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Abstract: Characterization of large-scale brain networks using blood-oxygenation-level-dependent functional
magnetic resonance imaging is typically based on the assumption of network stationarity across the duration
of scan. Recent studies in humans have questioned this assumption by showing that within-network functional
connectivity fluctuates on the order of seconds to minutes. Time-varying profiles of resting-state networks
(RSNs) may relate to spontaneously shifting, electrophysiological network states and are thus mechanistically
of particular importance. However, because these studies acquired data from awake subjects, the fluctuating
connectivity could reflect various forms of conscious brain processing such as passive mind wandering, active
monitoring, memory formation, or changes in attention and arousal during image acquisition. Here, we
characterize RSN dynamics of anesthetized macaques that control for these accounts, and compare them to
awake human subjects. We find that functional connectivity among nodes comprising the ‘‘oculomotor (OCM)
network’’ strongly fluctuated over time during awake as well as anaesthetized states. For time dependent anal-
ysis with short windows (<60 s), periods of positive functional correlations alternated with prominent anticor-
relations that were missed when assessed with longer time windows. Similarly, the analysis identified
network nodes that transiently link to the OCM network and did not emerge in average RSN analysis. Further-
more, time-dependent analysis reliably revealed transient states of large-scale synchronization that spanned all
seeds. The results illustrate that resting-state functional connectivity is not static and that RSNs can exhibit non-
stationary, spontaneous relationships irrespective of conscious, cognitive processing. The findings imply that
mechanistically important network information can be missed when using average functional connectivity as
the single network measure. Hum Brain Mapp 34:2154–2177, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Since the first observation that task-independent fluctua-
tions of the blood-oxygenation-level-dependent (BOLD)
time series between different areas was correlated [Ogawa
et al., 1993] and the demonstration of the first maps based
on these spatiotemporal coherences [Biswal et al., 1995],
resting-state functional magnetic resonance imaging (RS-
fMRI) has become an important tool for characterizing
functional brain networks. These analyses have shown that
the hemodynamic signals recorded from cortical and sub-
cortical areas are synchronized, forming characteristic rest-
ing-state networks (RSN) in the absence of external input
or stimulus-evoked cognitive processing [Beckmann et al.,
2005; Damoiseaux et al., 2006]. RSNs are shaped by struc-
tural connectivity [Greicius et al., 2009; Honey et al., 2009;
Kelly et al., 2010; Margulies et al., 2009; Vincent et al.,
2007], closely resemble task-based activation networks
[Biswal et al., 1995; Fox et al., 2006a; Smith et al., 2009;
Vincent et al., 2007], and are believed to be of neuronal or-
igin [Britz et al., 2010; Laufs, 2008; Mantini et al., 2007;
Musso et al., 2010; Nir et al., 2008; Shmuel and Leopold,
2008], though their physiological origin remains uncertain
[Buckner and Vincent, 2007; Fox and Raichle, 2007]. Coher-
ence of the slow hemodynamic fluctuations have been
shown in all mammals studied to date including both
awake and anesthetized states in mice, rats, monkeys, and
humans [Greicius et al., 2008; Hutchison et al., 2010, 2011;
Jonckers et al., 2011; Kiviniemi et al., 2005; Vincent et al.,
2007]. The conservation of this phenomenon across species
suggests that it is a fundamental mammalian brain
property.

RSN activity and within-network connection properties
have been previously demonstrated to be both state-de-
pendent [Bianciardi et al., 2009; Greicius et al., 2008; Horo-
vitz et al., 2009] and task-modulated [Esposito et al., 2006;
Fransson, 2006; Sun et al., 2007]. Recent work has now
drawn into question the stability of RSNs in the absence of
altered cognitive states or overt behavioral shifts [Britz
et al., 2010; Chang and Glover, 2010; Majeed et al., 2009;
Musso et al., 2010; Sato et al., 2006]. Notably, Chang and
Glover [2010] demonstrated that the coherence, phase, and
strength of functional connections between the posterior
cingulate cortex (PCC) and other areas of the default-
mode network in awake human subjects varied on the
scale of seconds to minutes over the duration of a stand-
ard resting-state scan. Resting-state simulation [Honey
et al., 2007; Sporns, 2010, p. 174] and magnetoencephalog-
raphy (MEG) investigations have also shown time-varying
RSN topology. The later revealing transient formation of
more complete and characteristic RSNs when taking into
account the nonstationarity of the MEG signal correlations
[de Pasquale et al., 2010]. Taken together, these results cast
doubt on the underlying assumptions of temporal statio-
narity implicit in common RSN analyses.

An extensive number of electrophysiological studies
have reported spontaneous (stimulus-independent) time-

varying, network dynamics and ongoing brain activity
over a wide range of temporal and spatial scales [for
review see Ringach, 2009; Raichle, 2010; Sadaghiani et al.,
2010; Vogels et al., 2005]. These electrophysiological signa-
tures are possibly related to the aforementioned dynamic
variations of RSN connectivity. To identify possible links,
it is necessary to quantify and characterize the ongoing
dynamic shifts in functional network architecture as they
become apparent in RS-fMRI. One limitation in the charac-
terization of the dynamics of RS-fMRI that has been
pointed out by Chang and Glover [2010] and others [Britz
et al., 2010; Mantini et al., 2007; Musso et al., 2010; Sato
et al., 2006], is the inability to ensure an absence of con-
scious processes during image acquisition. When given
unconstrained cognitive periods, awake human subjects
engage in a diverse range of mental activities that can alter
the brain’s functional organization [Shirer et al., 2012].
These can include a spectrum of stimulus-independent
activities such as mind wandering [Christoff et al., 2009;
Mason et al., 2007] or more active, stimulus-oriented proc-
essing such as monitoring the internal or external environ-
ment [Gilbert et al., 2007]. Over periods of several
minutes, there are also changes related to vigilance, atten-
tion, and arousal [Paus et al., 1997], in addition to memory
formation [Squire and Zola-Morgan, 1991]. Recent evi-
dence has also shown that sub-millimeter head motion
during scanning can have significant effects on RS-fMRI
network measures [van Dijk et al., 2012]. These can occur
even when preprocessing corrects for motion, because cor-
rection algorithms account for gross voxel shifting, not for
the disruptions of the field homogeneity.

To examine the role of these issues in the determination
of RSN connectivity maps, this study examined the rest-
ing-state dynamics of the nonhuman primate (Macca fasci-
cularis) under anesthesia and compared them to the same
networks in awake human subjects. Isoflurane anesthesia
induces a controlled state of central nervous system sup-
pression characterized by a loss of consciousness, amnesia,
analgesia, ablation of autonomic reflexes, as well as a sup-
pression of motor responses [Brown et al., 2010; Veselis,
2001]. Therefore, anesthesia eliminates conscious processes
as a complicating factor. The use of anesthesia, together
with head-post immobilization, also allows for the elimina-
tion of active subject motion as a confound. Seed regions
were selected throughout the previously identified maca-
que [Hutchison et al., 2011, in press; Vincent et al., 2007]
and human [Beckmann et al., 2005; Damoiseaux et al.,
2006] frontoparietal RSNs. The potentially homologous
networks [Hutchison et al., in press] are putatively respon-
sible for attention and oculomotor (OCM) functions,
encompassing many of the well-known saccade-related
brain areas in both species [Baker et al., 2006; Brown et al.,
2007; Desouza et al., 2003; Ford et al., 2009; Johnston and
Everling, 2008; Koyama et al., 2004; Luna et al., 1998; Paus,
1996]. As such, it is herein referred to as the OCM net-
work. The default-mode network, which was examined by
Chang and Glover [2010], was not chosen because network
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homologies between the species are currently not well
established and there are known brain state dependencies
[Greicius et al., 2008; Horovitz et al., 2008, 2009]. Instead,
the OCM RSN represents a distributed and well-studied
network of both species and is supported by extensive
electrophysiological and histological mapping [Johnston
and Everling, 2008; Wurtz and Goldberg, 1989]. In addi-
tion, it will allow us to investigate the generalizability of
the dynamic network characteristics.

A sliding-window correlation procedure was employed
to verify the following hypotheses: (1) that RSN connectivity
is not static and that the spatial pattern of functional connec-
tivity depends on the temporal scale that is being examined;
(2) that ongoing RSN dynamics represent an evolutionarily
preserved aspect of brain function, and therefore should be
exhibited in the brain networks of other mammalian spe-
cies; and (3) that the fluctuating relationships between brain
areas represent an intrinsic and spontaneous phenomenon,
independent of conscious processes, and therefore should
transcend levels of consciousness.

MATERIALS AND METHODS

Macaque Monkeys

All surgical and experimental procedures were carried
out in accordance with the Canadian Council of Animal
Care policy on the use of laboratory animals and approved
by the Animal Use Subcommittee of the University of
Western Ontario Council on Animal Care. Data were col-
lected from six macaque monkeys (M. fascicularis; four
females) whose weights ranged from 3.6 to 5.3 kg (mean �
standard deviation ¼ 4.58 � 1.4 kg). Before the imaging
experiments, an MRI-compatible custom-built acrylic head
post was anchored to the skull with 6-mm ceramic bone
screws (Thomas Recording, Giessen, Germany) and dental
acrylic that served to restrain the head during image ac-
quisition and eliminate motion. In preparation for image
acquisition, each monkey was injected with intramuscular
injections of atropine (0.4 mg/kg), ipratropium (0.025 mg/
kg), and ketamine hydrochloride (7.5 mg/kg), followed by
intravenous administration of 3 mL propofol (10 mg/mL)
via the saphenous vein. Anesthesia was then maintained
using 1.5% isoflurane mixed with oxygen following oral
intubation with an endotracheal tube. Animals were spon-
taneously ventilating throughout the duration of scanning
and the eyes were closed. The monkey was then placed in
a custom-built monkey chair with its head immobilized
using the head post and inserted into the magnet bore, at
which time the isoflurane level was lowered to 1%. Physi-
ological parameters were continuously monitored through-
out the duration of scanning (rectal temperature via a
fiber-optic temperature probe [FISO, Quebec City, QC] ¼
36.5�C; respiration via bellows [Siemens Corp., Union, NJ]
¼ 25–30 breaths/min; end-tidal CO2 via capnometer [Covi-
dien-Nellcor, Boulder, CO] ¼ 24–28 mm Hg). Animal
body temperature was maintained using a heating disk

(Snugglesafe, Littlehampton, West Sussex, UK) and ther-
mal insulation.

Data Acquisition and Preprocessing of Monkey

Scans

Data were acquired on an actively shielded 7-T 68-cm
horizontal bore scanner with a DirectDrive console (Agilent,
Santa Clara, CA) with a Siemens AC84 gradient subsystem
(Erlangen, Germany) operating at a slew rate of 350 mT/m/
s. An in-house designed and manufactured conformal 5-
channel transceive primate-head RF coil was used. Magnetic
field optimization (B0 shimming) was performed using an
automated 3D mapping procedure [Klassen and Menon,
2004] over the specific imaging volume of interest. For each
monkey, two runs of 300 continuous echo-planar imaging
(EPI) functional volumes [repetition time (TR) ¼ 2,000 ms;
echo time (TE) ¼ 16 ms; flip angle ¼ 70�; slices ¼ 30; matrix
¼ 72 � 72; field of view (FOV) ¼ 96 mm � 96 mm; acquisi-
tion voxel size ¼ 1.3 mm � 1.3 mm � 1.5 mm] were
acquired. Acquisition time of each scan was 10 min. EPI
images were acquired with GRAPPA at an acceleration fac-
tor of 2. Every image was corrected for physiological fluctu-
ations using navigator echo correction. A high-resolution
T2-weighted anatomical reference volume was acquired
along the same orientation as the functional images using a
turbo spin echo acquisition scheme (TR ¼ 5,000 ms; TE ¼
38.6 ms; echo train length ¼ 5, effective echo ¼ 3, slices ¼
30, matrix ¼ 256 � 250; FOV ¼ 96 mm � 96 mm; acquisition
voxel size ¼ 375 lm � 384 lm � 1.5 mm).

All preprocessing was implemented using the FMRIB
Software Library (FSL; http://www.fmrib.ox.ac.uk.) tool-
box and included motion correction (six parameter affine
transformation), brain extraction, spatial smoothing (Gaus-
sian kernel of full-width at half-maximum [FWHM] 3 mm
applied to each volume separately), high-pass temporal fil-
tering (Gaussian-weighted least-squares straight line fitting
with sigma ¼ 100 s), low-pass temporal filtering (half-
width at half-maximum [HWHM] ¼ 2.8 s, Gaussian filter),
and normalization (12 degrees-of-freedom [DOF] linear
affine transformation) to the F99 atlas template [van Essen,
2004; see http://sumsdb.wustl.edu/sums/macaquemor-
e.do]. No lag correction for the interleaved slice order was
used, as the full width at half maximum of the autocorre-
lation function for a time series was �12 s suggesting that
errors in lags brought about by slice order differences in
the 2 s TR period are minimal.

OCM Network Identification in Monkeys

A spherical seed (radius ¼ 1.5 mm and volume ¼ 14.14
mm3) was placed in the anterior bank of the arcuate sulcus
of the left hemisphere in F99 atlas space [van Essen, 2004;
Supporting Information Fig. 1], an area corresponding to
the frontal eye fields [FEF; Area 8a, Bruce and Goldberg,
1985]. The seed location has been previously shown to
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reveal the resting-state OCM network of the anesthetized
macaque [Hutchison et al., in press]. A voxelwise correla-
tion analysis was then conducted using a three-level analy-
sis procedure. The mean time-course over all voxels
within the FEF seed region was extracted for each animal
and each scanning session and then correlated (with zero
lag) with every brain voxel at the individual subject level
for each corresponding scanning session. The results were
then averaged across sessions after a Fisher z-transform,
and then averaged across monkeys before being converted
back to correlation values. The group correlation values
were projected from volume data to the F99 cortical sur-
face using the CARET enclosed-voxel method [van Essen
et al., 2001]. Group pairwise correlations were also calcu-
lated in the same manner between all seed pair combina-
tions to derive the group connectivity matrix.

In addition to the left hemisphere FEF seed, a corre-
sponding contralateral FEF seed in the right hemisphere
was selected. Seven other seeds of the same size as the left
FEF seed (radius ¼ 1.5 mm) were placed in each hemi-
sphere to encompass bilaterally symmetric regions having
voxels with the highest correlation from the group-aver-
aged correlation map (Supporting Information Fig. 1).
These 14 additional seeds included the anterior prefrontal
cortex (aPFC) in area 9/10 m, the supplementary motor
area (SMA) in area 6, the PCC in area 23c/b, the intrapar-
ietal area (IP) in area 5/lateral intraparietal area, visual
area 4 (V4), middle superior temporal cortex (MST), and
the precuneus (PGM) in area 7. To serve as nongray mat-
ter controls, four seeds (radius ¼ 1.5 mm) were placed
bilaterally (eight total) throughout the white matter (WM).

Ventral Premotor Network Identification in

Monkeys

To assess whether network dynamics are generalizable
to other RSNs, the previously identified, bilaterally homol-
ogous ‘‘ventral premotor’’ (vPM) RSN [Hutchison et al.,
2011] was also identified through the same correlational
analysis approach used for the OCM RSN with a seed (ra-
dius ¼ 1.5 mm) placed in the left primary ventral motor
area (area 1/F1). The homologous right hemisphere seed
and four additional bilateral sets of seeds (10 total seed
regions) were selected from the group correlation map to
encompass bilaterally symmetric regions having voxels
with the highest correlation and corresponding to previ-
ously identified anatomical areas. These included seeds in
the somatosensory cortex (areas 2/1), the para-auditory
cortex, the lateral secondary somatosensory cortex (S2E),
and the ventral-cadual subdivision of the arm, neck, and
face/mouth area (area 6/F4) [Paxinos et al., 1999].

Human Participants

Data were obtained from twelve right-handed volun-
teers (mean age ¼ 26.2 years; four females) who were

recruited from The University of Western Ontario (Lon-
don, ON, Canada). Signed informed consent was obtained
in accordance with procedures approved by the University
of Western Ontario Health Sciences Research Ethics Board.

Data Acquisition and Preprocessing of Human

Scans

Imaging was performed on a 3 T Siemens TIM MAGNE-
TOM Trio MRI scanner. For each participant, one run of 360
continuous functional volumes was collected using a T2*-
weighted single-shot gradient-echo EPI acquisition sequence
with interleaved slice order (TR ¼ 2,000 ms; slice thickness ¼
3.5 mm; in-plane resolution ¼ 3 mm � 3 mm; TE ¼ 30 ms;
FOV¼ 240 mm� 240 mm; matrix size¼ 80� 80; flip angle¼
90�) with a 32-channel receive-only head coil. Each volume
was comprised of 34 contiguous (no gap) axial-oblique slices
acquired at a �30� caudal tilt with respect to the plane of the
anterior and posterior commissure, providing near whole
brain coverage. Acquisition time of each scan was 12 min.
Subjects were instructed to rest with eyes open while fixating
at a central location. A T1-weighted anatomical image was
collected using an MPRAGE sequence (TR ¼ 2,300 ms; TE ¼
2.98 ms; FOV ¼ 192 mm � 240 mm � 256 mm; matrix size ¼
192 � 240 � 256; flip angle ¼ 9�; acquisition voxel size ¼ 1
mm� 1 mm� 1 mm).

Image preprocessing was implemented in a similar fash-
ion as carried out with the monkey data using the FSL
toolbox. This consisted of slice time correction for inter-
leaved acquisitions (using Fourier-space time-series phase
shifting), motion correction (6-parameter affine transforma-
tion), brain extraction, spatial smoothing (using a Gaussian
kernel of FWHM 6 mm applied to each volume sepa-
rately), high-pass temporal filtering (Gaussian-weighted
least-squares straight line fitting with sigma ¼ 100 s), low-
pass temporal filtering (HWHM ¼ 2.8 s, Gaussian filter),
and normalization (12 DOF linear affine transformation) to
the standard 152-brain MNI template (voxel size ¼ 2 mm
� 2 mm � 2 mm).

OCM Network Identification in Humans

To allow localization of the frontal eye fields in humans,
a saccade task was performed during a separate imaging
session with the same subjects (data not shown). Partici-
pants looked toward one of two object locations following
a vision and planning phase. Using the group-averaged
task-based map as a reference, a spherical seed (radius ¼
5 mm and volume ¼ 524 mm3) was placed at the junction
of the superior frontal sulcus and the anterior bank of the
precentral sulcus of the left hemisphere in MNI atlas space
[Amiez et al., 2006; Brown et al., 2004; Ford et al., 2005;
Luna et al., 1998; Paus, 1996]. A voxelwise correlation
analysis was then conducted in a similar manner used for
the monkeys. The mean time-course over all voxels within
the FEF seed region was extracted for each subject and
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then correlated (with zero lag) with every brain voxel at
the individual subject level. After a Fisher z-transform, the
results were averaged across subjects and then converted
back to correlation values. The group correlation values
were projected from volume data to the PALS-B12 cortical
surface [van Essen, 2005] using the CARET (http://
www.nitrc.org/projects/caret) enclosed-voxel method [van
Essen et al., 2001]. Group pairwise correlations were also
calculated in the same manner between all seed pair com-
binations to derive the group connectivity matrix.

In addition to the left hemisphere FEF seed, a correspond-
ing contralateral FEF seed in the right hemisphere was
selected. Eight other seeds of the same size as the left FEF
seed (radius ¼ 5 mm) were placed based on the generated
group correlation map including seeds in the left and right
hemisphere corresponding to the dorsal lateral prefrontal
cortex (DLPFC), vPM area, the intraparietal sulcus (IPS), an-
terior intraparietal cortex (AIP), visual area 4 (V4), and the
PGM and two midline seeds in the supplementary eye fields
(SEF) and primary visual area (V1) (see Supporting Informa-
tion Fig. 2). To examine nongray matter areas, eight seeds
were placed bilaterally throughout the WM.

Sliding Window Correlation Analysis

To explore the effects of possible time-varying dynam-
ics, the correlational analysis of seed regions were
repeated with truncated versions of the time series. The
correlation between the time series derived from the left
FEF seed (monkeys and humans) and left vPMs seeds
(monkeys) and all brain voxels was calculated for trunca-
tion window sizes of 240 s (120 volumes), 120 s (60 vol-
umes), 60 s (30 volumes), and 30 s (15 volumes). These
window sizes were selected as it has been previously dem-
onstrated that the average correlation values within and
between RSNs stabilize at approximately 240 s [van Dijk
et al., 2009]. The remaining window sizes were then
selected by decreasing the original window length by a
factor of two. A 15 s window and smaller was not used
because the limited number of data points (volumes) did
not result in significant correlations.

The window was advanced in increments of one time
point along the entire time series and the correlation recal-
culated. This was repeated for all possible shifts of the
window within the 300 and 360 images of a run for the
monkey and human data, respectively. The voxelwise slid-
ing window correlation between the left FEF seed and all
individual brain voxels was calculated at the single sub-
ject, single scan level. The pairwise sliding window corre-
lations between each of the 16 seed regions were also
calculated for all animals and all scans.

Graph Analysis

To graphically represent the OCM RSN at different time
points, a Kamada–Kawai algorithm [Kamada and Kawai,

1989] was used. The process arranges the network nodes
such that correlated nodes are closer together and weakly
correlated nodes are further apart. The distance was calcu-
lated based on the absolute values of correlation coeffi-
cients. The graphs’ edges were then thresholded at r �
|0.4|. Degree centrality, the number of edges of a node
that connect it to other nodes, was also calculated [Hag-
mann et al., 2008].

RESULTS

Monkey OCM and vPM Network Identification

Voxelwise correlation with the time series from the left
FEF seed at the group level revealed strong positive func-
tional connectivity with multiple brain areas (Fig. 1) that
were in agreement with previous results of task-based
[Baker et al., 2006; Ford et al., 2009; Koyama et al., 2004;
Vincent et al., 2007] and resting-state [Hutchison et al.,
2011, in press; Vincent et al., 2007] OCM network investi-
gations of the macaque brain. There were no significant
negative correlations. The strongest positive correlations
were found in the ipsilateral and contralateral aPFC, FEF,
SMA, PCC, IP, V4, MST, and PGM (see Supporting Infor-
mation Fig. 3 for individual connectivity maps). To explore
the dynamics of the OCM RSN, sixteen cortical seeds
within this network (as described in Methods section)
were chosen for further analysis (Supporting Information
Fig. 1).

Voxelwise correlation with the time series from the left
ventral motor area (area 1/F1) seed at the group level
revealed strong positive functional connectivity with ho-
mologous structures in both hemispheres (Supporting In-
formation Fig. 4) that closely matched the vPM RSN
revealed by independent component analysis of the same
data set [Hutchison et al., 2011]. The strongest positive cor-
relations were found across somatosensory cortex (areas
2/1), the para-auditory cortex, the lateral secondary soma-
tosensory cortex (S2E), and the ventral-cadual subdivision
of the arm, neck, and face/mouth area (area 6/F4) [Paxi-
nos et al., 1999]. Similar to the OCM network, there were
no significant negative correlations.

Group pairwise cross correlation of all seeds revealed
strong intranetwork connectivity of both the OCM and
vPM networks (Fig. 2). The networks were independent of
one another and seeds of both networks were not corre-
lated with WM control seeds. All seed time courses were
found to be stationary and not possess a unit root
(Dickey–Fuller test, P > 0.05) suggesting a stable mean
and variance over time.

Human OCM Network Identification

To validate the methodology, test interspecies similar-
ities, and rule out anesthesia as the cause of the observed
results, we investigated the OCM RSN in the awake
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human brain. Voxelwise correlation with the time series
from the left FEF seed at the group level revealed strong
positive functional connectivity with multiple distributed
brain areas (Fig. 3). The RSN encompassed multiple areas
that have been shown to be modulated during OCM tasks
[Brown et al., 2004, 2007; DeSouza et al., 2003; Luna et al.,
1998] and closely resembled the previously identified
OCM/dorsal attention network in resting-state investiga-
tions [Beckmann et al., 2005; Damoiseaux et al., 2006]. The
strongest positive correlations were found in the ipsilateral
and contralateral DLPFC, vPM, FEF, SEF, IPS, AIP, PGM,
V4, and V1. There were no significant negative correlations
(see Supporting Information Fig. 5 for individual human

connectivity maps). Similar to the analysis of the monkey
scans, 16 seeds were selected from the group map (Sup-
porting Information Fig. 2; see Material and Methods sec-
tion for details). Group pairwise cross correlation of all
seeds revealed strong intranetwork connectivity of the
OCM (Fig. 4) with none to weak connectivity with WM
control seeds.

Transient Network States

To assess the stability of the OCM RSN’s spatial archi-
tecture, five time points were selected across the duration
of the scan and analyzed. For a window size of 60 s

Figure 1.

Group-averaged ‘‘oculomotor’’ network following correlation

analysis of isoflurane-anesthetized macaques (N ¼ 6) with a

seed placed in the anterior bank of the arcuate sulcus corre-

sponding to the left frontal eye fields (FEF; black asterisks). The

lateral, medial, and flattened cortical views of the left (Column

1) and right (Column 3) hemisphere in addition to the dorsal

and ventral views (Column 2) are overlaid with thresholded cor-

relation maps normalized to the space of the F99 template [van

Essen, 2004]. No negative correlations were present at

r < �0.2. Labels indicate prominent sulci. as, arcuate sulcus; cas,

calcarine sulcus; cis, cingulate sulcus; cs, central sulcus; hs, hip-

pocampal sulcus; ios, inferior occipital sulcus; ips, intraparietal

sulcus; ls, lateral sulcus, lus, lunate sulcus; ots, occipito-temporal

sulcus; sf, sylvian fissure; sts, superior temporal sulcus; pos,

parieto-occipital sulcus; ps, principal sulcus. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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(Fig. 5; for window sizes of 30 s, 120 s, and 240 s, see Sup-
porting Information Figs. 6–8, respectively), comparison of
the cross-correlation matrices (Column 1), voxelwise FEF
correlation maps (Columns 2 and 3), and graph represen-
tations (Column 4, thresholded at r � 0.4) demonstrated
large, apparent differences in connectivity profiles within a
single scan (M2, Scan 2) not captured in the single-subject
average (bottom row). The pairwise correlation matrix
revealed periods of strong synchronization (50–110 s) and
at other times, an almost complete breakdown of the net-
work (268–328 s). Changing network architecture can also
be observed in the graph representation (Column 4) of the
OCM RSN. Node arrangement, network inclusion, and
degree centrality all vary at the different time points.
Beyond the seeds defined by the group averaged FEF cor-
relation map, the voxelwise plots showed strongly (both
negatively and positively) correlated cortical areas with
the left FEF that were not captured when using the aver-

age time-course (Fig. 5). During the first selected time win-
dow, the entire anterior cingulate cortex and PFC are
synchronized with the left FEF. Primary visual areas are
also transiently correlated at multiple time points. Nega-
tively correlated regions that approach r ¼ �1 occur
throughout the scan between nodes of the OCM network
and also distributed throughout the cortex. The unique
spatial profiles do not emerge in the average or at longer
time windows. Spontaneous changes in network connec-
tivity are particularly evident when visualizing all succes-
sive sliding window increments. We visualize these
dynamics in Supporting Information Movies 1 and 2,
which show pairwise seed correlations and voxelwise left
FEF seed correlations, respectively, for all window sizes
across time. Changes in network states, including strong
synchronization (26–86 s), network breakdown (102–162 s),
and transient anticorrelated regions (280–340 s) can also be
seen in awake human subjects (Fig. 6; Subject 7).

Figure 2.

Average pairwise correlation matrix of resting-state BOLD time-courses from 16 ‘‘oculomotor’’

(OCM) network, 10 ventral premotor (vPM) network, and eight white matter (WM) seeds for

isoflurane-anesthetized macaques (N ¼ 6). Abbreviations are indicated in the text. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fluctuating Connectivity Dynamics During

Awake and Anaesthetized States

The Supporting Information movies demonstrate
ongoing changes in the spatial connectivity profiles over
time. To further assess and quantify these changes, we
examined the temporal correlation strength between seeds
over time. We calculated the time series of the left FEF
seed and of the left IP (A), left MST (B), right FEF (C), left
PCC (D), as illustrated for a representative monkey in Fig-
ure 7 (M2, Scan 2). Below the time series plots, the sliding
window correlation values for all window lengths are
shown. Considerable time resolved variations of functional
correlations are apparent when compared with the whole

scan average correlation value shown as a dashed line. All
OCM RSN nodes show slow fluctuations of connectivity
strength that dissipate at longer window sizes. To quantify
the change in the frequency profiles of the correlation
waveforms across the different time windows we calcu-
lated fast-Fourier transforms (FFTs) (Fig. 7, third row of
each frame). Bar graphs (bottom right of each frame) rep-
resent the percentage of data points that showed positive
correlations (þ, red), and anticorrelations (�, blue). Con-
sistent with Glover and Chang [2010] anticorrelations
decreased as a function of increasing window size and
failed to be apparent at larger window sizes. But at
smaller window sizes, negative correlations accounted for
>30% of the observed data points. The larger variance of

Figure 3.

Group-averaged ‘‘oculomotor’’ network following correlation

analysis of awake human subjects (N ¼ 12) with a seed placed in

the left frontal eye fields (black asterisks). The lateral, medial,

and flattened cortical views of the left (Column 1) and right

(Column 3) hemisphere in addition to the dorsal and ventral

views (Column 2) are overlaid with thresholded correlation

maps normalized to the space of the PALS-B12 template [van

Essen, 2005]. No negative correlations were present at r <

�0.3. Labels indicate prominent sulci. Note that the correlation

threshold differs between human and monkey maps shown in

Figure 1. cas, calcarine sulcus; cis, cingulate sulcus; cs, central

sulcus; ifs, inferior frontal sulcus; ls, lateral sulcus; lus, lunate sul-

cus; pos, parieto-occipital sulcus; pocs, posterior central sulcus;

prcs, precentral sulcus; sfs, superior frontal sulcus; sts, superior

temporal sulcus. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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the pairwise correlations at short time windows could be
influenced by noise or random variability that may
increase with fewer points in the short truncation win-
dows. To test for this possibility, we quantified the vari-
ability and plot the confidence values for the correlation
coefficients for the four areas presented in Figure 7 and
the left FEF (Supporting Information Fig. 9). The highest
variances are found for near-zero correlation values,
regardless of window size. The confidence values for the
large positive and negative excursions stay similar across
different window sizes.

Similar temporal dynamics were observed for the
human data across all nodes (Fig. 8; Subject 7). The results
illustrate that like the anesthetized monkey, the correlation
time courses are nonstationary and for time dependent
analysis with windows of <60 s periods, positive func-
tional correlations alternated with prominent anticorrela-
tions that were entirely missed when assessed with longer
time windows.

Hypersynchronization

To further illustrate the fluctuating values of the correla-
tions, Figure 9 displays for the four sliding window
lengths the pairwise correlations of the OCM network
seeds across all possible shifts of the truncation windows
for the second scan of the same representative monkey
(for all monkeys and Scan 1, see Supporting Information
Fig. 10). Each of the 16 seed regions was correlated with

the 15 other seed regions. The lines where each seed was
correlated with itself are removed, resulting in 120 lines
[(16 � 16 � 16)/2] in each subplot of Figure 9. These plots
reveal substantial changes in the correlation strength over
time. In particular, there are periods of enhanced coher-
ence between seed regions that we have tentatively labeled
‘‘hypersynchronization’’ (see below) alternating with inco-
herent periods. These fluctuations are not observed at lon-
ger time windows.

Hypersynchronization was quantified for the OCM,
vPM, and WM areas by calculating the average pairwise
correlation values across all seeds within each network for
all monkeys (Fig. 10; 60 s sliding window; for Scan 1, see
Supporting Information Fig. 11). For the RSNs, periods of
hypersynchrony had average correlation values greater
than þ0.6 whereas incoherent periods approached 0. The
average network connectivity time courses were not signif-
icantly correlated, showing different correlation peaks and
hypersynchrony durations. Histograms display the
amount of time in seconds spent at binned correlational
values. WM values typically centered around 0 whereas
vPM and OCM networks had mean correlation values that
were moderate to strong. Within-network seeds display
strong negative correlations, however the mean connectiv-
ity typically does not drop below 0 even with a 30 s win-
dow. Hypersynchronization was observed for most
animals with the exception of M4 (Scan 2), however, Scan
1 of the same monkey showed the greatest synchroniza-
tion across seeds encompassing both OCM an vPM nodes
(though not WM).

Periods of hypersynchrony were not exclusive to the an-
esthesia state, as all awake human subjects also exhibited
strong network specific synchrony over a period of 12 min
(Fig. 11; for all subjects see Supporting Information Fig.
12). As the time window was increased the effects were no
longer evident.

DISCUSSION

Dynamic RSN Connectivity Occurs in the

Absence of Cognition

Ongoing brain activity changes in the absence of stimuli
or behavior was historically characterized as background
‘‘noise’’ in both electrophysiological and imaging fields.
Evidence from both fields is now changing this view, dem-
onstrating that the spontaneous modulations of activity
are highly organized across a range of temporal and spa-
tial scales with profiles and magnitudes similar to task-
evoked patterns [for reviews see Bullock, 2003; Ringach,
2009, 2010; Sadaghiani et al., 2010; Vogels et al., 2005].

The primary aim of this study was to test the hypothesis
that stimulus-independent fluctuations of functional con-
nectivity within RSN nodes measured using BOLD-fMRI
were not solely a consequence of conscious brain processes
[Christoff et al., 2009; Gilbert et al., 2007; Mason et al.,

Figure 4.

Average pairwise correlation matrix of resting-state BOLD time-

courses from 16 ‘‘oculomotor’’ (OCM) network and eight white

matter (WM) seeds for awake human subjects (N ¼ 12). Abbre-

viations are indicated in the text. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.

Network changes across time with a sliding-window correlation

size of 60 s for a representative isoflurane-anesthetized monkey

(M2, Scan 2). The top five rows represent a single windowed

correlation between the times. The bottom row displays the av-

erage for the entire run. Column 1 shows the pairwise correla-

tion matrix of ‘‘oculomotor’’ network seeds in the same fashion

as the blue bounded box in Figure 2. Columns 2 and 3 display

the flattened cortical views of the left and right hemisphere,

respectively, overlaid with voxelwise correlation maps for the

left FEF seed normalized to the space of the F99 template [van

Essen, 2004]. Column 4 displays the graph representation of the

functional ‘‘oculomotor’’ network connectivity in which each

seed represents a node and pairwise correlation r < 0.4 repre-

sented by an edge. The size of the node represents its degree

centrality. For window sizes of 30, 120, and 240, see Supporting

Information Figs. 6–8, respectively. For all time points of pair-

wise correlations, see Supporting Information Movie 1. For all

time points of voxelwise left FEF correlation see Supporting In-

formation Movie 2. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 6.

Network changes across time with a sliding-window correlation

size of 60 s for a representative awake human subject (S7). The

top five rows represent a single windowed correlation between

the times. The bottom row displays the average for the entire

run. Column 1 shows the pairwise correlation matrix of ‘‘oculo-

motor’’ network seeds in the same fashion as the blue bounded

box in Figure 4. Columns 2 and 3 display the flattened cortical

views of the left and right hemisphere, respectively, overlaid

with voxelwise correlation maps for the left FEF seed normal-

ized to the space of the PALS-B12 template [van Essen, 2005].

Column 4 displays the graph representation of the functional

‘‘oculomotor’’ network connectivity in which each seed repre-

sents a node and pairwise correlation r < 0.4 represented by an

edge. The size of the node represents its degree centrality.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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2007; Paus et al., 1997] or subject motion [van Dijk et al.,
2012] during image acquisition, factors that confounded
previous studies [Britz et al., 2010; Chang and Glover,
2010; Mantini et al., 2007; Musso et al., 2010; Sato et al.,

2006]. To eliminate these confounding variables as the ori-
gin of the temporal characteristics, we examined the net-
work connectivity patterns over time between nodes of the
macaque OCM RSN during anesthesia with isoflurane,

Figure 7.

Time-series and sliding-window correlation coefficients between

the left frontal eye fields (FEF) and ‘‘oculomotor’’ network seeds

(A) left intraparietal cortex (IP), (B) left middle superior tempo-

ral cortex (MST), (C) right FEF, and (D) left posterior cingulate

cortex (PCC) shown for one representative isoflurane-anesthe-

tized monkey (M2, Scan 2). The top panel shows the BOLD

time series of the left FEF seed (blue) and the comparative seed

(red). The middle panel shows the sliding-window coefficients

for 30 s (cyan), 60 s (pink), 120 s (green), and 240 s (orange)

windows. For each of the correlation time courses the bottom

panel shows the fast-Fourier transform (right side) and the per-

centage of time of above and below 0. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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thereby precluding such processes related to conscious
thought, mind wandering, memory formation, or changes
in arousal and attention [Brown et al., 2010; Veselis, 2001].
In addition to the anesthesia, an implanted head post to

mount the subject’s head in a stable position prevented
any possible movement related artifacts. Under these con-
ditions, a sliding-window correlation analysis revealed
that, even in an anesthetized brain state, RSN functional

Figure 8.

Time-series and sliding-window correlation coefficients between

the left frontal eye fields (FEF) and ‘‘oculomotor’’ network seeds

(A) left intraparietal cortex (IP), (B) left middle superior tempo-

ral cortex (MST), (C) right FEF, and (D) left posterior cingulate

cortex (PCC) shown for one representative awake human sub-

ject (S7). The top panel shows the BOLD time series of the left

FEF seed (blue) and the comparative seed (red). The middle

panel shows the sliding-window coefficients for 30 s (cyan), 60 s

(pink), 120 s (green), and 240 s (orange) windows. For each of

the correlation time courses the bottom panel shows the fast-

Fourier transform (right side) and the percentage of time of

above and below 0. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 9.

Sliding-window pairwise correlations of ‘‘oculomotor’’ network

(OCM), ventral premotor network (vPM), and white matter

(WM) seeds over time for a representative isoflurane-anesthe-

tized macaques (M2, Scan 2). Every vertical line of each image

represents the unfolded pairwise correlation matrix as seen in

Figure 2 averaged across 30 s (Row 1), 60 s (Row 2), 120 s

(Row 3), and 240 s (Row 4) windows for the entire scan. Plots

for all monkeys and both scans are shown in Supporting Infor-

mation Figure 10. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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connectivity was dynamically changing across time, a
property that could not be captured with whole-scan met-
rics that only compute the mean connectivity value. Indi-
vidual seed-pair correlations of the macaque and human
OCM RSN showed oscillatory-like behavior in which the
correlation strength fluctuated between strong positive
and strong negative correlations reliably within subjects,
and reproducible across subjects and species. Evidenced
by the FFT of the correlation time courses, as the window
size increased, the amplitude and number of frequency
peaks diminished. This effect is the result of averaging the
periods of positive and negative synchrony within the
same period, effectively canceling out the alternating pat-
terns and eliminating the frequency dynamics. Averaging
across longer time windows will result in positive values
simply due to the increased amount of time the network
seeds are positively correlated compared with being anti-
correlated (Figs. 7 and 8, insets). Averaging across the
entire scan occasionally failed to detect brain areas that
become synchronous with the ‘‘core’’ RSN for brief times
throughout the scan, though not consistently enough to
survive averaging. This can be seen for example, in the
voxelwise plots (Column 2, 3) of Figure 5 (as well as the
Supporting Information movies), where at multiple win-
dows such as 268–328 s (Row 3) and 360–420 s (Row 5),
primary visual cortex (V1) is strongly correlated with the
left FEF seed, though does not emerge as a network node
in the single-subject average (Row 6). Additionally, seed-
pair correlations at the network level showed periods of
strong positive synchronization across the entire network
that occurred multiple times throughout the scan in all
animals and all human subjects that we have tentatively
labeled ‘‘hypersynchronization.’’ The hypersynchronous
periods were network specific in that the nodes of the
OCM and vPM RSNs both exhibited periods of hypersyn-
chrony, albeit at different time points and durations.

Taken together, the findings support each of the three
hypotheses investigated. First, in agreement with previous
work, RSN connectivity was found to be dynamic over
time and functional connectivity profiles dependent on the
temporal scale that was used [Britz et al., 2010; Chang and
Glover, 2010; de Pasquale et al., 2010; Honey et al., 2007;
Majeed et al., 2009; Musso et al., 2010; Sato et al., 2006].
Second, the present work offers preliminary evidence that
much like RSN organization [Biswal et al., 1995; Beckmann
et al., 2005; Hutchison et al., 2010, 2011; Jonckers et al.,
2011; Vincent et al., 2007], dynamic relationships within
the networks are also a conserved brain property across
mammals. Third, and most importantly, the network dy-
namics persisted regardless of the use of anesthesia,
thereby supporting the notion that RSN connectivity varia-
tions are a result of ongoing, spontaneous brain activity
and not solely a consequence of conscious processing. It is
important to note that although we identified fluctuating
network connectivity in the absence of conscious cognitive
processes, we do not intend to exclude ongoing brain dy-
namics in the participation of cognition and behavior (or

conversely, the modulation of spontaneous activity by con-
scious processes, context, and behavior). In fact, the results
from converging methods have implied that the intrinsic
neural and hemodynamic fluctuations represent an essen-
tial property of normal brain functioning [for reviews see
Bullock, 2003; Ringach, 2009, 2010; Sadaghiani et al., 2010;
Vogels et al., 2005].

Electrophysiological Correlates

The periods of metastable RSN synchronization
observed in this study could represent the hemodynamic
correlate of ‘‘microstates’’ [Britz et al., 2010; Musso et al.,
2010], a fingerprint of specific electrophysiological proc-
esses [Lehmann et al., 2006] with power contributions aris-
ing from multiple frequency bands [Mantini et al., 2007].
Functionally, the microstate is likely reflecting groups of
neurons in separate cortical areas linked into a large-scale
network that conjointly subserve a unified cognitive, men-
tal, or perceptual function [Bressler and Tognoli, 2006;
Felleman and van Essen, 1991; Friston, 2002; Fuster, 2006].
Network areas forming a microstate are thereby assumed
to be coordinated with a unique spatiotemporal pattern.
Similar to this proposal the RS-fMRI signals characterize
not only a unique spatial distribution, but a multicompo-
nent temporal signature [Baria et al., 2011; Hutchison
et al., 2010; Mantini et al., 2007; Majeed et al., 2009], albeit
at a much lower frequency range (0.01–0.1 Hz) owing to
convolution with the hemodynamic response function. The
observed fluctuation of spatiotemporal connectivity pat-
terns could then represent changing microstates—a cycling
of varying network topologies through the brain’s func-
tional repertoire allowing for a plastic and flexible frame-
work necessary for ongoing cognitive processes [Friston,
2000; Kelso, 1995; Rabinovich et al., 2008; Tognoli and
Kelso, 2009; Sporns, 2010, p. 172].

Previous work across multiple spatial scales and modal-
ities has implicated spontaneous brain activity as a source
of variability in evoked responses [Arieli et al., 1996;
Azouz and Gray, 1999; Becker et al., 2011; Fiser et al.,
2004; Fox et al., 2006b], perception [Hesselmann et al.,
2008b; Sadaghiani et al., 2009; Sapir et al., 2005; van Dijk
et al., 2008], and behavior [Hesselmann et al., 2008a]. Most
relevant to the present work, Fox et al. [2006a] demon-
strated that ongoing activity fluctuations within a widely
distributed human RSN (‘‘dorsal motor’’) could account
for trial-to-trial variability of the evoked hemodynamic
responses to a task (finger-related movement). The linear
superposition and neuronal basis of this phenomenon was
later confirmed by Becker et al. [2011], reinforcing that
evoked responses cannot be fully understood in isolation
from ongoing activity. The present findings, in addition to
the previous work [Chang and Glover, 2010; de Pasquale
et al., 2010; Sato et al., 2006], suggest that intranetwork
RSN connectivity fluctuations might be another key ele-
ment that may account for parts of the variability of
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evoked responses, perception, and behavior. Further, if the
spontaneous activity fluctuations are considered as predic-
tive representations as in a Bayesian framework [Pouget
et al., 2003; Körding and Wolpert, 2006; Sadaghiani et al.,
2010] in which ongoing cortical activity represents a con-
tinuous top–down prediction or expectation, then selecting
the correct network state could represent the critical factor
for higher order complex tasks requiring large-scale inte-
gration of brain areas [Buckner and Vincent, 2007; Engel
et al., 2001].

It is more difficult to speculate on the underlying cause
and functional significance of the ‘‘hypersynchronized’’
periods of both species seen in Figures 9–11. These per-
sisted for tens of seconds and had strong correlation
strengths (r > 0.6) across all network nodes. Additionally,
the confidence values for the strong correlation periods
were very high. The lowest confidence values were found
when the mean correlation value was near zero. The peri-
ods of hypersynchronization most often occurred inde-
pendently of other RSNs and WM. The network-specific
alternating patterns of enhanced synchrony share similar
characteristics with the electrophysiological ‘‘slow rhythm’’
(0.2–0.4 Hz) [Haider and McCormick, 2009; Steriade et al.,
1993a,b]. The slow rhythm oscillates between two different
levels of subthreshold membrane potentials. The UP state
is distinguished by barrages of both excitatory and inhibi-
tory postsynaptic potentials, and the firing of both excita-
tory and inhibitory neurons, whereas the DOWN state is
characterized by periods of hyperpolarization and quies-
cence [Contreras et al., 1996; Lampl et al., 1999; Stern
et al., 1997; Steriade et al., 1993b]. Slow rhythms are gener-
ated and maintained in distributed populations of neurons
throughout the neocortex and engage neurons throughout
the brain [Isomura et al., 2006]. Studies typically cite their
role in coordinating other sleep rhythms [Achermann and
Borbély, 1997; Contreras et al., 1996; Steriade et al., 1993c]
and memory consolidation [Lee and Wilson, 2002; Mölle
et al., 2004]. Given that hypersynchronization was also
observed in awake human RSNs it would suggest that the
phenomenon is not a result of anesthesia. The presence
and functional relevance of slow rhythms in cortical acti-
vation during wakefulness has not yet been fully explored
[Destexhe et al., 2007; Sporns, 2010, p. 156]. Nir et al.
[2008] have reported slow (<0.1 Hz) spontaneous fluctua-
tions of neuronal activity [local field potential (LFP)
gamma power modulations) in the auditory cortex of
awake human subjects. Bilateral single-unit, LFP, and in-
tracranial electrocorticography (ECoG) also revealed signif-
icant interhemispheric correlations between the
homologous areas that increased during rapid eye move-

ment (REM) and Stage 2 sleep [Nir et al., 2008]. In a
related study, He et al. [2008] compared the ‘‘correlation
structure’’ of the sensorimotor network of humans
recorded by ECoG and BOLD independently. Slow cortical
potentials (<0.5 Hz) were found to best correspond with
RS-BOLD fluctuation profiles across wakefulness, slow-
wave sleep, and REM sleep, whereas gamma frequency
power showed a similar correlation structure albeit only
during wakefulness and REM sleep. The results of these
studies point toward slow cortical oscillations as a possible
electrophysiological correlate of ‘‘hypersynchrony.’’ Given
that the responsiveness of the cortex to sensory stimuli is
generally increased during UP states and decreased during
DOWN states [Contreras et al., 1996; Steriade et al., 1993b]
the slow fluctuations of synchronization (UP states) could
represent a dynamically stable network organization
exploited to express selective functional relationships.

This study only allows us to infer the electrophysiologi-
cal correlate(s) of the nonstationary relationships and
‘‘hypersynchronization’’ based on their resemblance to
known phenomena. Obtaining direct evidence would
require simultaneous electrophysiological and RS-fMRI
recordings. Beyond establishing a link between neural ac-
tivity and the hemodynamic BOLD activity [Logothetis
et al., 2001], previous work using EEG-fMRI has attempted
to directly derive the electrophysiological correlate of RS-
fMRI fluctuations [Britz et al., 2010; He et al., 2008; Laufs,
2008, 2010; Liu et al., 2011; Mantini et al., 2007; Musso
et al., 2010; Nir et al., 2007; Shmuel and Leopold, 2008]
and in what may prove synonymous, the hemodynamic
manifestations of temporal EEG dynamics [Goldman et al.,
2002; Laufs et al., 2003b; Moosman et al., 2003; Michels
et al., 2010; Olbrich et al., 2009; Ritter et al., 2009; Sammer
et al., 2007; Wu et al., 2010]. It has been established in
anesthetized monkeys that slow fluctuations in the power
of band-limited oscillations (particularly gamma) can be
directly linked to the ongoing RS-fMRI fluctuations
[Shmuel and Leopold, 2008]. In humans, RSNs were
assigned a unique electrophysiological signature that
involved a combination of EEG power variations in the
delta, theta, alpha, beta, and gamma range [Laufs et al.,
2003a; Mantini et al., 2007; for review see Laufs, 2008].
This was later confirmed by two independent studies
showing that transient multifrequency EEG events (micro-
states) can be used as regressors to elicit BOLD activation
patterns consistent with at least some RSNs [Britz et al.,
2010; Musso et al., 2010]. The studies however, did not
explore the temporal properties of the within-network con-
nectivity. This presents a promising avenue for future
research and will be critical in resolving controversies

Figure 10.

Average pairwise correlation values across all ‘‘oculomotor’’ net-

work (OCM, red), ventral premotor network (vPM, blue), and

white matter (WM, cyan) seeds over time for all monkeys (M1–

M6, Scan 2) with a sliding window of 60 s. To the right of each

plot shows the frequency distribution of the correlation coeffi-

cients for each of the three time series. For Scan 1, see Sup-

porting Information Figure 11. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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related to time-scale discrepancies between electrophysio-
logical activity (microstates, slow rhythms, frequency spe-
cific power changes) and the RSN fluctuations.

Anticorrelations

The role of anticorrelations within RSNs remains unclear
and controversial [Cole et al., 2010; Fox et al., 2005; Mur-
phy et al., 2009], though it has been suggested that they
subserve a ‘‘differentiating role,’’ segregating neuronal
processes that have competing representations [Fox et al.,
2005]. In agreement with previous work [Chang and
Glover, 2010], the strength of negative correlations was
found to depend strongly on the time window used to an-
alyze functional connectivity. Using the whole scan met-
rics, the correlation coefficients typically do not drop
below �0.3, however at shorter time windows, the nega-
tive correlations approached �0.8 at high confidence val-
ues, suggesting active suppressive interactions between
anticorrelated network nodes. Empirical investigations of
anticorrelations remain underrepresented in a field that is
dominated by interpretations of positive connectivity
among seeds, however, the present results calls on a reval-
uation of their possible roles in complex brain networks.

Evolutionarily Preserved Mechanism

Resting-state fluctuations and their assembly into spatial
network patterns appear to be a ubiquitous property of
mammalian brain organization. Mice, rats, monkeys, and
humans [Biswal et al., 1995; Jonckers et al., 2011; Lu et al.,
2007; Vincent et al., 2007], all show robust and reproducible
RSNs. This study could now put forward that dynamics
within this networks are also a shared feature of mamma-
lian brain systems, at the very least between humans and
non-human primates. Brain rhythms and cortical synchrony
have been suggested as an indicator of complexity that par-
allels evolutionary branching; invertebrates lack EEG oscil-
lations, amphibians show cortical coherence albeit less than
mammals, and humans seem to possess the greatest range
of frequency patterns [Bullock, 2003]. Synchronization, net-
work organization, and ongoing fluctuations would then
represent an evolved and adaptive mechanism serving
‘‘higher order’’ cognitive functioning.

RSN networks have been shown to persist under light
and deep sleep [Horovitz et al., 2008, 2009], sedation [Grei-
cius et al., 2008], and various forms of anesthesia [Lu et al.,
2007; Hutchison et al., 2010; Zhao et al., 2008]. This is not to
say however, that quantifiable differences do not exist
between the different states. Changes in connectivity have

been reported within and across both normal and disease
states [Greicius, 2008; Horovitz et al., 2009; Vanhauden-
huyse et al., 2010]. This makes direct qualitative compari-
sons of the anesthetized monkeys and awake human
subjects problematic because, although qualitative assess-
ment does indicate preserved temporal characteristics, any
variations may not be a result of species difference but a
consequence of the anesthesia. The mechanisms of action
for isoflurane remain poorly understood, but it has been
demonstrated to disrupt functional thalamocortical connec-
tivity [Alkire et al., 2000; Arhem et al., 2003; Steriade, 2001],
in addition to causing vasodilation that can potentially
affect cerebrovascular activity [Farber et al., 1997]. The com-
paratively low dose used in the present work (1%) does not
seem to affect spatial RSN properties as our previous work
has shown RSNs closely resembling known task-based net-
works and homologous human RSNs [Hutchison et al.,
2011, in press]. A greater level of understanding and further
experimentation will be necessary to truly elucidate
between species differences in dynamics.

Controls and Limitations

There has been recent evidence suggesting a possible
link between resting-state and spontaneous OCM behavior
in awake human subjects [Ramot et al., 2011]. The authors
admittedly could actually not delineate causal relation-
ships between the two phenomena, i.e., whether the eye
movements were controlled by the spontaneous BOLD
fluctuations, if the eye movements were actually generated
by the fluctuations, or if both were driven by a third, com-
mon input. We visually inspected the raw monkey data to
determine if there were shifts in eye movements during
the resting-state scans of which none were apparent.
Importantly, the eyes were kept closed throughout the du-
ration of the scanning. Finally, the vPM network served as
an independent control as the fluctuating dynamics were
not correlated with the OCM RSN activity and therefore,
would indicate the effects could not solely be a result of
residual eye movements.

Heart rate, blood pressure, and breathing rate (moni-
tored for monkeys) were not recorded during image acqui-
sition. This prevents us from modeling the changing
physiological parameters in reference to the network fluc-
tuations. However, we do not believe physiological arti-
facts to be the origin of the RSN dynamics. RS-BOLD
signals are dominated by lower frequencies (<0.1 Hz)
with minimal (>10%) contribution of higher frequent car-
diac and respiratory oscillations (>0.3 Hz, higher in the
monkey) to the correlation coefficient [Cordes et al., 2001].

Figure 11.

Sliding-window pairwise correlations of ‘‘oculomotor’’ network

seeds over time for a representative awake human subject (S7).

Every vertical line of each image represents the unfolded pair-

wise correlation matrix as seen in Figure 2 averaged across 30 s

(Row 1), 60 s (Row 2), 120 s (Row 3), and 240 s (Row 4) win-

dows for the entire scan. Plots for all subjects are shown in Sup-

porting Information Figure 12. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Contributions from these signals is further diminished
through low-pass temporal filtering. Global gray matter
(data not shown), WM seeds, vPM RSN, and OCM RSN
were all found to have unique temporal profiles excluding
a common artifactual source. Within-network seeds also
showed unique time-courses and correlation fluctuation
profiles suggesting node specific activity. Finally, the find-
ings were reproduced using two different scanners (Seim-
mas and Agilent), at two different field strengths (3 T and
7 T), with different acquisition parameters across two dif-
ferent species, one of which was anesthetized.

Decreasing the window size will increase the number
of spurious correlations that occur when calculating the
correlation coefficients over time. This has been shown to
change in proportion to the square root of the sampling
time [van Dijk et al., 2009]. This is a concern for the
present work as the correlation coefficients are compared
across window sizes. It was found, however, that the
highest statistical reliability occurred at the points of
highest correlation and the highest variances were found
for near-zero correlation values. This was also true of the
mean correlation signal in which ‘‘hypersynchronous’’
states were statistically significant (P < 1.7 � 10�4, 1.8 �
10�4, 2.1 � 10�4, 2.8 � 10�4, for 30 s, 60 s, 120 s, and
240 s, respectively; corrected for multiple comparisons
using Bonferroni correction; data not shown). This prop-
erty was observed across all seeds and subjects. In addi-
tion, correlations between seed regions are run
independently of one another. It is improbable that states
of ‘‘hypersynchrony’’ would result from spurious correla-
tions, as these would be randomly distributed across
time and not occurring between multiple seed regions
simultaneously.

Implications for Future Work

Current RS-fMRI analysis techniques such as cross-cor-
relation or independent component analysis [both techni-
ques have been previously applied to the current data set,
see Hutchison et al., 2011, in press] assume stationarity of
functional connectivity over the entire length of the scan,
offering a limited, averaged view of the network relation-
ships. Evidence is now suggesting that these techniques
can be insensitive to robust spatiotemporal dynamics of
the RSNs [Britz et al., 2010; Chang and Glover, 2010;
Musso et al., 2010; Mantini et al., 2007; Sato et al., 2006]
that disappear at analysis windows greater than 4 min in
length [van Dijk et al., 2009]. The observation of RSN
changes does not diminish the significance of studies
assuming static network contributions, but suggests that
there are statistically reliable and potentially meaningful
dynamics that could be examined within these same data-
sets. This is in addition to new insights that may be gained
by examining the transient inclusion of new network
nodes into the stereotypical RSN. There is however, one
major caveat. For RSNs determined from long observation

windows, one can be confident that the static maps reflect
all of the ‘‘core’’ nodes in a network. However, RSNs
derived from short time windows may not show all nodes
in a network as some of these may have transiently zero
correlation as shown in our data. Until the nature of these
dynamic RSNs are understood, it seems prudent to use ob-
servation windows of several minutes to ensure capture
all the nodes of a RSN.

The results suggest nonstationary relationships between
brain areas; however, the sliding-window technique used
to reveal this still assumes stationarity, albeit on a
smaller temporal scale. Window sizes below 30 s (15 vol)
did not result in significant correlations and suggest a
minimum window size is necessary. However, more so-
phisticated complex network measures investigating pos-
sible nonlinear interactions and their manifestations
[Friston, 1997; Werner, 2007], as well as consideration of
multiple RSNs will be needed to truly characterize the
underlying dynamics and elucidate the processes that
govern them.

The time-varying changes of the RSNs may offer insight
into the large-scale network behavior that is difficult to
achieve with other methodological approaches that do not
share the same level of spatial resolution or brain coverage
as fMRI. Additional work will have to focus on identifying
activity profiles, transition states, and task-related changes
to the dynamic behavior using novel analysis strategies—
particularly at the group level [Chang and Glover, 2010;
Deco et al., 2011; Sato et al., 2006]. RS-fMRI has emerged
as a possible diagnostic tool in clinical contexts [Auer,
2008; Greicius, 2008] and, given the wealth of information
provided by dynamic alterations and emphasis at the sin-
gle subject level, presents an exciting future direction for
clinical applications.

CONCLUSIONS

The present findings indicate that ongoing fluctuations
of resting-state functional connectivity are an intrinsic
property of mammalian brain organization and not simply
a consequence of conscious, cognitive processing. This fun-
damental feature of temporal brain dynamics may be
exploited to assemble and modulate state- or task-depend-
ent representations critical for cognition and behavior.
Multimodal investigations will be necessary to elucidate
the electrophysiological correlates of this phenomenon, but
the results suggest that important network information
and dynamics are missed when using average functional
connectivity as the single network measure.
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