or rain was predicted.
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DISCUSSION

These results demonstrate that learning efficacy in a
probabilistic classification task depends on predictive
value of the cue, the content (sun/rain) to be learned and
the feedback (smiley/frowney) provided. Content and
feedback seem to be independent factors. Memory of card
combinations was better for combinations of cards with
higher predictive value, for those combinations that pre-
dicted sun instead of rain, and if smiley feedback was pro-
vided. Higher predictive values lead to stronger activation
of the lateral cerebellar hemisphere. Smiley feedback was
associated with stronger activation of Nucleus accumbens
(NAcc), sensorimotor cortex, and cingulum.

Subjects remembered card–weather associations mark-
edly better when positive instead of negative feedback
was provided. Wächter et al. [2009] reported a similar
finding during implicit motor learning in healthy individu-
als. It may be that as individuals age negative feedback
becomes more important as shown for avoidance learning
in subjects with higher age (77 years) than our sample
[Frank and Kong, 2008]. In fMRI smiley rewards were
associated with stronger activation in bilateral NAcc
(left>right; left dominance may be a consequence of right-
hand button presses, [Haruno et al. 2004]). NAcc activation
is frequently observed during reward processing [Aron
et al., 2006; Bischoff-Grethe et al., 2009; Jensen et al., 2007;
Linke et al., 2009; Poldrack et al., 2001; Seger and Cincotta,
2005; Ullsperger and von Cramon, 2003; Wachter et al.,
2009]. During an over-learned cue-response task NAcc
activation correlated with the amount of anticipated mone-
tary reward [Knutson et al., 2001]. A metaanalysis of func-
tional imaging studies on reward confirms bilateral
activation of the NAcc and the posterior cingulum during
positive versus negative feedback [Liu et al., 2010]. Also,
the orbitofrontal cortex was reported to be overactive dur-
ing presentation of reward versus punishment [Jensen
et al., 2007; Liu et al., 2010] and reward prediction error
[O’Doherty et al., 2003], but was not activated here. It is
possible that this finding is related to the age of our sub-
ject sample; the frontal cortex is specifically vulnerable to
age-related metabolic dysfunction [Curiati et al., 2011] and
structural atrophy [Raz et al., 2004]. In support of this
interpretation frontal cortex activation was stronger in the
younger half of our subjects.

We found stronger activation of sensorimotor cortex
(primary motor, premotor, and somatosensory cortex)
with smiley than frowney feedback which has not been
reported by reward studies using explicit learning para-
digms. Paradigm differences may explain this discrepancy.
Most reward studies use tasks that are overlearned,
involve minimal learning or are not designed to learn

TABLE III. (a) Activation of cerebral regions observed in comparison of high predictive trials vs. low predictive

trials in the feedback period. (b) Smiley-related activation in the feedback period as compared to frowneys

Region of interest Brodmann Side x Y z t P

(a)
Cerebellar hemisphere right 47 �47 �36 6.97 0.000002

(b)
Primary motor cortex 4 left �28 �29 45 8.50 0.000014
Primary motor cortex 4 left �37 �14 54 7.69 0.000030
Posterior cingulate 31 left �16 �29 36 8.93 0.000009
Nucleus accumbens left �7 10 0 8.37 0.000015
Somatosensory cortex 3 right 44 �20 51 8.68 0.000012
Premotor cortex 6 right 11 �11 57 9.05 0.000008
Premotor cortex 6 right 8 �26 57 6.95 0.000067
Posterior cingulate 23 right 11 �35 27 9.70 0.000005
Posterior cingulate 31 right 23 �20 33 7.74 0.000029
Nucleus accumbens right 10 7 �2 5.23 0.000585

Figure 4.

Brain activation during the feedback phase of the trial reflecting

the contrast ‘‘card combinations with high (according to Table I) >
low predictive value.’’ High value combinations recruited the lateral

cerebellar hemisphere (threshold P < 0.05, FDR corrected).
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associations based on feedback [e.g., Elliott et al., 2003;
Knutson et al., 2001]. Here, rewards were provided to
learn associations between card combinations and out-
comes. These associations were stochastic; hence, learning
was largely implicit. Reward processing for implicit learn-
ing may involve the motor cortices like it does for motor
skill learning [Wachter et al., 2009]. Whether this activation
reflects a dopaminergic reward signal that is routed
directly to motor cortex, remains speculative [Hosp et al.,
2011; Molina-Luna et al., 2009].

The posterior cingulate cortex (PCC) was an additional
brain region activated by positive > negative feedback
confirming previous reports [Liu et al., 2010]. In primates,
PCC activity corresponds to decisions deviating from a
standard, i.e., decision salience [Heilbronner et al., 2011]. It
has been proposed that the PCC detected change relative
to a standard (expected) signal in general [Pearson et al.,
2011]. In our context, positive rewards may have had
greater impact on changing behavior than negative ones.

As expected, learning efficacy correlated directly with
the card combination’s predictive value. As compared to
low predictive value, high-value trials over-activated the
right lateral cerebellum. During sensorimotor learning, the
cerebellum encodes error signals. Additional activation is
unrelated to error [Imamizu and Kawato, 2009] and has
been suggested to reflect the generation of an internal
model that serves as a cognitive framework for task-
related decisions [Ito, 2005]. One can speculate that cere-
bellar activation observed here for high > low predictive
value trials reflects internal model formation for the classi-
fication task. High value trials are more informative than
low-value trials for the formation of such a model. If cere-
bellar activity would represent an error signal, activation
should have been stronger for low-value combinations,
because for those subjects made more errors.

Combinations of cards predicting sun were better
remembered than those predicting rain. Given everyday

experience that positive events are better remembered
than negative ones, this finding seems plausible in the con-
text of explicit learning. That it transfers to implicit classi-
fication learning has—to our knowledge—not been
reported before. That this finding is spurious and caused
by receiving more smiley rewards for sun combinations
was excluded by showing the smileys at the beginning of
training were not more frequently presented for sun than
rain trails. That this distribution became uneven later is
expected because sun combinations were learned better
and rewarded with more smileys. We also found statisti-
cally no interaction between the variables sun/rain and
the number of smileys–frowney at the beginning of train-
ing in their effect on how well patterns were remembered.
Nevertheless, was the behavioral difference between sun
and rain trials small, which is probably why we did not
observe a differential effect on brain activation.

The fMRI control task was chosen to subtract the activa-
tion related to visual presentation and motor response from
performing the WPT. A comparison of the presentation
phase of control and WPT trials showed stronger control-
related activation in bilateral frontal, parietal and cerebellar
areas. This likely reflects the fact that more intense process-
ing was required for counting cards than for implicitly
assessing their predictive value and deciding in favor of
sun or rain during WPT. Counting is known to be

TABLE IV. Activation in the brain for the interaction

young>old x smiley>frowney

Region of interest Brodmann Side x y z t P

Posterior cingulate 23 left �4 �32 27 26.6 0.000871
Anterior cingulate left �10 37 �3 30.2 0.000580
Medial frontal

gyrus
32 left �16 13 42 37.2 0.000289

Putamen left �13 7 �6 25.7 0.000967

Figure 5.

Brain activation during the feedback phase of the trial reflecting the contrast ‘‘smiley > frowney

feedback.’’ Rewards (smileys) activated nucleus accumbens, sensorimotor and premotor cortices

and cingulum more than negative (frowney) feedback (threshold P < 0.05, FDR corrected).
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associated with activation of fronto-temporal language
areas, frontal and parietal cortices, and cerebellum [Ardila,
2010; Hinton et al., 2004; Kansaku et al., 2006; Sveljo et al.,
2010]. During the feedback phase of a trial, findings were
opposite in that the WPT was associated with stronger acti-
vation than control. This activation localized to the inferior
frontal gyrus (Brodmann area 45). While this region is part
of Broca’s language area, it also is involved in risk assess-
ment [d’Acremont et al., 2009]. Risk prediction error proc-
essing is likely more important during WPT than control.

A limitation of this study is that the individual valence
of positive and negative stimuli was not assessed or con-
trolled, neither for content nor feedback. Individuals may
have found sun pleasant but rain rather neutral. This is a
common criticism for many learning paradigms that focus
on valence [Lang et al., 1990; Mneimne et al., 2010]. We
used stimuli of small valence (smiley/frowney as feed-
back, imagined sun/rain as a response) to minimize poten-
tial differences in salience thereby hoping to reduce this
confound. Although we think the effect is small, we can-
not rule out a possible influence. A difference to prior
fMRI studies using the WPT is that our control task was
not interleaved with WPT trials. We chose this design to
render the WPT data comparable to WPT training outside
the scanner performed by subjects that did not qualify or
opted against MR scanning. To minimize sequencing
effects the control condition was performed before and af-
ter WPT training and for analysis the data of the two con-
trol periods were combined. A limitation to acknowledge
is the small size of the fMRI sample. Nevertheless, random
effects models that offer generalizability, yielded signifi-
cant results. A limitation is also the advanced age of our
subject sample. Subjects were collected as an age-matched
control group for a comparison with individuals after a
stroke to be reported elsewhere. Further studies are war-
ranted to investigate the effects of feedback, content, and
predictive value in young healthy subjects.

In conclusion, our data show that pleasant content and
feedback improve implicit classification learning. Positive
feedback is associated with stronger activation of NAcc,
sensorimotor cortex, and posterior cingulum as compared
with negative feedback. Learning also depends on the pre-
dictive value of the visual cues which is in part processed
within the lateral cerebellum possibly reflecting the forma-
tion of an internal model.
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