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Abstract: It has long been recognized that the diffusion tensor model is inappropriate to characterize
complex fiber architecture, causing tensor-derived measures such as the primary eigenvector and frac-
tional anisotropy to be unreliable or misleading in these regions. There is however still debate about
the impact of this problem in practice. A recent study using a Bayesian automatic relevance detection
(ARD) multicompartment model suggested that a third of white matter (WM) voxels contain crossing
fibers, a value that, whilst already significant, is likely to be an underestimate. The aim of this study is
to provide more robust estimates of the proportion of affected voxels, the number of fiber orientations
within each WM voxel, and the impact on tensor-derived analyses, using large, high-quality diffusion-
weighted data sets, with reconstruction parameters optimized specifically for this task. Two reconstruc-
tion algorithms were used: constrained spherical deconvolution (CSD), and the ARD method used in
the previous study. We estimate the proportion of WM voxels containing crossing fibers to be �90%
(using CSD) and 63% (using ARD). Both these values are much higher than previously reported,
strongly suggesting that the diffusion tensor model is inadequate in the vast majority of WM regions.
This has serious implications for downstream processing applications that depend on this model, par-
ticularly tractography, and the interpretation of anisotropy and radial/axial diffusivity measures. Hum
Brain Mapp 34:2747–2766, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Diffusion-weighted (DW) magnetic resonance imaging
(MRI) is a unique noninvasive method for probing tissue
microstructure in vivo, based on the random thermal
motion of water molecules [Stejskal and Tanner, 1965].
Currently, it is amongst the most popular imaging techni-
ques for assessing brain tissue microstructure, particularly
in white matter (WM) [Assaf and Pasternak, 2008]. Within
the WM, fiber orientations can be extracted from the DW
signal, opening up new avenues for investigating brain
connectivity in vivo using so-called fiber-tracking algo-
rithms [Jones, 2008]. The ability to assess WM microstruc-
ture and pathways of the whole brain from in vivo scans
raises possibilities for clinical applications, and there has
been a rapid increase in clinical studies using DW MRI-
derived indices [Mori and Zhang, 2006] and fiber tractog-
raphy [Ciccarelli et al., 2008; Johansen-Berg and Behrens,
2006].

Currently, diffusion tensor imaging (DTI) is the estab-
lished method for assessing WM microstructure and con-
nectivity [Basser et al., 1994a,b; Mori and van Zijl, 2002].
However, in voxels containing multiple fiber orientations,
this model has been shown to be inadequate [Alexander
et al., 2001, 2002; Frank, 2001, 2002; Tuch et al., 2002]. Such
voxels occur frequently throughout the WM due to partial
volume effects between adjacent tracts. This has important
implications for DTI-based fiber tractography, as most
WM tracts will traverse regions with multiple fiber orien-
tations at some point along their path. In such regions, the
orientation extracted from the diffusion tensor is unreliable
and may cause false negatives, in which tracking termi-
nates [Behrens et al., 2007; Jeurissen et al., 2011], or false
positives, in which tracking switches to an unrelated adja-
cent tract [Jeurissen et al., 2011; Pierpaoli et al., 2001]. It
also complicates the interpretation of DTI-derived diffu-
sion indices such as fractional anisotropy (FA), which are
often suggested for use as surrogate markers of WM
‘‘integrity" [Jones and Cercignani, 2010; Vos et al., 2011,
2012; Wheeler-Kingshott and Cercignani, 2009].

Remarkably, the question of what proportion of WM
voxels is affected by crossing fibers remains to be
addressed in a robust and satisfactory manner. With recent
advances in high-angular resolution diffusion imaging
(HARDI) [Tuch et al., 2002], it is now possible to reliably
extract fiber orientations in regions of increased complex-
ity [Alexander, 2006; Tournier et al., 2011]. Although a
number of studies have attempted to classify voxels
according to the complexity of the fiber arrangement,
many do not report the proportion of affected voxels, and
all of them are likely to seriously underestimate the extent
of the problem, for a number of reasons outlined below.
Early studies distinguished between voxels with isotropic,
single-fiber, and multifiber characteristics based on the
shape of the ADC profile and have reported clustered and
symmetric regions of increased complexity, supporting
genuine effects consistent with anatomical knowledge

[Alexander et al., 2002; Frank, 2002]. More recently, a
Bayesian automatic relevance determination (ARD)
method was proposed to infer the number of fiber orienta-
tions in a multicompartment model [Behrens et al., 2007];
using 60 diffusion gradient orientations and a b-value of b
¼ 1000 s/mm2, the model evidence was sufficiently strong
to support the presence of more than one fiber orientation
in one third of the voxels with FA > 0.1. However,
nowhere in the brain was the model evidence sufficiently
strong to support the presence of more than two fiber
orientations. In another study, Q-Ball imaging was used in
conjunction with bootstrapping to estimate the probability
of different numbers of fiber populations existing in differ-
ent brain tissues [Haroon et al., 2009]. This study used 61
diffusion gradient orientations with a slightly higher b-
value of b ¼ 1200 s/mm2. Although the authors did not
explicitly assess the number of voxels containing multiple
fiber orientations, their results seem to indicate that only a
small proportion of WM voxels are affected by partial vol-
ume effects and that clustered regions with a high proba-
bility of more than two fiber orientations cannot be found.
These recent studies are likely to be grossly underpowered
for estimating the proportion of crossing fiber voxels (a
task that they were not specifically designed to do). On
the other hand, there are suggestions in other recent publi-
cations that voxels with multiple fiber orientations are
actually commonly encountered [Descoteaux et al., 2009;
Jeurissen et al., 2011]. It is clear therefore that a reliable
estimate of the proportion of affected voxels remains to be
provided.

Given the implications that this might have for DTI-
based tractography and the interpretation of DTI-derived
diffusion indices, in this study, we set out specifically to
estimate the extent of the crossing fiber problem as well as
its likely impact on tensor-based analyses. For this pur-
pose, we acquired large, high-quality DW data sets (using
a twice-refocused and cardiac-gated sequence) consisting
of 720 DW images, roughly 12 times the amount of data
that was used in previous studies, with a correspondingly
much higher power to detect the effects of interest [Jones,
2004]. For each voxel, the fiber orientations and their re-
spective volume fractions were extracted using two differ-
ent, readily available approaches: constrained spherical
deconvolution (CSD) [Tournier et al., 2007] and the bed-
postx algorithm which implements the ARD method men-
tioned previously [Behrens et al., 2007] and is distributed
as part of the FSL [Woolrich et al., 2009]. In both cases, pa-
rameters of the reconstruction were tuned specifically to
ensure reliable estimates given our particular acquisition
parameters. Based on these data, we report the proportion
of multifiber voxels detected within the WM and their ori-
entations. To assess the impact of these voxels on tensor-
derived tractography analyses, we also report the angular
error between the fiber orientations estimated using CSD
and DTI. Finally, to assess the impact on the interpretation
of tensor-derived scalar measures, we report the volume
fraction of each voxel taken up by secondary or tertiary
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fiber orientations, whose presence would confound such
measures.

MATERIALS AND METHODS

Overview

To estimate the impact of multifiber voxels on DTI, it is
first necessary to obtain robust estimates of the fiber orien-
tations and their respective volume fractions within each
WM voxel. To achieve this requires both high-quality DW
data and robust fiber orientation estimation strategies. To
this end, our approach involved: the acquisition of very
high quality in vivo data sets; extensive simulations to
select optimal reconstruction parameters tuned specifically
for these data sets; and the application of the resulting
optimized reconstruction algorithms to the in vivo data
sets. These steps are described in detail in the following
sections. We first provide a brief overview of both fiber
estimation methods to emphasize which reconstruction pa-
rameters are needed to be tuned for this study.

Fiber Orientation Estimation Using CSD

The procedure used to estimate fiber orientations using
CSD [Tournier et al., 2007] involved first deconvolving the

single-fiber ‘‘response function" (described below) from
the DW signal to obtain the fiber orientation distribution
(FOD), with maximum harmonic degree L ¼ 8 [Tournier
et al., 2007], followed by a peak-finding procedure to iden-
tify distinct orientations. Finally, fiber orientations were
only considered if the amplitude of the corresponding
peak in the FOD exceeded a threshold specifically tuned
for this study (see below for details). An example of this
procedure for a voxel with three fiber orientations is
shown in Figure 1.

The single-fiber response function corresponds to the
DW signal that would be expected for an ideal fiber popu-
lation aligned along the z-axis and was estimated from the
data themselves using a previously published approach
[Tournier et al., 2004, 2007]. In brief, WM voxels with FA
> 0.7 were identified, and, in each of these voxels, the DW
signal was reoriented such that the orientation of the
major eigenvector of the diffusion tensor was aligned with
the z-axis. The spherical harmonic (SH) decompositions of
all the resulting profiles were then averaged to provide a
robust estimate of the true response function. To constrain
the response function to an axially symmetric function,
only SH coefficients with order m ¼ 0 were estimated
[Tournier et al., 2004].

The peak-finding procedure consisted of a Newton opti-
mization algorithm, started from a dense set of equally

Figure 1.

Extraction of the CSD FOD fiber orientations: three orientation

example. (a) Points uniformly distributed on the half-sphere (red

dots) used as starting points for the maximization of the FOD

amplitude (green); (b) the corresponding FOD maxima (note

that many overlap); (c) the unique FOD maxima (note that

three of the spurious maxima have very low amplitude and are

clustered near the origin); (d) FOD maxima with amplitude

higher than FOD threshold (gray sphere). [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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distributed spherical sample points to find the local max-
ima of the FOD (duplicate local maxima were excluded).
The number of unique peak FOD orientations with ampli-
tude above threshold was counted and assumed to be
equal to the number of fiber orientations. In this study,
voxels containing more than three orientations will be
reported as containing �3 orientations.

Fiber Orientation Estimation Using Bedpostx

The procedure used to estimate fiber orientations using
ARD was performed using the FSL tool bedpostx [Behrens
et al., 2007], which we describe briefly here. Bedpostx uses
a Bayesian framework to estimate local probability density
functions on the parameters of a multicompartment model.
Using ARD, the method performs online selection of the
number of fiber orientations supported by the data at each
voxel by forcing the fiber volume fractions to take the
value zero if, and only if, there is no evidence in the data
for their existence [Behrens et al., 2007]. The maximum
number of fiber orientations allowed in the multicompart-
ment model was set to 3. To extract the number of fiber
orientations in each voxel, we thresholded the volume
fractions at 0.05, as in Behrens et al. [2007].

Bedpostx uses a Monte Carlo Markov Chain algorithm
to infer on the parameters of the model. In this study, we
used a modified burn-in period of 10,000 iterations, as the
default value of 1,000 was found to be insufficient to
ensure convergence of the Markov chains in a significant
proportion of runs [Miller et al., 2011; O’Muircheartaigh
et al., 2011].

Data Acquisition and Preprocessing

Both DW and T1-weighted images were acquired on a
General Electric (Milwaukee, WI) 3T HDx Signa system
with an eight-channel receive-only head coil. The experi-
ment was repeated on two different healthy adult volun-
teers. Both subjects gave written informed consent to
participate in this study under a protocol approved by the
Cardiff University School of Psychology Ethics Committee.

Each subject was scanned 12 times using a twice-refo-
cused spin-echo EPI sequence with TE ¼ 86 ms and 2.4 �
2.4 � 2.4-mm3 voxel size (FOV 23 � 23 cm2, 96 � 96 acqui-
sition matrix, NEX ¼ 1, partial Fourier encoding with 16
overscans, 60 axially acquired slices with 2.4 mm thickness
with no gap, ASSET factor ¼ 2). Diffusion gradients were
applied in 60 directions uniformly distributed on a sphere
through electrostatic repulsion with b ¼ 1200 s/mm2

[Jones et al., 1999]. For each scan, six images with b ¼ 0 s/
mm2 were also acquired. To avoid pulsation artifacts, car-
diac gating was applied using a peripheral pulse oximeter
with an effective TR ¼ 20 R–R intervals. Signal-to-noise
ratio (SNR) within all WM voxels of the b ¼ 0 s/mm2

images was on average 24.9 with a standard deviation of
6.1 [Dietrich et al., 2007]. In addition, each subject was

scanned with a 3D fast-spoiled gradient echo sequence
with TR/TE ¼ 7.9/3.0 ms and 1 � 1 � 1-mm3 voxel size
(FOV ¼ 256 � 256 � 176 mm3, 256 � 256 � 176 acquisition
matrix, TI ¼ 450 ms, flip angle ¼ 20�, NEX ¼ 1) to pro-
duce an anatomical T1-weighted image.

For each subject, all DW scans were concatenated (not
averaged) into a single data set and corrected for subject
motion and residual eddy current induced geometric dis-
tortions with the required B-matrix adjustments [Leemans
and Jones, 2009], resulting in a total of 720 DW and 72 b ¼
0 s/mm2 images per subject. The tensor model was fitted
to the motion-corrected data using a constrained nonlinear
regression method [Koay et al., 2006] and, subsequently,
mean diffusivity (MD) and FA were calculated from the
tensor’s eigenvalues. Glyph visualization was done with
ExploreDTI [Leemans et al., 2009].

Optimization of Reconstruction Parameters

Although the SNR dependencies of both CSD and bed-
postx have previously been studied in great detail [Beh-
rens et al., 2007; Tournier et al., 2007, 2008]; in this study,
additional experiments were performed to select optimal
reconstruction parameters tuned specifically for the data
sets used in this study. For this purpose, extensive simula-
tions were performed using parameters measured from
the real data themselves to determine the most suitable
reconstruction parameters to use for each method and
hence ensure optimal detection of fiber orientations given
our particular acquisition parameters.

These simulations were performed as follows. First,
noise-free DW data were generated for voxels assumed to
contain a number (1, 2, or 3) of fiber orientations, by com-
bining DW signals generated assuming axially symmetric
diffusion tensor profiles for each fiber population [Lee-
mans et al., 2005], with interfiber angles ranging from 90�

to 10�. The eigenvalues of the constituent tensors were set
to [1.7 0.3 0.3] � 10�3 mm2/s, corresponding to the aver-
age values found in the midsagittal area of the splenium
of the corpus callosum in the real data sets. The same gra-
dient directions and b-value were used as in the real data
acquisition. Next, Rician noise was added using SNR ¼ 15,
corresponding to the lower end of the range of SNR values
measured in the real data sets, and the number of fiber
orientations was estimated from the resulting noisy simu-
lated data using both CSD and bedpostx. This procedure
was repeated for 1,000 Rician noise instances.

For both CSD and bedpostx, outcome was measured as
the proportion of false positives, defined as any simulated
run where the number of estimated fiber orientations was
greater than the actual number simulated. For CSD, the
reconstruction parameter of interest was the threshold on
the FOD peak amplitude used to identify distinct orienta-
tions (see earlier). For bedpostx, the reconstruction param-
eter of interest was the ARD weight, with higher weights
resulting in fewer secondary fibers per voxel. For both
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methods, the smallest reconstruction parameter that
resulted in zero false positives was used for the analysis of
the in vivo data. The minimum resolvable angle of both
methods (i.e., the interfiber angle at which the correct
number of fiber orientations can still be reliably estimated)
was also assessed using these simulations for a range of
volume fractions.

In Vivo Estimation of Fiber Orientations

To estimate the fiber orientations and their respective
volume fractions over all WM voxels, both CSD and bed-
postx methods were applied to the real data sets of both
subjects, using the procedures described in the previous
corresponding sections, and the conservative reconstruc-
tion parameters specifically tuned in the simulations
above. To avoid partial volume effects with isotropic com-
partments, such as gray matter (GM) and cerebrospinal
fluid (CSF), the analysis was restricted to voxels within a
pure WM mask, derived from the T1-weighted images.
The T1-derived WM mask was generated as follows. First,
a tissue probability map was estimated from the T1-
weighted image (Fig. 2a) using the unified segmentation
tool from SPM [Ashburner and Friston, 2005] (Fig. 2b).
Next, the T1-weighted image was registered to the FA
image using 3D nonrigid b-spline-based registration with
Mattes mutual information as the similarity measure
[Klein et al., 2010; Mattes et al., 2001] (Fig. 2d). The
derived transform was then used to warp the WM proba-
bility map from the T1-weighted image to the diffusion
images, allowing easy identification of WM voxels inside
the DW volume. To restrict the study to pure WM voxels
only, a binary WM mask was created by selecting all vox-
els with WM probability higher than 95% (Fig. 2c). Finally,
a small number of voxels at the edges of the WM mask
were removed, because they were found to contain high
MD values resulting from partial voluming with CSF (as
indicated by the red voxels in Fig. 2c). These outliers were
identified using the criterion MD > median (MD) þ 1.5 *
IQR (MD) (where IQR is the interquartile range over the
whole mask).

In addition, the reproducibility of the CSD reconstruc-
tion was assessed using a residual bootstrap approach,
described previously [Jeurissen et al., 2011]. One thousand
residual bootstrap realizations of the entire data set were
generated, using a SH model with maximum harmonic
degree L ¼ 8 [Jeurissen et al., 2011]. Unfortunately, it was
not possible to perform the equivalent experiments for
bedpostx due to its prohibitively long processing times.

To further illustrate the ‘‘global" consistency of the mul-
tifiber voxels, a fiber tractography technique was used,
based on the CSD FOD maxima [Fillard et al., 2011; Jeuris-
sen et al., 2009, 2011]. The step size was set to 0.2 mm.
Tracking was terminated when the extracted FOD orienta-
tion amplitude dropped below the same threshold that
was used for the fiber orientation extraction, or when the

angle between two successive steps exceeded 10�. A seed
ROI was placed in a region with more than two fiber ori-
entations. Tract visualization was performed with the
ExploreDTI diffusion MRI toolbox [Leemans et al., 2009].

The effect of using different values for the threshold on
the FOD amplitude (for CSD) and the partial volume frac-
tions (for bedpostx) was also investigated. This was done
by plotting the proportion of WM voxels estimated as con-
taining 1, 2, or �3 fiber orientations as a function of these
thresholds. Finally, both fiber orientation estimation meth-
ods are limited by their minimum detectable crossing
angle; the angle at which fibers cross will therefore have
an impact on the results. This issue was examined by plot-
ting a histogram of the interfiber angle over all voxels.

Assessment of Impact on DTI

To assess the practical impact of these findings for trac-
tography or anisotropy analyses, two further analyses
were performed. Tractography analyses will obviously be
affected by errors in the estimated fiber orientations.
Therefore, the angle between the fiber orientations esti-
mated by the primary eigenvector of the diffusion tensor,
and the nearest peak to this direction in the CSD FOD was
measured in each voxel and displayed both as a map and
as a histogram over all WM voxels. For anisotropy analy-
ses, issues will arise if fibers with secondary or tertiary ori-
entations take up a substantial volume fraction of the
voxel. Therefore, the ratio of the volume fractions of the
nondominant versus all fiber orientations was estimated in
each WM voxel and displayed both as a map and using
histograms.

RESULTS

Optimization of Reconstruction Parameters

Figure 3 demonstrates the need for an appropriate FOD
threshold (for CSD) or ARD weight (for bedpostx) to
remove spurious fiber orientations from the results. For
CSD, the number of false positives dropped rapidly with
increasing FOD threshold and was already below 1 in
1,000 with a threshold of 0.02. However, for false positives
to be completely removed, a threshold of 0.1 was required.
For bedpostx, the number of false positives dropped with
increasing ARD weight and reached zero at a weight value
of 10. These values (0.1 for the CSD FOD threshold, 10 for
the ARD weight) were therefore used for all subsequent
analyses, including the in vivo data analyses, unless other-
wise stated.

The sensitivity of both methods with respect to volume
fraction and interfiber angle is shown in Figure 4. As the
interfiber angle dropped below � 60�, CSD FOD peaks
started to merge to form a single peak, with merging
occurring in almost all cases at an interfiber angle of �
45�; these would hence no longer be counted as separate
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fiber orientations (Fig. 4a,c). On the other hand, bedpostx
was unable to consistently report three-fiber orientations
when three-fiber orientations were simulated, reporting
one or two-fiber orientations instead (Fig. 4d), in agree-
ment with earlier simulations performed in Behrens et al.

[2007]. For the two-fiber simulations (Fig. 4b), bedpostx
performed similarly to CSD, although it failed to recover
fibers with small volume fractions that could still be reli-
ably detected using CSD. Note that while it is in theory
possible to boost the minimum resolvable angle of

Figure 2.

Computation of the WM mask: T1-weighted image (a) and the

corresponding WM/GM/CSF segmentation (b). WM probability

is colored red, GM probability green, and CSF probability blue.

The WM probability map is thresholded at 95% to create a bi-

nary WM map (c). MD outliers resulting from partial volume

effect at the interface between WM and CSF are colored red.

Coregistered T1-weighted image (gray) overlayed with FA image

(pink) (d). [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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bedpostx using a smaller ARD weight, this would result
in an increased number of false positives (Fig. 3b).

In Vivo Estimation of Fiber Orientations

When applied to the in vivo data, both methods per-
formed as predicted by the simulations. In voxels where
CSD reports one or two fiber orientations, bedpostx usu-
ally reports the same number of fiber orientations, and the
orientations are almost identical (Fig. 5), consistent with
our simulation results (Fig. 4). In voxels where CSD
reports �3 fiber orientations, bedpostx reports only one or
two fiber orientations, again in agreement with the simula-
tion results. Note that while these orientations constitute a
subset of the orientations estimated using CSD in most
voxels, in some cases, they are not consistent with those
estimated using CSD. Note also that in voxels with three-
fiber orientations, the CSD orientations are very coherent,
showing continuous transitions with the surrounding ori-
entations, even those corresponding to small FOD ampli-
tudes (Fig. 5b).

The maps of the number of fiber populations detected
(Fig. 6) and of their respective orientations (Figs. 7 and 8)
both show a high degree of structural coherence and sym-
metry, supporting genuine anatomical features (Figs. 6–8).
Note that these figures correspond to the results for sub-
ject 1 only; the results for subject 2 are broadly equivalent
and provided as Supporting Information. Large, bilaterally
symmetrical clusters of single-fiber voxels (colored in red)
are found mainly in the largest bundles such as parts of
the corpus callosum (CC, arrow 1), middle cerebellar
peduncle (arrow 2), and the posterior limb of the internal
capsule (arrow 3). Large clusters of voxels containing two

orientations are also present, again symmetrically distrib-
uted throughout the brain. Examples of regions containing
two-fiber orientations (colored in green) include the mix-
ture of transverse pontine (oriented left–right) and motor
(oriented inferior–superior) fibers (arrow 4) and the mix-
ture of fibers from the superior longitudinal fasciculus
(SLF; oriented anterior–posterior) and corona radiata (ori-
ented inferior–superior) (arrow 5). Large clusters of voxels
with �3 fiber populations (colored in blue) can also be
found in the CSD results, for example, in the regions
where fibers from the corona radiata (inferior–superior),
SLF (anterior–posterior), and CC (left–right) interdigitate
(arrow 6). In contrast, no consistent areas containing �3
orientations were observed in the bedpostx results: in
those regions where CSD identified �3 orientations, bed-
postx reported only one or two orientations, consistent
with the simulation results (Fig. 4).

Table I summarizes the incidence of 1, 2, and �3 fiber
orientations in all WM voxels. Using CSD, these were esti-
mated to be � 9, 46, and 45%, respectively; two or more
fiber orientations were found in � 90% of all WM voxels.
Using bedpostx, these were estimated to be � 37, 62, and
1%, respectively; in this case, complex fiber configurations
were observed in � 63% of all WM voxels.

Figure 9 shows the fiber orientations extracted using
CSD from the individual bootstrap realizations in the
crossing fiber region depicted in Figure 5b. To aid visibil-
ity, only 30 residual bootstrap realizations were plotted.
Notice that the orientations are very clustered, indicating
that the same fiber orientations are recovered consistently
over bootstrap realizations, even in three-fiber voxels.

Figure 10 shows the CSD fiber tracking results when
seeding in a three-fiber region. Notice how the locally
extracted fiber orientations are globally consistent and

Figure 3.

Multifiber simulations (specificity): the relative number of false positives as a function of the CSD

FOD threshold (a) and the bedpostx ARD weight (b) for one-fiber (red curve) and two-fiber

(green curve) voxels. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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result in anatomically plausible fiber bundles. Commis-
sural fibers from the CC are shown in red, association
fibers from the arcuate fasciculus are colored green, and
projection fibers from the corticospinal tract are shown in
blue.

Using the residual bootstrap approach, we were also
able to estimate the uncertainty in the percentages
reported in Table I for the CSD case. The 95% confidence
intervals for the percentage of 1, 2, and �3 fiber voxels
were �0.3%, �0.5%, and �0.7%, respectively, for subject 1,
and �0.6%, �1.3%, and �1.7%, respectively, for subject 2.
These small confidence intervals demonstrate the reprodu-
cibility of our CSD results with these data sets.

The effect of the FOD threshold (for CSD) or the partial
volume threshold (for bedpostx) is shown in Figure 11. As
expected, an increase in the thresholds results in a reduc-

tion of the proportion of multifiber voxels for both
approaches. For bedpostx, the results are relatively stable
for partial volume thresholds between � 0.01 and 0.1 (the
actual value used was 0.05). By contrast, the CSD results
do not show a region that is stable with respect to the
FOD threshold. Initially, the proportion of �3 fiber voxels
reduces while the proportion of two-fiber voxels increases,
as would be expected. At an FOD threshold of � 0.2, the
proportion of both 2 and �3 fiber voxels reduces while
that of single-fiber voxels increases. Importantly, even
with a doubling of the FOD threshold to a value of 0.2
(actual value used was 0.1), the proportion of multifiber
voxels is still very high at � 78%.

The performance of both methods with respect to inter-
fiber angle can be appreciated from the histograms shown
in Figure 12. With CSD, a much higher number of 90�

Figure 4.

Multifiber simulations (minimum resolvable angle). The average number of detected fiber orienta-

tions in two-fiber and three-fiber voxels as a function of angle. The different colors represent

the different weights of the constituent DWI signals. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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crossings was detected, presumably due to its better per-
formance in three-fiber cases, as previously shown in Fig-
ures 4 and 5. CSD also detects a higher proportion of

small interfiber angles, again in line with the simulation
results in Figure 4. In both cases, almost all interfiber
angles detected are larger than � 40�, the minimum angle

Figure 5.

Examples of the extracted fiber orientations in two regions containing crossing fibers. The CSD

FODs and the extracted fiber orientations are shown in (a)–(b) and (c)–(d), respectively. The

bedpostx fiber orientations are shown in (e)–(f). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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that could be resolved by both methods in the simulations.
It is likely that smaller crossing angles do exist in the data,
but cannot be resolved with the methods used. Because

these would be labeled as single-fiber voxels, it is likely
that the present results underestimate both the extent and
the impact of the problem.

Figure 6.

Number of fiber orientations per voxel (red: 1; green: 2; blue: �3)

for subject 1 estimated with CSD (a) and bedpostx (b). The num-

bered arrows in (a) correspond to the following structures: (1) cor-

pus callosum (CC); (2) middle cerebellar peduncle; (3) posterior

limb of the internal capsule; (4) pons/motor pathways; (5) superior

longitudinal fasciculus (SLF)/corona radiata; (6) corona radiata/SLF/

CC. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Figure 7.

The primary (a), secondary (b), and tertiary (c) fiber orientations (in order of decreasing FOD

amplitude) extracted for subject 1 with CSD, shown as RGB color maps (red, left–right; green,

anterior–posterior; blue, inferior–superior). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Figure 8.

The primary (a), secondary (b), and tertiary (c) fiber orientations (in order of decreasing volume

fraction) extracted for subject 1 with bedpostx, shown as RGB color maps (red, left–right;

green, anterior–posterior; blue, inferior–superior). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Assessment of Impact on DTI

The practical implications of these findings for tractogra-
phy can be appreciated from Figure 13. The fiber orienta-
tions estimated using the tensor model and the nearest
CSD peak are consistent only in single-fiber regions (e.g.,
CC). In multifiber regions, the average angular error is �
11�. In half of all WM voxels, the angular error is greater
than 8� (Fig. 13b,c).

The practical impact of these findings for anisotropy
analyses can be appreciated from Figure 14. Most WM
voxels contain contributions from nondominant fiber ori-
entations that would be sufficiently large to affect tensor-
derived measures of anisotropy (as well as radial and axial
diffusivities [Wheeler-Kingshott and Cercignani, 2009]).
For example, if we assume that a nondominant partial vol-
ume fraction greater than 25% is sufficient to influence ani-
sotropy measures significantly, our results show that 75%
of all WM voxels would be affected (Fig. 14b,c). Con-

versely, it can be seen that half of all WM voxels contain
more than 40% contamination from crossing fibers.

DISCUSSION

The aim of this study was to provide a more accurate
estimate of the extent and impact of the crossing fiber
problem in DW–MRI. Using CSD, we observed multiple
fiber orientations in � 90% of all WM voxels, a much
higher proportion than previously reported. With bed-
postx, multiple fiber orientations were detected in � 63%
of all WM voxels, again a much higher proportion than
the value of 33% previously reported using the same algo-
rithm, as discussed below [Behrens et al., 2007].

Implications for DTI

The impact of these findings for DTI is profound, partic-
ularly for tensor-based tractography, but also for tensor-
derived scalar measures. It is widely acknowledged that
the fiber orientation estimated using the primary eigenvec-
tor of the diffusion tensor will be erroneous in crossing
fiber voxels and that these errors will introduce some
degree of corruption in the estimated WM pathways
[Jones, 2010]. However, until now, the proportion of WM
voxels affected by crossing fiber effects was often assumed
to be relatively small. Our results clearly indicate that this
assumption is not valid. With such a high proportion of

TABLE I. Percentages of single and multifiber voxels

throughout the WM for CSD and bedpostx and for

different subjects

No. of
orientations 1 2 �3 �2

CSD Subject 1 9.5% 47.1% 43.3% 90.5%

Subject 2 8.4% 45.0% 46.6% 91.6%

bedpostx Subject 1 36.1% 62.9% 0.9% 64.0%

Subject 2 37.5% 61.9% 0.4% 62.3%

Behrens et al. [2007] � 67.7% � 33.3% 0% � 33%

For reference, we also included the estimates previously reported
in Behrens et al. [2007].

Figure 9.

Consistency of the orientations across residual bootstrap real-

izations, for the same region as Figure 5d. To aid visualization,

only 30 realizations are shown. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 10.

Tractography in a three-fiber region reveals global consistency of

three-fiber orientations. Seed region is indicated by a magenta

arrowhead. Commissural fibers are colored red, association

fibers green, and projection fibers blue. All three pathways iden-

tified using CSD tracking are anatomically plausible. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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WM voxels containing multiple fiber orientations, it is
very unlikely that any WM tract will remain entirely
within single-fiber voxels over its entire path. Indeed, as
shown in Figure 13, errors in the estimated fiber orienta-
tions are widespread throughout the WM: in over half the
WM, these errors are larger than 8�. It follows that these
errors will adversely and significantly affect the delinea-
tion of WM tracts and lead to large numbers of both false-
positive and negative results as the tracking algorithm
veers off-course, away from the true end-point of the WM
tract (false negatives [Behrens et al., 2007; Jeurissen et al.,
2011]) and/or into adjacent yet unrelated WM tracts (false
positives [Jeurissen et al., 2011; Pierpaoli et al., 2001]).
Moreover, it should be emphasized that these errors are
provided with respect to the nearest fiber orientation;
errors with respect to other fiber orientations that might
be present will obviously be considerably greater.

In addition, it is well known that tensor-derived measures
of so-called WM integrity, such as FA, as well of other
indices such as axial and radial diffusivity, all of which are
currently widely used, become ambiguous in these regions
[Jones and Cercignani, 2010; Wheeler-Kingshott and
Cercignani, 2009]. In Pierpaoli et al. [2001], it was shown
that Wallerian degeneration can lead to increased diffusion
anisotropy in the rostral pons, where transverse pontine
fibers are crossing the descending motor pathways.
Wallerian degeneration of the motor pathways causes the
transverse pontine fibers to become the dominant pathway,
and, paradoxically, the measured diffusion anisotropy can
increase, because fibers are now more coherently oriented
within the voxel. In another study, choice reaction time of
healthy volunteers was found to be positively correlated
with FA [Tuch et al., 2005]. The myelin hypothesis would
predict a negative correlation between reaction time and FA,

Figure 11.

Percentages of single- and multifiber voxels throughout the WM for different CSD FOD thresh-

olds (a)–(b) and bedpostx volume fraction thresholds (c)–(d) for both subjects. The actual

threshold values used in this study are shown as a dashed line. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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because increased myelin thickness would cause increased
FA and faster nerve conduction velocity, which would in
turn result in a shorter reaction time. However, in regions
containing multiple fiber orientations, increased FA of an
individual fiber population can result in a decrease in the
overall FA. In yet another study, increased diffusion anisot-
ropy was measured in the centrum semiovale of patients
with mild cognitive impairment and mild Alzheimer’s
disease [Douaud et al., 2011]. This was explained by a rela-
tive preservation of motor-related projection fibers crossing
with the association fibers of the SLF. These examples show
that while tensor-derived indices are highly sensitive to
changes in the underlying tissue diffusion, their specificity in
terms of biological interpretation is very ambiguous as any
observed changes can also be explained by fiber crossings.

Note that this does not imply that DTI analyses are
‘‘wrong" in themselves. Assuming that the DTI analysis
was performed well, avoiding all the known pitfalls [Jones
and Cercignani, 2010], an observed change in FA is highly
likely to correspond to a true underlying biophysical phe-
nomenon. The issue arises from the usual practice of inter-
preting FA a marker of WM integrity. As illustrated by the
examples, in the presence of crossing fibers, the interpreta-
tion of increases (or decreases) in FA become highly am-
biguous, as they can correspond to either increased or
decreased WM integrity or indeed to changes in the rela-
tive volume fractions of the various fiber populations. As
shown in Figure 14, the proportion of WM voxels where
these measures are expected to be significantly con-
founded is of the order of 75%; given that the interpreta-
tion commonly ascribed to these measures is only valid in
single-fiber regions, this implies that there are very few
regions of brain WM where these measures (including FA
and radial/axial diffusivities) can reliably be interpreted
as markers of ‘‘WM integrity.’’

Although the data used in this study are of much higher
quality than would typically be acquired, it is important to
emphasize that these ‘‘crossing fiber" issues will still be
present to the same extent in any DW–MRI data set. With
lower quality data, the power to detect WM voxels contain-
ing complex configurations would undeniably be lower,
and the estimated proportion of affected voxels would most
likely be lower than that reported here. However, while the
statistical power to detect multiple fiber orientations would
be lower, these multifiber voxels are nonetheless present in
the data. Clearly, the impact on tensor-derived estimates of
orientation, anisotropy, or radial/axial diffusivity would be
identical, with the only difference being noisier estimates.

Robustness of Approach

Given the importance of these findings, great care was
taken to ensure the robustness of our results and particu-
larly to avoid any overestimation of the number of fiber
orientations. In particular,

• For each subject, we collected 720 DW images, 12 times
the amount of data collected in Behrens et al. [2007].
With such a large data set, a higher reliability can be
achieved for any subsequent analysis than with a tradi-
tional scan consisting of � 60 DW images [Jones, 2004].

• Cardiac motion causes local misregistrations of the
DW images [Jones and Pierpaoli, 2005; Pierpaoli et al.,
2003; Skare and Andersson, 2001], and local signal
attenuation in voxels affected by pulsatile motion
[Atkinson et al., 2006; Walker et al., 2011]. Both effects
could potentially lead to artifactual fiber orientations
being detected inside WM voxels. To avoid such pul-
sation artifacts, cardiac gating was applied [Jones and
Cercignani, 2010].

Figure 12.

Histogram of the average interfiber angle for all voxels with �2 fiber populations for both

CSD (a) and bedpostx (b). [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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• Head motion and eddy currents cause global misregis-
tration of the DW images, which could also introduce
artifactual multifiber voxels due to the mixing of fiber
bundles with different orientations. We therefore cor-
rected for subject motion and eddy current distortions,
including the required B-matrix adjustments [Leemans
and Jones, 2009] and appropriate modulation of the
DW images with the Jacobian of the transformation
matrix [Jones and Cercignani, 2010].

• Previous studies have used an FA threshold to select
WM voxels [Behrens et al., 2007], a method very likely
to include both false positives (some GM voxels may

have FA > 0.1) and false negatives (three-fiber WM
voxels may have FA < 0.1). To avoid such issues, an
objective WM selection method was used based on the
corresponding T1-weighted images (Fig. 2).

• Extensive simulations were performed using parame-
ters derived from the real data to carefully tune the FOD
threshold and the ARD weight (Fig. 3). Note that we
opted for specificity over sensitivity and selected very
conservative thresholds.

In this study, we used a b-value of 1200 s/mm2.
Although this can be considered relatively low for HARDI

Figure 13.

The angle between the fiber orientation estimated by the primary eigenvector from DTI and the

nearest CSD fiber orientation (a) displayed overlaid on an anatomical reference image, (b) as a

histogram over all WM voxels, and (c) as the corresponding cumulative histogram. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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reconstruction methods, this b-value corresponds to what
most diffusion MRI studies are currently using [Jones
et al., 1999], and our findings are therefore relevant for the
vast majority of current DW–MRI studies. However, a con-
sequence of this relatively low-b-value is that the mini-
mum angle that can resolved reliably is limited to � 55�

using our method (Fig. 4). The practical consequence is
that fiber orientations with an interfiber angle smaller than
55� will tend to merge into one (average) fiber orientation,
making overestimation of the number of fiber orientations
very unlikely. Additionally, it shows that even at b-values
used in common practice, multifiber voxels can be
detected in a large extent of the WM. In the absence of

noise and artifacts, performing the same experiment with
increased b-values would likely increase the ability of both
CSD and bedpostx to resolve smaller interfiber angles
[Alexander and Barker, 2005; Behrens et al., 2007; Tournier
et al., 2007]. However, at high-b-values, the reduced SNR
of the DW images makes it difficult to use registration-
based motion and eddy current correction techniques.
Given the long scan time used in this study, robust motion
correction was deemed imperative, and a more moderate
b-value was therefore chosen.

In this study, we did not specifically investigate voxels
with more than three fiber orientations, as the volume
fractions of the constituent fiber bundles would become

Figure 14.

The nondominant volume fraction measured by CSD, (a) displayed overlaid on an anatomical ref-

erence image, (b) as a histogram over all WM voxels, and (c) as the corresponding cumulative

histogram. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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very small and result in small corresponding FOD peak
amplitudes in the CSD case (this is not an issue for bed-
postx, because it rarely reported more than two-fiber ori-
entations). A very small FOD threshold would be required
to detect such small FOD peaks, increasing the risk of
introducing false positives (Fig. 3a). Furthermore, as the
number of fiber orientations increases, the angle between
them will tend to decrease. This will cause many of these
fiber orientations to merge (Fig. 4). Nonetheless, we
emphasize that this maximum of three-fiber orientations
per voxel does not influence the results for the lower ori-
entation counts, because the FOD estimated by CSD is in-
dependent of this parameter; it is only used in the
subsequent step to select the three largest peaks in the
FOD.

A further issue relates to the fact that ‘‘bending" and
‘‘fanning" configurations contain a range of fiber orienta-
tions, which cannot be adequately described using a single
discrete number. Nonetheless, while these configurations
do not contain ‘‘crossing fibers" as such, it is clear that they
can only be labeled as containing multiple fiber orientations.
In this study, the FOD estimated for such configurations
will tend to contain a single peak when the curvature
remains relatively small or multiple distinct peaks when
the curvature is sufficiently large. From this point of view,
it is clear that our approach remains conservative.

The voxel size used in this study was 2.4 � 2.4 � 2.4
mm3, a value typical of the DTI literature. This value was
chosen, because the primary focus of this study was to esti-
mate the extent and impact of the crossing fiber problem
given currently established data acquisition parameters.
From a theoretical perspective, increasing spatial resolution
has the potential to resolve a proportion of voxels where
multiple coherent fiber bundles ‘‘brush,’’ that is at the inter-
face between coherent fiber bundles. However, it should be
noted that some voxels will always be located at the inter-
face between bundles and will therefore still contain crossing
fibers. Furthermore, increasing the resolution will not resolve
cases where individual axons of multiple fiber bundles
‘‘interdigitate,’’ unless the resolution is increased to the level
of the axonal diameter (i.e., of the order of 1 lm), which is
clearly impossible with current technology. Consequently,
while increasing the resolution may reduce the incidence of
multifiber voxels to some extent, it will not remove the prob-
lem altogether. From a practical perspective, increasing the
spatial resolution is a challenging task. For example: simply
reducing the voxel size from 2.4 � 2.4 � 2.4 mm3 to 2 � 2 �
2 mm3 would almost halve the SNR, which can only be
recovered by acquiring four signal averages, whilst requiring
an increased number of slices to achieve the same spatial
coverage. The corresponding increase in scan time required
by such an approach is clearly not practical for the vast ma-
jority of diffusion studies.

As shown in Figure 5, the fiber orientations extracted
using CSD are very consistent with the surrounding orien-
tations, supporting genuine anatomical structures. The
same can be deduced from the highly clustered and

smoothly transitioning color-encoded orientation maps in
Figures 7 and 8 and from the anatomically plausible fiber
tracking results in Figure 10. Moreover, by repeating the
experiment on a large collection of residual bootstrap real-
izations and on a different subject, we have shown that
our results are consistent both across noise realizations of
the same data set (Fig. 9) and across subjects (Table I and
Supporting Information).

The full course of the relationship between the FOD
threshold and the number of WM voxels with multiple
fiber orientations can be seen in Figure 11a,b. Even using
an extremely conservative threshold of 0.2, multiple fiber
orientations are still found in � 78% of all WM voxels. Fur-
ther increasing the threshold will result in many small fiber
populations being discarded and the introduction of WM
voxels without any fiber orientation. Figure 11c,d shows the
relationship between the bedpostx volume fraction thresh-
old and the number of WM voxels with multiple fiber ori-
entations. In the range of [0.01–0.1], the number of fiber
orientations reported by the bedpostx method is stable,
indicating that the ARD has indeed forced compartments to
zero, for which it believed that evidence was not suffi-
ciently strong. Starting from a threshold of 0.1, small sec-
ondary volume fractions are being discarded, increasing the
number of single-fiber voxels and introducing WM voxels
without any fiber orientation.

Differences Between CSD and Bedpostx

The two methods used in this study, CSD and bedpostx,
provided very different results. These differences can be
explained by the simulation results shown in Figure 4 and
the in vivo results in Figure 5: in voxels containing 3 fiber
orientations, bedpostx will instead report one or two-fiber
orientations. Note that the original authors of the ARD
method also reported similar limitations [Behrens et al.,
2007]. This explains both the increase in one and two-fiber
voxels and the relative absence of 3 fiber voxels in the bed-
postx results, ultimately resulting in a lower percentage of
multifiber voxels.

The large difference between the bedpostx results in this
study (63% multifiber voxels) and the bedpostx results
from the original study conducted by Behrens et al. [2007]
(33% multifiber voxels) can be attributed mostly to the use
of a much larger number of DW images, increasing the
effective SNR of our data sets: improving SNR will
increase the model evidence for smaller fiber volume frac-
tions, resulting in a larger number of significant fiber ori-
entations. In addition, in this study, the ARD weight was
tuned specifically to our data, and a longer ‘‘burn-in’’ (a
tunable parameter in bedpostx) was used to ensure con-
vergence. Additionally, Behrens et al. [2007] used an FA
threshold to select WM voxels, implicitly assuming that all
voxels with FA > 0.1 are considered WM, possibly exclud-
ing multifiber voxels on account of being too isotropic,
introducing a bias toward low-orientation counts. In
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addition, low-FA values can become unreliable in the pres-
ence of noise [Jones and Cercignani, 2010]. To avoid such
issues in our study, an objective WM selection method
was used based on the corresponding T1-weighted images
(Fig. 1).

Toward New Measures of WM ‘‘Integrity"

An interesting alternative approach to tensor-based sca-
lar metrics is to use the volume fractions as identified by
mixture model approaches (such as, for instance, bedpostx
and CSD) as a quantitative index. Jbabdi et al. [2010] make
tract-wise comparisons directly on the volume fractions as
obtained with bedpostx, assuming that increased volume
fractions correspond to an increased axonal density along
the corresponding fiber orientation. Raffelt et al. [2012] use
the FOD derived with spherical deconvolution and make
voxel-wise comparisons directly on the full FOD. Their
measure, dubbed ‘‘apparent fiber density" (AFD) assumes
that any differences in the FOD amplitude along a given
orientation can be attributed to differences in the relative
amount of underlying axons thought to be aligned with
this orientation. Recent advances allow nonlinear registra-
tion of FOD images [Raffelt et al., 2011], including appro-
priate reorientation and modulation, thus enabling group
comparisons of AFD between patients and controls. While
DTI offers an ambiguous average scalar metric for the
entire voxel, these new methods provide directionally de-
pendent metrics, which can be associated with individual
fiber tracts, providing more specific and more readily in-
terpretable results.

CONCLUSION

In this work, we investigated the prevalence of complex
fiber configurations in WM tissue with diffusion MRI. Our
results indicate that multiple fiber orientations can be
found in a much higher percentage of WM voxels (� 90%)
than previously reported, with CSD providing much
higher estimates than bedpostx. These findings have
obvious and profound implications for both tractography
and anisotropy analyses and strengthen the growing
awareness that fiber tractography and ‘‘WM integrity’’
metrics derived from DTI need to be interpreted with
extreme caution.
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