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Abstract: Diffusion tensor imaging (DTI) methods are widely used to reconstruct white matter trajecto-
ries and to quantify tissue changes using the average diffusion properties of each brain voxel. Spheri-
cal deconvolution (SD) methods have been developed to overcome the limitations of the diffusion
tensor model in resolving crossing fibers and to improve tractography reconstructions. However, the
use of SD methods to obtain quantitative indices of white matter integrity has not been extensively
explored. In this study, we show that the hindrance modulated orientational anisotropy (HMOA)
index, defined as the absolute amplitude of each lobe of the fiber orientation distribution, can be used
as a compact measure to characterize the diffusion properties along each fiber orientation in white
matter regions with complex organization. We demonstrate that the HMOA is highly sensitive to
changes in fiber diffusivity (e.g., myelination processes or axonal loss) and to differences in the micro-
structural organization of white matter like axonal diameter and fiber dispersion. Using simulations to
describe diffusivity changes observed in normal brain development and disorders, we observed that
the HMOA is able to identify white matter changes that are not detectable with conventional DTI indi-
ces. We also show that the HMOA index can be used as an effective threshold for in vivo data to
improve tractography reconstructions and to better map white matter complexity inside the brain. In
conclusion, the HMOA represents a true tract-specific and sensitive index and provides a compact
characterization of white matter diffusion properties with potential for widespread application in nor-
mal and clinical populations. Hum Brain Mapp 34:2464–2483, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

In the last two decades, magnetic resonance diffusion
imaging has offered a unique opportunity to probe the
microstructural integrity of the living human brain. Its
applications range from characterization of brain develop-
ment across the lifespan to quantification of brain degener-
ation in vascular and neurological disorders [Jones, 2008].
Average properties of tissues within each voxel can be
characterized by diffusion indices, such as fractional ani-
sotropy (FA) and mean diffusivity (MD) using the classical
tensor model [Basser et al., 1994; Pierpaoli et al., 1996] or
the generalized FA (GFA) and similar indices for more
complex methods like q-Ball [Tuch, 2004] or diffusion
spectrum imaging [Wedeen et al., 2005]. These indices are
generally thought to describe the microstructural proper-
ties of tissues in normal and pathological brains. For
example, decreased MD during early brain development is
interpreted as an indication of increased myelination of
white matter fibers [Dubois et al., 2008], whereas a
decrease in FA, for example in multiple sclerosis, is usu-
ally indicative of white matter demyelination [Beaulieu,
2002]. These indices are useful in research and clinical
practice but their interpretation is not always straightfor-
ward. One of the major limitations is that these indices
represent average measures of tissue properties. For voxels
containing one type of tissue (e.g., parallel fibers of the
mid-sagittal corpus callosum), the values of these indices
are specific only to that tissue. However, when the voxel
contains more than one fiber population, or a mix of dif-
ferent tissues (e.g., white matter fibers and grey matter),
the indices are degraded by partial volume effect and,
therefore, are no longer fiber- or tissue-specific. A classical
example is neurodegeneration along a white matter tract
which crosses with an unaffected fiber tract. In voxels con-
taining both the degenerating and the normal fibers, the
FA may increase as result of degeneration of the perpen-
dicular fibers [Wheeler-Kingshott and Cercignani, 2009].
Other approaches based on multicompartmental models
try to directly fit the diffusion signal from High Angular
Resolution Diffusion Imaging (HARDI) or from multishell
b-value data. Although multiple b-value approaches may
provide extremely useful information to disentangle the
characteristics of multiple tissues, these techniques are cur-
rently not easily transferable to clinical populations
[Alexander et al., 2010; Assaf and Basser, 2005; Wedeen
et al., 2005; Wu and Alexander, 2007]. Moreover, a com-
mon limitation of multiparametric fitting approaches is
that the increased complexity of the models sometimes
restricts the ability to provide consistent results across a

range of configurations, including regions of pathology.
Here, fitting errors, due to inadequate model selection,
may extend to multiple parameters making the clinical or
biological interpretation of the results not always
straightforward.

Spherical deconvolution (SD) has been recently devel-
oped to resolve multiple fiber orientations and is based on a
relatively simple model of signal generation. Instead of fit-
ting a finite number of parameters, it tries to estimate a con-
tinuous 3D distribution of the possible fiber orientations. SD
is based on the assumption that the signal from different
white matter bundles can be described by a common and
characteristic three-dimensional signal profile, the fiber
response function [Anderson, 2005; Tournier et al., 2004].
Deconvolving diffusion signals with a chosen fiber response
function allows the estimation of the weight of each fiber
bundle distributed across the angular space (e.g., the fibers
randomly distributed within a spherical space) to the total
diffusion signal within each voxel. The result of the decon-
volution operation is the fiber orientation distribution
(FOD), a spherical function whose multipeak shape pro-
vides information on the number of distinct fiber orienta-
tions, their orientation, and the weight of each fiber
component. This model has proved to be effective for the
extraction of multiple fiber orientations in complex white
matter regions where high angular resolution is required to
resolve multiple crossing [Alexander, 2005; Dell’Acqua
et al., 2007; Jian and Vemuri, 2007; Kaden et al., 2008; Sakaie
and Lowe, 2007; Tournier et al., 2007]. Furthermore, current
SD acquisition sequences are close to standard diffusion
tensor imaging (DTI) protocols and can, therefore, be easily
incorporated in clinical research protocols.

Different approaches have been proposed to resolve the
SD model and recent algorithms have shown increased
stability to noise and partial volume effect [Alexander,
2005; Dell’Acqua et al., 2010; Jian and Vemuri, 2007; Kaden
et al., 2008; Tournier et al., 2007]. Preliminary approaches
to tractography based on SD have also been reported [Del-
l’Acqua et al., 2008; Jeurissen et al., 2010a; Pannek et al.,
2010]. However, the potential to quantify white matter
changes with SD has not been extensively explored. In the
following sections, we describe how SD can be used to de-
velop novel quantitative indices specific to single fiber (or
tissue) components. A direct comparison with classical
voxel-specific indices (e.g., FA and MD) is then presented
using simulated normal and pathological data. Applica-
tions to improve the quantification of the number of dis-
tinct fiber orientations and tractography reconstructions of
complex white matter regions on in vivo data are
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presented. Relevant clinical uses and potential limitations
are finally discussed.

METHODS

Theory

Fiber response function and fiber signals

SD is based on the main assumption that the signal from
each fiber component is modeled by the chosen fiber
response function. However, such a hypothesis should be
considered as only partially correct for signals measured
from biological tissues. Differences in the microstructural
organization of white matter (WM) bundles affect the diffu-
sion properties of each fiber. In particular, different levels of
myelination, axonal density or even axonal radius are
known to be important factors that modulate the radial dif-
fusivity in WM tracts [Assaf et al., 2008; Barazany et al.,
2009; Beaulieu, 2002]. The effect of different diffusion prop-
erties on the measured MR signal can be inferred by model-
ing the signal from a single fiber as [Anderson, 2005]

EðhÞ ¼ e�bðk cos2 hþb sin2 hÞ (1)

where E(y) is the diffusion weighted MR signal normalized
to the nondiffusion weighted signal; k and b represent the
diffusivity along and perpendicular to the direction of the
fiber, y is the angle between the diffusion gradient and the
fiber orientation, and b is the b-value. This equation is based
on the classical Gaussian diffusion model and the fiber sig-
nal corresponds to an axial symmetric tensor whose eigen-
values are [k b b] [Hsu and Mori, 1995; Wiegell et al., 2000].
Equation (1) shows how the signal E changes according to
generic apparent diffusion coefficients of k and b. However,
using more complex diffusion models, it is also possible to
relate the attenuation of the diffusion signal directly to spe-
cific WM microstructural features. In particular, assuming
statistical independence of the net displacement of water
molecules along the axis and the radial direction of the
fiber, the signal from a single fiber can be modeled as
[Assaf et al., 2004]:

Eðq; sÞ ¼ Ekðqk; sÞE?ðq?; sÞ (2)

where Ek(qk,s) is the signal attenuation along the axis of
the fiber bundle and is usually modeled as free 1D-Gaus-
sian diffusion. E?(q?,s) is the signal attenuation measured
perpendicularly to the fiber orientation which can be
described by using models of restricted diffusion, such as,
the van Gelderen model [van Gelderen et al., 1994] or the
multiple correlation function (MCF) approach introduced
by Grebenkov [2007]. The advantage of these models is
that, taking into account the finite duration of the diffusion
gradient pulses, it is possible to directly relate the diffu-

sion signal attenuation with WM microscopic features
such as axonal diameter [Alexander et al., 2010; Assaf
et al., 2008]. Here, qk and q? are the components of the
q-vector decomposed along the parallel and the perpen-
dicular direction of the fiber, where |q| ¼ cdG and s ¼ D
� d/3 is the diffusion time, with c the gyromagnetic ratio,
G is the maximum amplitude of the diffusion gradients, d
is the duration of the diffusion gradients, and D is the
time interval between these gradients [Assaf et al., 2004].

Figure 1 shows an example of the changes in the 2D fiber
signal profile with increasing radial diffusivity [Eq. (1)]
and axonal radius [Eq. (2)] obtained with a diffusion gradi-
ent configuration achievable with a clinical setup. For the
diffusion models described by Eqs. (1) and (2), an increase
in the radial diffusivity or axonal radius produces a sub-
stantial attenuation of the whole signal. However, after
normalization to their maximum (to remove all scaling fac-
tors), the signal profiles show minimal variation in shape
for small radial diffusivity (<0.5 � 10�3 mm2/s) and for
axonal radii ranging from 0.01 to 10 lm, a range that corre-
sponds to normal histological values measured in the
human brain [Aboitiz et al., 2003; Waxman et al., 1995]. For
higher radial diffusivities (>0.5 � 10�3 mm2/s) or axonal
radii larger than 10 lm, the figure also shows that differen-
ces in the shape of the fiber signal become apparent.

In these examples, therefore, most of the differences in
the signal profile can be associated with the scaling factor,
but for increasing radial diffusivities or larger axons,
changes in the shape also need to be taken into account.
Moreover, it can also be verified that numerically, the
Gaussian and the restricted diffusion models adopted in
these examples provide identical (using van Gelderen) or
almost identical (using MCF) results if, for each axonal ra-
dius, the corresponding apparent Gaussian radial diffusiv-
ity is applied to Eq. (1). Thus, to a first approximation,
both signal profiles can be described by a more general
geometric relation as:

EðhÞ ¼ ke�ba cos2 h (3)

where k is a term that controls the scaling factor and a is a
term that controls the shape of the fiber signal profile. This
expression is equivalent to Eq. (1) if we set k ¼ exp(�bb)
as a term that describes the radial hindrance of the fiber
and a ¼ k � b to characterize the anisotropy of the fiber
signal profile [Dell’Acqua et al., 2007].

In the rest of the article, we investigate how variations
in the fiber signal (i.e., shape and scaling factors) affect SD
and propose new indices to quantify and characterize
white matter changes directly from the FOD profile.

Effect of different fiber signal profiles on the FOD

Previous SD studies have shown that the presence of
crossing fibers with different diffusion properties affects
the amplitude rather than the orientation of the
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corresponding FOD components [Anderson, 2005; Dell’Ac-
qua et al., 2007; Tournier et al., 2004]. Here, we analyze in
detail how these variations in both scaling factor and
shape parameters affect the amplitude and other character-
istics of the FOD.

First, if we consider only differences in scaling factor
between the fiber signal and the fiber response function,
the linear relationship of the convolution model guaran-
tees that scaling factors in the fiber signal are directly
transformed into scaling factors in the corresponding FOD
components. Hence, increases in radial diffusivity decrease
the term k and, consequently, the amplitude of the corre-
sponding FOD peak decreases.

Figure 2a shows an example of a fiber with a range of
scaling factors crossing with a fixed fiber. As k decreases,
the amplitude of the corresponding FOD component

decreases while the amplitude of the FOD lobe of the fixed
fiber remains constant.

Less obvious and more difficult to quantify is the effect of
deconvolving fiber signals with different shape profiles or,
more generally, in the presence of mismatch between the
measured fiber signals and the chosen fiber response func-
tion. If we first consider a fiber signal S which is perfectly
deconvolved with a sharper (higher a) fiber response func-
tion, H, a solution, R, can always be obtained that satisfies

S ¼ H � R (4)

However, it can be verified that here R is not the impulse
function that would be obtained by deconvolving with the
exact fiber response function, but rather a smoother axial

Figure 1.

Two-dimensional signal profile changes for a fiber described using models of Gaussian diffusion

and restricted diffusion inside a cylinder. On the left, signal changes are displayed as absolute signal

changes. On the right, signal profiles are normalized to the maximum value to remove all scaling

factors and highlight only shape differences. Black arrows indicate the direction of changes for

increase radial diffusivity or radius. Simulation parameters are shown in figure legend.
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symmetric profile centered along the direction of the fiber.
Similar to a Gaussian bell-shape deconvolved with a sharper
Gaussian, R can be considered as a residual blurring that
remains on the ideal impulsive FOD. Therefore, deconvolv-
ing with a sharper fiber response will produce smoother
FOD lobes depending on how close or far signals are to the
chosen fiber response. In the presence of crossing configura-
tions with fibers described by different shape profiles, the
final FOD can, therefore, also be described as the sum of a
mixture of residual Ri functions such as

S ¼ H � R1 þH � R2 ¼ H � ðR1 þ R2Þ ¼ H � FOD (5)

In clinical terms, this suggests that in the presence of a tis-
sue with decreased anisotropy the recovered FOD compo-

nents will not only be reduced by the scaling factor due to
the increase of the radial diffusion component but also by
the decreased shape factor a that will produce an
increased blurring of the corresponding FOD components.
Figure 2b shows as an example a fiber with changes only
in its shape factor crossing with a fixed fiber. For different
shape factors of the fiber, the amplitude of the correspond-
ing FOD components decrease and the whole lobe
becomes smoother as a decreases.

In practice, it must be noted that all SD methods pro-
posed in the literature already recover FOD profiles as
spherical functions with rounded lobes rather than true
impulse functions even when the exact fiber response
function is applied. These rounded lobes can also be con-
sidered as an additional angular blurring that always
affects the deconvolved FOD independently of the chosen
fiber response function. This blurring is normally required
to regularize the ill-conditioned nature of the deconvolu-
tion problem and originates, for example, from the trunca-
tion of higher spherical harmonic orders [Anderson, 2005;
Tournier et al., 2004, 2007], the chosen number of itera-
tions of the deconvolution algorithm [Dell’Acqua et al.,
2007] or, more simply, from the introduction of additional
regularization terms [Kaden et al., 2008; Sakaie and Lowe,
2007].

It is important to observe that, as a consequence, differ-
ences between the fiber response and the measured fiber
signal, therefore, modulate the overall blurring of the cor-
responding FOD lobe. Although a sharper fiber response
introduces additional blurring, the choice of a fiber
response with a profile smoother than the actual fiber (i.e.,
lower a) produces the opposite effect by ‘‘eroding’’ part of
the blurring. In more detail, with a rounder profile, the
fiber response weights some of the signal components of
the fiber more strongly. In this situation, however, signal
contributions from one fiber may also be erroneously
included by the larger fiber response in other FOD lobes,
potentially affecting their amplitude, orientation, or angu-
lar resolution. A precise quantification of this effect is hard
to determine because it depends not only on the chosen
fiber response function but also on the intrinsic blurring
that is specific to the deconvolution algorithm used. In this
study, therefore, we perform numerical simulations to
quantify these effects as well as the effects of fibers with
different diffusion properties using a SD algorithm that
we recently developed to provide high angular resolution
and noise stability within a clinical research acquisition
scenario [Dell’Acqua et al., 2010]. Similar results are also
expected for other SD methods.

Amplitude of the FOD peaks and
hindrance modulated orientational anisotropy

From the examples in the previous section, we can
observe that changes in fiber signal are always translated
into changes in the amplitude of the specific FOD
lobe. Moreover, in a certain range of conditions, these

Figure 2.

Example of 2D FOD profiles for a simulated fiber-crossing configu-

ration where diffusion properties are changed in one of the two

fibers (FOD lobes at 0� and 180�) and kept constant in the second

fiber (FOD lobes at 70� and 250�). In (a), the effect of decreasing

the scaling factor are shown for k ¼ 0.7 (black), k ¼ 0.5 (red), and

k ¼ 0.3 (blue). The scaling factor of the second fiber is k ¼ 0.5,

whereas the shape factor for both fibers is always equal to a ¼ 1.5

� 10�3 mm2/s. In (b), the effect of decreasing shape factors are

shown with a ¼1.5 (black), a ¼ 1.2 (red), and a ¼ 0.7 (blue) �
10�3 mm2/s. For the second fiber, a is fixed to 1.5 � 10�3 mm2/s,

whereas the scaling factor of both fibers is equal to 0.5. In the

examples, the b-value was equal to 3000 s/mm2, the fiber response

characterized by a shape factor of a ¼ 2.0 � 10�3 mm2/s and the

crossing angle equal to 70�.

r Dell’Acqua et al. r

r 2468 r



amplitudes can also be considered independent or mini-
mally affected by changes in the amplitude of other FOD
lobes within the same voxel. In other words, the FOD not
only provides relative information about the proportion of
the lobe amplitudes in each voxel but also gives an abso-
lute measure that reflects the specific diffusion properties
along each fiber orientation. As we have shown in the pre-
vious sections, this amplitude depends not only on the
fiber volume fractions but also on the radial diffusion hin-
drance of the particular white matter orientation (i.e., the
scaling factor k) and on the anisotropy of the fiber signal
profile (i.e., the shape term, a). Because FOD profiles also
do not require min-max normalization to enhance fiber
orientations as required by other HARDI approaches, the
amplitude of each FOD lobe is an absolute value that
remains comparable across different voxels and brain
regions. This is also true in the presence of partial volume
with isotropic compartments (gray matter, cerebrospinal
fluid (CSF), or edema), where the reduced volume fraction
of the fiber compartments is reflected in reduced ampli-
tude of the fiber orientations.

The absolute amplitude of each FOD lobe can, therefore,
be used to detect and quantify diffusion or anisotropy
changes along specific white matter orientations. For this
reason, we define the absolute amplitude of each FOD
lobe normalized to a reference amplitude as an index of
hindrance modulated orientational anisotropy (HMOA).
Here, normalization is only required to define the index
within a range from zero and one. In particular, by select-
ing as reference the highest FOD amplitude that can be
realistically measured in a biological sample, an HMOA
with a value of one corresponds to a signal equivalent to
the reference fiber, whereas an HMOA of zero corresponds
to the absence of a fiber.

The reference signal can be defined as the signal corre-
sponding to a condition of totally anisotropic diffusion
defined by a tensor equal to [2 0 0] � 10�3 mm2/s. By choos-
ing no radial diffusivity, we select the maximum scaling fac-
tor (i.e., k ¼ 1) that can be found on a fiber signal and
consequently on the corresponding lobe amplitude. Differ-
ent profiles or shapes of the reference fiber signal can be cho-
sen by changing only the corresponding a value to match
the characteristics of the studied biological system (e.g., in
vivo, postmortem, etc.). Here, an axial diffusivity equal to
2.0 � 10�3 mm2/s gives the most anisotropic signal profile
and also represents the upper limit of diffusivity we can
expect to measure in vivo in white matter.

Potential applications of the HMOA

The HMOA as defined above offers clear advantages
over FA or GFA. First, the HMOA can be used as an
indirect index to describe the microstructural properties
specific to single fiber populations. This is particularly
useful in conditions where a voxel contains multiple fiber
orientations with different biological properties (e.g., axo-
nal diameter, degree of myelination, etc.). A direct appli-

cation is, for example, the characterization of the
maturation of specific tracts in the developing brain or
the quantification of degeneration of fibers in pathological
conditions.

Another possible application is the use of the HMOA as
an effective threshold to mask small amplitude and spuri-
ous FOD lobes that originate from noise or from partial
volume effect in isotropic tissue. The HMOA is an abso-
lute measure that is directly related with diffusion MR sig-
nal of each fiber components. Hence, when compared with
other methods that set mask thresholds as a proportion of
the maximum amplitude of each FOD or orientation distri-
bution function (ODF), a mask threshold defined using the
HMOA value provides a constant threshold across brain
regions independently of the FOD amplitude of each indi-
vidual voxel. In this study, we provide two examples of
how the application of HMOA values as thresholds can be
used to better quantify the number of fiber orientations or
to improve tractography reconstruction.

Number of fiber orientation maps

SD methods can also provide information about the
complexity of white matter organization in the human
brain by looking at the number of distinct fiber orienta-
tions within each voxel. The number of fiber orientation
(NuFO) maps are usually estimated as the number of
local maxima of the FOD profile in each voxel [Dell’Ac-
qua et al., 2009; Jeurissen et al., 2010b; Nedjati-Gilani
et al., 2006] and can be visualized as maps where the
gray scale intensity of each voxel corresponds to the
number of fibers [Behrens et al., 2007]. Here, we propose
to improve the estimation of the NuFO maps by using
the additional information provided by the HMOA index
to threshold and exclude spurious components. A two-
threshold approach is applied here. A first ‘‘absolute’’
threshold based on the HMOA value is used to exclude
small local maxima due to noise and isotropic tissue
[Dell’Acqua et al. 2010]. In this study, different values of
the HMOA threshold are compared using multiples of
the amplitude of a spherical FOD obtained from an iso-
tropic voxel of gray matter (D ¼ 0.7 � 10�3 mm2/s) as a
reference amplitude (Aiso). A second ‘‘relative’’ threshold,
equivalent to a chosen percentage of the maximum lobe
amplitude, is applied to remove remaining local maxima
with value greater than the absolute threshold, but whose
value is relatively small compared with the maximum
amplitude of the corresponding FOD. This additional
threshold is necessary only in those FODs with the high-
est amplitude (e.g., in the corpus callosum) where ring-
ing-like components, usually of negligible amplitude,
may be higher than the absolute threshold.

Tractography

Recent studies have shown that tractography algorithms
based on multifiber methods may overcome some of the
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limitations of the classical tensor model [Behrens et al.,
2007; Berman et al., 2008; Wedeen et al., 2008]. In particu-
lar, SD gives information on the orientation of different
fiber bundles within the same region that can improve
tractography reconstructions in regions containing com-
plex white matter organization. An example of the advant-
age of SD tractography is the ability to identify trajectories
in regions with crossing fibers such as the corpus cal-
losum, the association pathways and the cortico-spinal
tracts (CSTs) where diffusion tensor tractography often
produces false negatives (e.g., failure to reconstruct real
pathways). However, tractography based on multifiber
methods can be biased toward false positive reconstruc-
tions by showing artifactual tracts that do not correspond
to the real anatomy. In SD tractography, the main reasons
for false positive reconstructions are the presence of small
amplitude spurious FOD components due to noise or the
presence of isotropic tissue, and the greater variability due
to noise of small but anatomically consistent fiber orienta-
tions [Dell’Acqua et al., 2010]. To overcome these problems,
we propose to use HMOA thresholds as exclusion criteria
for seeding, propagating, and stopping tracking. Here, we
apply this idea to a simple deterministic tractography algo-
rithm, although the same approach is also applicable to
other algorithms including probabilistic or more complex
approaches.

The tractography algorithm can be described by the
following steps:

1. For each brain voxel, the orientations of the FOD local
maxima are calculated and only those orientations
whose amplitude is above the absolute and relative
thresholds as described in the previous paragraph are
considered as estimates of true fiber orientations.

2. Whole brain tractography is started from all voxels
with at least one fiber orientation. For voxels with n
fiber orientations, n streamlines are propagated with
Eulerian integration and a fixed step size of 0.5 mm
[Basser et al., 2000].

3. At each step, a trilinear interpolation of the surround-
ing orientations is performed. Only those orientations
within 45� of the incoming streamline orientation are
included in the interpolation. In the presence of mul-
tiple orientations that satisfy this condition within the
same voxel, the direction of least curvature is chosen.
This condition aims to exclude from the interpolation
orientations that are more likely to belong to other
tracts. The advantage of this step is that only compo-
nents that are consistent with the current WM orien-
tation are included and unrelated orientations as well
as voxels from isotropic tissue without a proper fiber
orientation are excluded.

4. Together with the new orientation, the corresponding
HMOA along the streamline is interpolated. If the
interpolated HMOA value is above the absolute
threshold chosen in step (1) the propagation of the
streamline is continued and the algorithm is repeated

from step (3). The algorithm stops when the HMOA
value is below the absolute threshold.

Numerical Simulations

Numerical simulations were performed to assess how
changes in the diffusion properties of one or more fibers
can affect SD and the recovered HMOA values. A first
group of simulations was performed to study the corre-
spondence between the classical diffusion indices, such as
FA and MD, and the HMOA for three different signal
configurations:

1. A single fiber characterized by a tensor with fixed axial
diffusivity (Da ¼ 1.7 � 10�3 mm2/s) and increasing
radial diffusivity (Dr ¼ 0 – 1.0 � 10�3 mm2/s).

2. A single fiber described by a model of restricted dif-
fusion based on the van Gelderen model for diffusion
inside an impermeable cylinder. Here, this model is
used to mimic intra-axonal diffusion and provides a
simplified model to simulate white matter anisotropy
variations based on microstructural changes of the
fiber (Daxon ¼ 1.7 � 10�3 mm2/s and radius increas-
ing from 0 to 20 lm).

3. A crossing configuration with crossing angles ranging
from 0� to 90� characterized by two identical fibers
described by a diffusion tensor equal to [1.7 0.2 0.2] �
10�3 mm2/s.

A second group of simulations was then performed to
investigate in more detail crossing configurations where
the diffusion properties varied in only one of the two
fibers, whereas the second fiber remained fixed. Three con-
ditions of four distinct diffusion configurations were simu-
lated for Fiber 1:

1. Changes in radial diffusivity only, corresponding to
diffusion tensors equal to [1.7 0.2 0.2], [1.7 0.3 0.3],
[1.7 0.4 0.4], [1.7 0.5 0.5] � 10�3 mm2/s.

2. Changes in axial diffusivity only, corresponding to
diffusion tensors equal to [1.7 0.2 0.2], [1.5 0.2 0.2],
[1.3 0.2 0.2], [1.1 0.2 0.2] � 10�3 mm2/s.

3. Changes in the overall anisotropy while keeping the
tensor trace of the fiber fixed, corresponding to diffu-
sion tensors equal to [1.7 0.2 0.2], [1.5 0.3 0.3], [1.3 0.4
0.4], [1.1 0.5 0.5] � 10�3 mm2/s.

The diffusivity of Fiber 2 was kept constant at [1.7 0.2
0.2] � 10�3 mm2/s. Signals were simulated for three cross-
ing angles (50�, 70�, and 90�), corresponding to totally
resolved crossing configurations.

All synthetic data was generated to match our in vivo
HARDI protocol, corresponding to 60 uniformly distrib-
uted diffusion gradient directions [Cook et al., 2007] and a
b-value of 3000 s/mm2. For the restricted diffusion case,
diffusion gradients were also chosen to match the
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parameters used on our clinical scanner (D ¼ 40 ms, d ¼
30 ms, G ¼ 40 mT/m very close to a b-value of 3000 s/
mm2). For each configuration, 500 trials were generated
adding Rician noise corresponding to a signal to noise ra-
tio (SNR) equal to 20 for the signal measured with no dif-
fusion weighting.

SD was performed using the damped version of the
Richardson Lucy algorithm with parameters as described
in [Dell’Acqua et al., 2010]. For the first group of simula-
tions, a fixed fiber response corresponding to a shape fac-
tor of a ¼ 1.5 � 10�3 mm2/s was chosen. For the second
group of simulations, to also assess the effect of different
fiber responses on the estimated HMOA indices, three dif-
ferent fiber responses corresponding to shape factors of a
¼ 1.0, 1.5, and 2.0 � 10�3 mm2/s were applied.

In Vivo MRI Data

MRI acquisition

Diffusion MRI data was acquired from 30 healthy normal
volunteers using a 3 T GE Signa HDx TwinSpeed system
(General Electric, Milwaukee, WI). Data was acquired with
the following parameters: voxel size 2.4 � 2.4 � 2.4 mm,
matrix ¼ 128 � 128, field of view ¼ 307 � 307 mm, 60 slices,
1 average, TE ¼ 93.4 ms, b-value ¼ 3000 s/mm2, 60 diffu-
sion-weighted directions and 7 nondiffusion-weighted vol-
umes, using a spin-echo single-shot echo-planar imaging
(EPI) sequence with an ASSET factor of 2. Peripheral gating
was applied with an effective TR of 20/30 R-R intervals.
Quality of EPI data was assessed using an automated analy-
sis technique [Simmons et al., 1999]. The study was
approved by the Joint Medical Ethical Committee of the
Institute of Psychiatry, King’s College London and informed
consent was obtained from all subjects.

Processing

Diffusion datasets were corrected for head motion and
eddy current distortions by applying an affine registration
to a nondiffusion-weighted reference volume as imple-
mented in the FSL software package [Smith et al., 2004].
The estimation of the FOD in each voxel was performed
using a SD approach based on the damped version of the
Richardson-Lucy algorithm. The damped Richardson-Lucy
algorithm provides reliable estimates of the FOD in voxels
including mixed contribution of white matter, gray matter,
and CSF, thus reducing partial volume effects and spuri-
ous fiber orientations. Algorithm parameters were chosen
as described in [Dell’Acqua et al., 2010].

NuFO maps with different combinations of absolute and
relative thresholds were calculated and compared as
described in the previous section. Average NuFO maps of
30 subjects were also calculated. Maps of maximum
HMOA were estimated and averaged across the 30 sub-
jects to show how the values of the new index are distrib-
uted across the entire brain for the main fiber orientation.

To test how HMOA is effective as a threshold to stop trac-
tography in regions of low anisotropy, whole brain trac-
tography was performed as described in the previous
section. Dissections of the left Cingulum were performed
on three subjects by applying two coronal regions of inter-
est (ROI) at the level of the isthmus and the anterior-mid
body of the corpus callosum. No exclusion ROI was
applied to avoid masking the effect of HMOA thresholds.
As reference, the same tracts were dissected using DTI
tractography and the same ROIs. Whole-brain DTI tracto-
graphy was performed using ExploreDTI [Leemans et al.,
2009] with an FA threshold of 0.2, Euler integration with
0.5 mm step size and angle threshold of 45�. All virtual
dissections were performed using Trackvis [Wang et al.,
2007]. Finally, to show the difference between tract specific
measurements based on voxel-based indices like FA and
the true tract-specific HMOA index, we also performed
the dissection of a portion of the corona radiata, in a
region that includes crossing fibers from the corpus
callosum, the CST, and the arcuate fascicle (AF). FA and
HMOA values were mapped along each tract.

RESULTS

Numerical Simulation

Figure 3 shows how HMOA, FA, and MD vary with (a)
radial diffusivity, (b) axonal radius, and (c)crossing angle.
HMOA decreases with increasing values of radial diffusiv-
ity and axonal radius. A similar pattern was also found
for FA, with some differences. For increases in radial dif-
fusivity, the HMOA decrease is faster and follows an ex-
ponential-like profile, whereas for increases in axonal
radius the HMOA changes begin earlier (i.e., 3 lm) and
show a greater rate of decrease compared with FA. In the
crossing fiber configuration, for angles of 0–40� (where the
fiber crossing is not resolved), HMOA decreases, whereas
FA remains almost stationary. For angles >40�, the HMOA
profile shows minimal variation, whereas FA shows an
increased decay rate which is at its maximum for values
between 60� and 80�. This suggests that while HMOA is
minimally affected when fiber crossing is resolved as dis-
tinct FOD lobes, FA values vary significantly for fiber
crossing angles greater than 40� and the crossing angle
became a major factor for FA differences. The MD values
increase for the increasing radial diffusivity and axonal ra-
dius configurations and slightly decrease for the fiber-
crossing configuration.

Table I shows the results for the simulation with two
crossing fibers in the presence of diffusion changes in only
one of the two fibers (Fiber 1). Results include three distinct
conditions where changes occur only in the radial diffusiv-
ity (top panel), axial diffusivity (middle panel), or in both
diffusion components, whereas the trace of the tensor of the
fiber is kept fixed (bottom panel). Results are shown for
nine configurations of different crossing angles and fiber
response functions. As expected, changes in the radial
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diffusivity of Fiber 1 greatly affect the amplitude of the cor-
responding FOD lobe in all configurations, with more than
sixfold variations in some configuration. Similar results are

also obtained for changes in axial diffusivity but with
smaller variations. Combined changes of axial and radial
diffusivity show even larger variations in the value of
HMOA index (up to eightfold). The amplitude of Fiber 2 is
minimally affected for most of the configurations (variations
are around 10% in the worst case) except for configurations
with the smallest crossing angle. Here, however, rounded
profiles in the FOD lobes also suggest a general decreased
angular resolution of the recovered FOD profiles. Figure 4
shows simulation results in the case of combined changes
in both axial and radial diffusivity; similar profiles are also
obtained for changes only in radial or axial diffusivity. By
increasing the shape factor of the fiber response, the angular
resolution of the FOD profile increases and changes in the
amplitude of Fiber 2 reduce.

When comparing the results of each configuration with
the corresponding diffusion tensor, we can observe that
diffusion changes in only one of the crossing fibers usually
produce small or moderate changes in the overall tensor
ellipsoid profiles and their corresponding FA and MD
values. Unexpectedly, we also observe that in the 90�

crossing configuration, while the anisotropy of Fiber 1
monotonically decreases, FA values show a nonmonotonic
inversion. This effect is visible in the conditions of radial
diffusivity changes and combined diffusion changes.
When changes occur only in axial diffusivity, FA changes
are almost negligible and only MD decreases.

In Vivo Results

In this section, we present the in vivo results from
healthy subjects where diffusion datasets were processed
using the dRL algorithm to create individual FOD maps,
NuFO maps, and to perform tractography.

Figure 5a shows a sagittal slice of FOD profiles, which
includes fibers of the major association tracts and some lat-
eral projections of the corpus callosum. For each voxel, the
absolute amplitude of the FOD is displayed which gives a
visual representation of the HMOA variations between dif-
ferent voxels. A direct comparison between the FOD map
and a corresponding DT-ellipsoid map shows that for
voxels with a single or a major fiber orientation both
maps provide similar directional information. However, in
regions with crossing fibers where the tensor shows only
an average orientation, distinct white matter orientations
often merge as a single continuous tract. For example in
Figure 5a, this effect is visible between portions of the AF
and the inferior frontal occipital fascicle running in the
temporal stem.

The HMOA of each FOD lobe also shows smooth
changes across adjacent voxels thus describing a conti-
nuous representation of the diffusion properties that
propagate along the same tract. For example in Figure 5a,
smooth changes in HMOA can be observed along the AF,
the inferior longitudinal fasciculus, and the tracts of the
external capsule, facilitating the identification of the

Figure 3.

Simulation results: HMOA, FA, and MD changes in three differ-

ent fiber configurations. (a) A single fiber is simulated with fixed

parallel diffusivity and increasing radial diffusivity. (b) A single

fiber is described with a model of restricted diffusion inside a

cylinder and increasing radius. (c) A crossing configuration

between two identical fibers is shown for increasing crossing

angle. In all simulations, the solid line represents the average

value over 500 trials and the dotted lines the standard deviation.
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TABLE I. Simulation results: Diffusion changes in a crossing configuration

Fiber response

Diffusion tensora ¼ 1.0 a ¼ 1.5 a ¼ 2.0

Angle (�)
HMOA
fiber 1

HMOA
fiber 2

HMOA
fiber 1

HMOA
fiber 2

HMOA
fiber 1

HMOA
fiber 2 FA MD

Radial diffusion changes

50 1 0.12 � 0.02 0.12 � 0.02 0.13 � 0.03 0.13 � 0.03 0.14 � 0.03 0.14 � 0.04 0.66 � 0.04 0.55 � 0.02
2 0.06 � 0.02 0.14 � 0.03 0.08 � 0.02 0.14 � 0.03 0.09 � 0.03 0.15 � 0.04 0.61 � 0.04 0.59 � 0.02
3 0.03 � 0.01 0.16 � 0.03 0.04 � 0.02 0.15 � 0.03 0.05 � 0.03 0.16 � 0.04 0.57 � 0.04 0.62 � 0.02
4 — 0.17 � 0.03 0.02 � 0.01 0.16 � 0.04 0.03 � 0.02 0.16 � 0.04 0.54 � 0.04 0.65 � 0.02

70 1 0.17 � 0.02 0.17 � 0.02 0.17 � 0.03 0.17 � 0.03 0.17 � 0.04 0.17 � 0.04 0.53 � 0.04 0.53 � 0.02
2 0.10 � 0.02 0.18 � 0.03 0.11 � 0.03 0.18 � 0.03 0.11 � 0.03 0.17 � 0.04 0.49 � 0.04 0.57 � 0.02
3 0.06 � 0.02 0.18 � 0.03 0.07 � 0.02 0.18 � 0.04 0.07 � 0.03 0.17 � 0.04 0.47 � 0.04 0.61 � 0.02
4 0.03 � 0.01 0.18 � 0.03 0.04 � 0.02 0.18 � 0.03 0.04 � 0.02 0.17 � 0.04 0.47 � 0.04 0.64 � 0.02

90 1 0.19 � 0.02 0.19 � 0.02 0.18 � 0.03 0.18 � 0.03 0.17 � 0.04 0.17 � 0.04 0.43 � 0.03 0.53 � 0.01
2 0.12 � 0.02 0.19 � 0.03 0.12 � 0.03 0.18 � 0.03 0.11 � 0.03 0.17 � 0.04 0.40 � 0.03 0.57 � 0.02
3 0.07 � 0.02 0.19 � 0.03 0.07 � 0.03 0.18 � 0.03 0.07 � 0.03 0.17 � 0.04 0.41 � 0.03 0.61 � 0.02
4 0.04 � 0.02 0.19 � 0.03 0.04 � 0.02 0.18 � 0.03 0.04 � 0.02 0.17 � 0.04 0.42 � 0.04 0.64 � 0.02

Axial diffusion changes

50 1 0.12 � 0.02 0.12 � 0.02 0.13 � 0.03 0.13 � 0.03 0.14 � 0.04 0.15 � 0.04 0.66 � 0.04 0.55 � 0.02
2 0.11 � 0.02 0.12 � 0.02 0.11 � 0.03 0.13 � 0.03 0.12 � 0.03 0.14 � 0.04 0.67 � 0.04 0.54 � 0.02
3 0.09 � 0.02 0.13 � 0.02 0.09 � 0.03 0.13 � 0.03 0.10 � 0.03 0.14 � 0.04 0.66 � 0.04 0.52 � 0.02
4 0.07 � 0.02 0.14 � 0.03 0.07 � 0.02 0.14 � 0.03 0.07 � 0.03 0.14 � 0.04 0.66 � 0.04 0.50 � 0.02

70 1 0.17 � 0.02 0.17 � 0.02 0.17 � 0.03 0.17 � 0.03 0.17 � 0.04 0.17 � 0.04 0.53 � 0.04 0.54 � 0.02
2 0.16 � 0.02 0.17 � 0.02 0.15 � 0.03 0.17 � 0.03 0.14 � 0.04 0.17 � 0.04 0.53 � 0.04 0.52 � 0.01
3 0.14 � 0.02 0.16 � 0.02 0.13 � 0.03 0.16 � 0.03 0.12 � 0.04 0.16 � 0.04 0.53 � 0.04 0.51 � 0.01
4 0.12 � 0.02 0.16 � 0.03 0.10 � 0.03 0.16 � 0.03 0.09 � 0.03 0.15 � 0.04 0.52 � 0.04 0.48 � 0.01

90 1 0.19 � 0.02 0.19 � 0.02 0.18 � 0.03 0.18 � 0.03 0.17 � 0.04 0.17 � 0.04 0.43 � 0.03 0.53 � 0.01
2 0.18 � 0.02 0.18 � 0.03 0.16 � 0.03 0.17 � 0.03 0.14 � 0.04 0.16 � 0.04 0.43 � 0.03 0.51 � 0.01
3 0.16 � 0.02 0.18 � 0.02 0.13 � 0.03 0.17 � 0.03 0.11 � 0.04 0.16 � 0.04 0.42 � 0.03 0.50 � 0.01
4 0.13 � 0.02 0.17 � 0.02 0.10 � 0.03 0.16 � 0.03 0.08 � 0.03 0.15 � 0.04 0.41 � 0.03 0.48 � 0.01

Anisotropy changes (fixed trace)

50 1 0.12 � 0.02 0.12 � 0.02 0.13 � 0.03 0.13 � 0.03 0.14 � 0.04 0.14 � 0.04 0.66 � 0.04 0.55 � 0.02
2 0.06 � 0.02 0.14 � 0.03 0.07 � 0.02 0.14 � 0.03 0.08 � 0.03 0.15 � 0.04 0.61 � 0.04 0.58 � 0.02
3 0.02 � 0.01 0.16 � 0.03 0.03 � 0.02 0.15 � 0.03 0.04 � 0.02 0.15 � 0.04 0.57 � 0.04 0.60 � 0.02
4 — 0.18 � 0.03 0.01 � � 0.01 0.16 � 0.04 0.02 � 0.01 0.16 � 0.04 0.53 � 0.04 0.61 � 0.02

70 1 0.17 � 0.02 0.17 � 0.02 0.17 � 0.03 0.17 � 0.03 0.17 � 0.04 0.17 � 0.04 0.54 � 0.04 0.54 � 0.02
2 0.10 � 0.02 0.18 � 0.02 0.10 � 0.03 0.17 � 0.03 0.09 � 0.03 0.17 � 0.04 0.49 � 0.05 0.56 � 0.02
3 0.05 � 0.02 0.18 � 0.03 0.05 � 0.02 0.17 � 0.03 0.04 � 0.02 0.16 � 0.04 0.47 � 0.04 0.58 � 0.02
4 0.02 � 0.01 0.18 � 0.03 0.02 � 0.01 0.17 � 0.03 0.02 � 0.02 0.17 � 0.04 0.46 � 0.04 0.60 � 0.02

90 1 0.19 � 0.02 0.19 � 0.02 0.18 � 0.03 0.18 � 0.03 0.17 � 0.04 0.17 � 0.04 0.43 � 0.03 0.53 � 0.02
2 0.11 � 0.02 0.19 � 0.03 0.10 � 0.03 0.18 � 0.03 0.09 � 0.03 0.17 � 0.04 0.40 � 0.03 0.56 � 0.02
3 0.06 � 0.02 0.18 � 0.03 0.05 � 0.02 0.17 � 0.03 0.04 � 0.02 0.16 � 0.04 0.41 � 0.04 0.58 � 0.02
4 0.02 � 0.01 0.18 � 0.03 0.02 � 0.02 0.17 � 0.03 0.02 � 0.02 0.16 � 0.04 0.43 � 0.04 0.60 � 0.02

Three separate conditions of diffusion changes are simulated for fiber 1. Top table, changes only in radial diffusivity (fiber 1 FA ¼ 0.87,
0.80, 0.73, 0.65 and MD ¼ 0.70, 0.77, 0.83, 0.90 � 10�3 mm2/s); Middle table, changes only in axial diffusivity (fiber 1 FA ¼ 0.87, 0.85,
0.83, 0.79 and MD ¼ 0.70, 0.63, 0.57, 0.50 � 10�3 mm2/s); Bottom table, changes in overall anisotropy keeping the same tensor trace
(fiber 1 FA ¼ 0.87, 0.77, 0.63, 0.46 and MD ¼ 0.70 � 10�3 mm2/s). Fiber 2 is always kept fixed (FA ¼ 0.87 and MD ¼ 0.70 � 10�3 mm2/s).
Results are shown for three different crossing angles (50�, 70�, 90�). The four values in each cell of the table, from top to bottom, are the
results corresponding to the four diffusion changes applied to fiber 1. From left to right the first three pairs of columns show HMOA values
of the two fiber orientations for the three chosen fiber response functions (a ¼ 1.0, 1.5, 2.0 � 10�3 mm2/s). The last column on the right
shows the equivalent FA and MD values.

r Hindrance Modulated Orientational Anisotropy r

r 2473 r



anatomy of each tract. In Figure 5b, three voxels, corre-
sponding to three locations with the same FA (i.e., same
gray level) are highlighted to show how, although the
anisotropy of the voxel is the same, they are instead char-
acterized by different HMOA values thus revealing a
deeper complexity of microstructural architecture.

NuFO maps and maximum HMOA maps

NuFO maps allow the visualization of the number of dis-
tinct fiber orientations in each voxel, which is a useful index
of local white matter complexity. Figure 6a shows the appli-
cation of the two-threshold approach for the estimation of
the NuFO maps. The human brain shows a high degree of
local complexity (number of fibers � 2) in many white mat-
ter regions. In Figure 6b, multiple fiber orientations are visi-
ble in the corona radiata and in periventricular voxels.
Regions that have only one fiber population are the corpus
callosum, corticospinal tract, and white matter adjacent to
the cortex. The appearance of NuFO maps varies according

to the applied thresholds, whereas the relative distribution
of number of fibers appears to be consistent with small var-
iations across different subjects (Table II). For higher abso-
lute thresholds, the number of voxels characterized by
multiple orientations decreases as expected, whereas the
percentage of single orientation voxels increases. From these
results, it can be observed that the choice of the absolute
threshold is also dependent on the quality of the data (e.g.,
SNR) and the regularization capabilities of the deconvolu-
tion algorithm to remove spurious components. Therefore,
rather than defining a single optimal threshold, different
thresholds can be applied to identify either the most repre-
sentative FOD components or specific ranges of HMOA val-
ues. A further but minimal reduction of multiple
orientations and increase of single fiber configuration is
obtained with increasing relative threshold, which results in
the reduction of spurious components in regions with high
HMOA components (e.g., body of the corpus callosum).

Another advantage of the NuFO maps is the additional
anatomical information that is provided compared with

Figure 4.

Simulation results: Diffusion changes in a crossing configuration.

This figure shows, as an example, average FOD profiles and ten-

sor ellipsoids for changes in the anisotropy of Fiber 1, whereas

keeping Fiber 2 fixed (Fiber 1 FA ¼ 0.87, 0.77, 0.63, 0.46 and

MD ¼ 0.70 � 10�3 mm2/s, Fiber 2 FA ¼ 0.87 and MD ¼ 0.70

� 10�3 mm2/s). On the left, FOD profiles are overlaid to show

how anisotropy changes in Fiber 1 affects the recovered FOD

lobes. Three crossing angles (50�, 70�, and 90�) and three

applied fiber response function (a ¼ 1.0, 1.5, 2.0 � 10�3 mm2/

s) are shown. On the right, the corresponding diffusion ellip-

soids show the same changes as described by the diffusion ten-

sor model. Similar results are obtained also with changes in

radial or axial diffusivity only.
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FA maps. Figure 7, on the left, shows the average NuFO
maps from 30 subjects with an absolute threshold of 4 Aiso

and a relative threshold of 10%. In these maps, the CST is
visible on multiple consecutive slices as an area containing
voxels with a single orientation (red arrow), which is not
visible in the corresponding FA maps (Fig. 7, centre).
Regions with three or more orientations (blue arrows) con-
taining crossing fibers from the corona radiata (projection),
corpus callosum (commissural), and superior longitudinal
fasciculus (associative) are visible as linear bands bilater-
ally on the NuFO maps. These areas incorrectly corre-
spond to regions of apparent low anisotropy in the FA
maps.

Additionally, Figure 7, on the right, also shows the aver-
age map of maximum HMOA in each brain voxel.
Although qualitatively similar to classical FA maps, this
image provides, for each voxel, quantitative information
only about the major white matter component without the

contamination of partial volume effects from other fiber
orientations. For example in Figure 7, high HMOA values
differentiate the AF (green arrow) bilaterally from sur-
rounding brain regions suggesting a different white matter
organization along this tract not visible in the FA map.
The HMOA index also exhibits smooth changes along
white matter tracts confirming that its value is consistent
and can be compared across voxels and slices as normally
done for FA.

Tractography results

Figure 8 shows the tractography reconstruction of the
left Cingulum for three subjects as an example of using
HMOA values as a threshold to stop tractography and
reduce false positive reconstructions. In these reconstruc-
tions, a two-region approach is used to select all the
streamlines passing through two coronal ROI placed over

Figure 5.

In vivo results: Absolute FOD profiles. (a) Absolute FOD pro-

files from a sagittal slice, which includes fibers of the major

association tracts and the corpus callosum, are shown on the

left. This image gives a general overview of HMOA distribution

in a large brain region and along different tracts. On the right,

the same region is shown using a diffusion tensor ellipsoidal vis-

ualization. (b) Three voxels selected with the same FA value

(yellow squares) show the corresponding HMOA values along

the recovered fiber orientations.
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the left Cingulum at the level of the isthmus and anterior-
midbody of the corpus callosum. No exclusion ROIs were
applied to remove spurious streamlines to show only the
effect of HMOA in stopping tractography. By increasing
the HMOA threshold from 0.006 to 0.012, most of the false
positive reconstructions decrease. By further increasing the
threshold to 0.018, other false positives disappear and only
components of the Cingulum with higher HMOA are pre-
served. As verified for the NuFO maps, the results here
are also consistent across subjects suggesting that the

HMOA can be used reliably as a threshold across subjects.
As a comparison, DTI tractography reconstructions of the
Cingulum obtained with the same ROI are also shown on
the right side of Figure 8. Incomplete reconstructions of
the most posterior part of the Cingulum are visible for
two of the three subjects.

Figure 9 shows the values of FA and HMOA mapped
onto tractography reconstructions of crossing fiber tracts.
In white matter regions with only one fiber component,
such as the body of the corpus callosum, high values of

Figure 6.

In vivo results: NuFO maps. (a) Visualization of the absolute (red) and relative (blue) thresholds

as spherical profiles superimposed on FOD profiles in a selected brain region; (b) NuFO maps

obtained on a single subject for different values of absolute and relative threshold.

TABLE II. Number of fiber orientations over 30 subjects (%)

Fibers

Abs ¼ 0 (HMOA ¼ 0) Abs ¼ 2 Aiso (HMOA ¼ 0.006) Abs ¼ 4 Aiso (HMOA ¼ 0.012)

Rel. ¼ 5% Rel. ¼ 10% Rel. ¼ 5% Rel. ¼ 10% Rel. ¼ 5% Rel. ¼ 10%

�3 32.9 � 2.2 29.6 � 2.1 23.6 � 2.0 22.7 � 1.9 11.8 � 1.0 11.7 � 1.0
2 42.7 � 1.1 42.7 � 1.0 41.3 � 0.9 40.5 � 0.9 37.2 � 1.3 36.8 � 1.3
1 24.4 � 1.9 27.7 � 1.9 35.1 � 2.2 36.8 � 2.1 51.0 � 2.1 51.4 � 2.1

In vivo results: NuFO maps. Distribution of the number of distinct fiber orientations for different absolute and relative threshold levels
applied over 30 healthy subjects.
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FA correspond to high values of HMOA. In the presence
of two or more crossing fibers, FA provides an average,
voxel-specific, description of the microstructural organiza-
tion, which is equally assigned to each fiber component.
Conversely, HMOA is a tract-specific index, which can be
mapped onto distinct white matter orientations within the
same voxel. This allows characterization of the microstruc-
tural properties of each fiber component along the same
tract and across different voxels. Figure 9 shows two
examples of fiber crossing where the advantage of using
HMOA to map the microstructural properties of each
crossing tract is evident. In the first example, where the
fibers of the corpus callosum cross with the central portion
of the arcuate fasciculus, both tracts show a reduction in
FA, whereas the HMOA values show high HMOA compo-
nents of the AF crossing with low HMOA callosal tracts
(Fig. 9a). In the second example, where the fibers of the
CST cross with the most medial fibers of the arcuate fasci-
culus, both sets of fibers show high levels of FA, whereas
high HMOA values are evident only for the fibers of the
CST (Fig. 9b). These results show how indices based on
the average properties of the voxel may not characterize

entirely properties that are specific of each white matter
tract, whereas tract specific indices like HMOA can sepa-
rate diffusion properties of different fiber bundles.

DISCUSSION

In this study, we investigated the use of novel SD
derived indices for the quantification of white matter
properties in regions with complex microstructural organi-
zation. The development of these indices provides a possi-
ble solution to two of the main limitations of SD
approaches, namely the lack of well-established quantita-
tive measures to apply to normal and clinical populations
and the need for a priori knowledge of the fiber response
function to apply to the convolution model [Tournier
et al., 2004].

In this study, we first observed that changes in the fiber
signal profile, either described with a Gaussian or re-
stricted diffusion model, can be reduced to changes in a
scaling factor and in a shape factor of the signal fiber pro-
file. Although scale differences translate directly to scaling

Figure 7.

In vivo results: Average NuFO map and maximum HMOA map

from 30 healthy subjects compared with the corresponding aver-

age FA map. (a) Three orthogonal views show brain regions

with different degrees of white matter complexity (left), FA val-

ues (centre), and maximum HMOA (right); (b) on the left, six

consecutive slices show the consistency of the results for

regions with one, two, or more than two distinct fiber orienta-

tions. Red arrows indicate the central portion of the corticospi-

nal tract as a region with a single fiber orientation. Blue arrows

indicate a bilateral band of high white matter complexity with

three fiber orientations inside the corona radiata that corre-

sponds to a region of low anisotropy in the FA map (centre).

On the right, green arrows indicate a region of high HMOA val-

ues corresponding to the arcuate fascicle.
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of the amplitude of the corresponding FOD lobe, differen-
ces in the shape factor modulate a residual blurring that
reflects the incomplete deconvolution of the FOD lobe. In
agreement with previous studies [Anderson, 2005; Dell’Ac-
qua et al., 2007; Tournier et al., 2004], we found that differ-
ences between the measured fiber signal and the chosen
fiber response function are always reflected by the SD
algorithm as differences in the absolute amplitudes of
recovered FOD lobe. Changes in the diffusion signals that
occur along all HARDI directions are concentrated and
amplified along the specific FOD lobe. This makes the am-
plitude of each FOD lobe a sensitive index able to detect
biological changes that are not ‘‘visible’’ on conventional
DTI and that are, at the same time, specific for single fiber
orientations. In this study, we formalized the idea origi-
nally presented in [Dell’Acqua et al., 2010] to use the am-
plitude of each FOD lobe as an index of apparent fiber
density. A recent paper from [Raffelt et al., in press] fol-
lowing this idea has also proposed the use of the apparent
fiber density to perform voxel-based group comparison
studies. Here, in this new study, we expanded this concept
and demonstrated that the HMOA index provides a com-
pact measure that incorporates information not only about
the density of different fiber orientations (expressed as the
fiber volume fraction) but also about their diffusion prop-
erties including the radial diffusion hindrance and the ani-
sotropy of each fiber orientation. The HMOA is an
absolute index that, unlike other HARDI methods that

require a local normalization for each voxel, it can be used
to directly compare differences across brain regions and
between subjects.

In our study, simulation results on a range of anisotropy
configurations have shown that changes in either fiber dif-
fusivities or microstructure properties like ‘‘axonal’’ diame-
ters can be better detected by HMOA than by classical FA
and MD indices. HMOA shows rapid decays and gives a
larger dynamic range to characterize the fiber characteris-
tics. Our simulations with realistic noise levels show that
true fiber orientations can be consistently detected down
to an HMOA of �0.01, whereas a single fiber orientation
FOD may reach HMOA values of 0.4 or higher in the most
anisotropic voxels of the brain. Simulations also confirmed
that this index is theoretically able to detect small micro-
structural changes before they become visible in FA or
MD. Changes in axonal radius were visible for fiber radius
greater than 3 lm, whereas a clear decrease in FA was
visible only after 5 lm. This index may, therefore, be suita-
ble to study axonal changes during white matter matura-
tion or degeneration. Similarly, HMOA was able to detect
changes when fiber crossings were not resolved. In these
configurations, we observed a rapid decrease of HMOA
suggesting that although distinct orientations are not
resolved, different degrees of fiber dispersion can be
detected by the single recovered FOD lobe. Although this
result should be considered in part as a limitation of the
use of HMOA to quantify tract specific properties, it

Figure 8.

In vivo results: Tractography reconstruction of the left Cingulum.

From left to right, tractography reconstructions are shown with

increasing HMOA thresholds for three subjects. To better visu-

alize HMOA differences, HMOA values are mapped along the

tracts. The location of the two coronal ROIs used to dissect the

tract are shown as white dotted lined on the third column. As a

comparison, DTI tractography reconstructions of the Cingulum

obtained with the same regions of interest are also shown on

the right. No exclusion ROIs were used to remove false positive

reconstructions.
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should also be noted that SD approaches do not fit fiber
orientations as a discrete number but as a continuous dis-
tribution of the possible orientation. When multiple fiber
orientations are not resolved, or a fanning fiber configura-
tion is present, the corresponding FOD lobe correctly
describes the average orientation of this group of fibers.
Equally here, the HMOA provides an average description
of the diffusion properties of the corresponding FOD lobe.
Future work may improve the characterization of fiber dis-
persion by studying not only the amplitude of the recov-
ered HMOA but also fitting and characterizing the shape
of the recovered FOD lobe.

For increasing crossing angles, the HMOA decreases
until the two fibers are completely resolved. Then, for fur-
ther increases, the two distinct HMOA values appear less
affected by the crossing angle and became more sensitive
only to fiber specific changes. In the presence of diffusion

changes in a fiber crossing with a second fiber with fixed
diffusion characteristics, we observed large variations in
HMOA (more than eightfold) along the direction of the
FOD lobe of the first fiber. In comparison, voxel-based
indices like FA and MD demonstrate only minor varia-
tions and in some configurations for a constant decrease in
the anisotropy of the first fiber we observed a nonmono-
tonic behavior in the measured FA (a decrease followed
by a subsequent increase in FA). This result confirms pre-
vious findings where DTI measurements performed in
complex white matter configurations may sometimes lead
to results that are difficult to interpret [Wheeler-Kingshott
and Cercignani, 2009].

Although, in these simulations, most changes were
observed along the corresponding fiber orientation, minor
changes were also observed along the second fiber orienta-
tion. This effect can be described as a sort of residual

Figure 9.

In vivo results: Mapping FA (left) and HMOA (right) along white matter tracts in the presence of

crossing fibers. (a) Crossing between a lateral portion of arcuate fascicle and the lateral projec-

tions of the corpus callosum. (b) Crossing between the cortical spinal tract and a more medial

portion of the arcuate fascicle. In both cases, FA values provide an average description of the

anisotropic properties of the selected brain region, whereas HMOA shows distinct characteris-

tics for the different white matter tracts.
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‘‘crosstalk’’ effect between the fiber orientations that
remains even when distinct FOD lobes appear resolved.
This effect should be considered a limitation of HMOA
estimation, which we believe is mainly due to the intrinsic
blurring of the FOD lobes that are not recovered as ideal
impulse functions. Our simulations suggest that the mag-
nitude of this ‘‘crosstalk’’ effect depends on the actual
crossing angle and on the choice of the fiber response
functions, with smaller changes occurring with sharper
fiber responses.

It has been previously shown that sharper fiber response
(i.e., higher a) allows angular resolution to be increased by
resolving small crossing angles [Dell’Acqua et al., 2007].
Here, we observed that the increased angular resolution
using a sharper fiber response not only reduces the cross-
talk effect for smaller angles but also makes the effect of
the crossing less evident on HMOA for larger angles.

On the contrary, by applying fiber responses with
smaller a, we observed that due to the larger profile of the
fiber response compared with the true signal, each FOD
lobe is more likely to include signal contributions from
other fiber orientations. Here, small fiber components can
be penalized or not resolved if these are close to other
large FOD components. In our simulation, Figure 4 shows
that with a ¼ 1.0 and a crossing configuration of 50�, the
smallest fiber component was not resolved. Increasing a in
the fiber response allows this component to be resolved.
Therefore, higher a seems to provide a better angular reso-
lution, decreased crosstalk effects and also potentially may
allow detection of more fiber components that are not
resolved at lower a. Our previous study, however, also
shows that by increasing a the FOD estimation becomes
more sensitive to noise [Dell’Acqua et al., 2007]. Although
further studies are required to identify the optimal fiber
response function, we think that the choice of fiber
response function should be based on a trade off between
accuracy of the HMOA measurement and noise stability of
the FOD estimation. This removes the need for exact
knowledge of the fiber response function, as ideally one
would expect to use higher a in high SNR datasets where
it is possible to achieve higher angular resolutions and bet-
ter quantification.

The HMOA represents a first step toward advanced
quantitative measures derived from SD. As already high-
lighted, fitting the shape of the recovered FOD lobes may
allow the extraction of more information about white mat-
ter organization and, in theory, this may also help to
reduce crosstalk effects between FOD lobes. Moreover,
because HMOA provides tract specific information, the
use of information derived from tractography reconstruc-
tions along the entire tract length may also help to better
characterize fiber characteristics that are common along
the tract or that extend beyond the size of a single voxel.

Previous attempts at using SD for quantifying white
matter properties were proposed by Anderson [2005]
where, by imposing constraints on the overall voxel tensor
trace and assuming common radial diffusivity inside each

voxel, it was possible to deconvolve multiple fiber frac-
tions. When compared with this method, our approach
has the advantage of not requiring any assumption of the
diffusion properties of the fibers and, by measuring a
more general HMOA index instead of fitting a specific pa-
rameter such as volume fractions, is not sensitive to fitting
errors when diffusion properties of the fiber do not match
with the fiber response function.

In this study, we also proposed possible applications of
the HMOA index. Although this index provides informa-
tion about the diffusion properties along each white matter
orientation, a first direct application could be the use of
maximum HMOA maps to investigate white matter
changes in case–control group studies. Although qualita-
tively similar to other anisotropy maps (e.g., FA, GFA,
etc.), this map provides only information, in each voxel,
about the major fiber orientation without contamination
due to partial volume effects from other fiber orientations.
From the simulation results, we expect that these maps,
combined with tract-based spatial statistics [Smith et al.,
2006] analysis or similar approaches, will become a useful
and sensitive tool to study white matter in different neuro-
logical and psychiatric disorder and allow the detection of
changes that may not be possible with conventional diffu-
sion indices.

Finally, the HMOA index can also be used to improve
the estimation of other SD-based indices such as the NuFO
maps or to improve tractography reconstructions as well
as to allow more accurate tract specific quantifications.

NuFO maps

NuFO maps provide a general voxel-based description
of white matter complexity according to the number of
distinct fiber orientations, which have several potential
applications. When compared with color-coded or anisot-
ropy maps, NuFO maps allow regions with low local fiber
complexity containing one single orientation (e.g., cortico-
spinal tract) and regions with higher local fiber complexity
containing crossing fiber tracts to be distinguished. A close
inspection of the NuFO maps (Figs. 6 and 7) reveals a lin-
ear band of high fiber complexity (three or more distinct
tracts) in-between the central portion of the corona radiata,
which represents a transition region between medial pro-
jection fibers and lateral association tracts. NuFO maps
also appear to be highly consistent across individuals and
could therefore represent a sensitive tool to map variations
of white matter complexity in healthy populations such as
age-related changes or pathology.

Our findings show that the use of an absolute HMOA
threshold improves NuFO maps by restricting the estima-
tion of the number of fibers to voxels containing only
white matter without requiring an a priori white matter
mask. Furthermore, for higher HMOA thresholds, the
number of fibers reduces and the distribution of the num-
ber of orientations shifts to lower values. Higher HMOA
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thresholds allows selective enhancement of only the more
representative FOD components by removing small lobes
that are more likely to be spurious components or fiber
orientations that contribute minimally to the voxel signal.
The choice of optimal thresholds is, therefore, based not
only on anatomical considerations but also on a number of
external factors such as the quality of datasets (e.g., low
SNR data requires a higher threshold to exclude more
false positives) and the deconvolution algorithm (different
regularization approaches may reject noise spikes in differ-
ent ways). Finally, although NuFO maps provide more in-
formation about white matter complexity, it is important
to note that they do not yet describe the full microstruc-
tural organization of different white matter tracts as a sin-
gle orientation within a voxel may still describe parallel
but distinct tracts or unresolved fanning of multiple white
tracts. In regions close to isotropic tissue, partial volume
effect also reduces the signal from white matter. Therefore,
in such regions, only the main components are detectable,
whereas smaller components cannot be separated from
noise effects.

Tractography

In this study, we used HMOA for the first time to recon-
struct white matter pathways using SD tractography. Our
findings show that SD has the advantage over classical
DTI tractography of allowing tracking through regions
with multiple fibers crossing. This allows the reduction of
false negative reconstructions that are usually observed
with classical DTI tractography. However, one of the limi-
tations of multiple fiber orientation algorithms is the gen-
eration of more false positives. Our findings suggest that
false positive reconstructions can be effectively reduced
using SD tractography, by applying an HMOA threshold
as a stopping criterion for the tracking algorithm. How-
ever, future tractography studies are needed to optimize
HMOA threshold values and assess the validity of SD
tractography in well-known anatomical structures.

In this study, we have shown that, by mapping HMOA
on tractography reconstructions, we can also visualize and
extract additional information about individual white mat-
ter tracts in regions with crossing fibers. Tract-specific
measurements have been previously used to quantify var-
iations in healthy brains and in brain disorders using indi-
ces derived from diffusion imaging or other MR
techniques such as T1, T2 values, or myelination fraction
[Deoni et al., 2008]. However, interpretation of the results
is often not straightforward because these measurements
refer to information based on average voxel characteristics
and do not discriminate between different fiber bundles.
On the contrary, HMOA represents a true tract-specific
index and we have shown that low HMOA tracts can be
separated from high HMOA tracts inside the same voxel
or brain region (e.g., Figure 9, crossing between the AF
and CST). HMOA also appears to change smoothly along

tracts, suggesting that the variation of this index may bet-
ter describe the underlying microstructural properties of
the specific bundles. Therefore, this index could represent
a significant advancement for the study of white matter
where changes may involve only specific tracts and leave
intact other healthy crossing tracts in the same region.
Finally, in the future, this index could potentially also help
to develop new tractography methods that are able not
only to address the problem of crossing fibers but, by fol-
lowing ‘‘tract similarities’’, also to discriminate between
crossing, bending, or kissing configurations.

CONCLUSIONS

In this article, we studied novel indices derived from SD
to characterize white matter changes and organization.
The HMOA is a tract-specific and sensitive index that can
detect small changes in the microstructural properties
along single white matter tracts, which may not be detect-
able with conventional DTI. In this study we observed
promising results from data simulated over a range of dif-
fusion configurations that we expect to occur during brain
development, aging, and pathological disorders. Applied
to in vivo data on healthy subjects, HMOA, NuFO maps,
and tractography reconstructions allowed improved char-
acterization of white matter complexity suggesting that
these indices can provide a new set of useful tools to bet-
ter quantify white matter changes. However, to verify the
validity of HMOA as a clinical index, further studies on
clinical populations are required.
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