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Abstract: A wide range of essential reasoning tasks rely on contradiction identification, a cornerstone
of human rationality, communication and debate founded on the inversion of the logical operators
‘‘Every’’ and ‘‘Some.’’ A high-density electroencephalographic (EEG) study was performed in 11 nor-
mal young adults. The cerebral network involved in the identification of contradiction included the
orbito-frontal and anterior-cingulate cortices and the temporo-polar cortices. The event-related dynamic
of this network showed an early negative deflection lasting 500 ms after sentence presentation. This
was followed by a positive deflection lasting 1.5 s, which was different for the two logical operators. A
lesser degree of network activation (either in neuron number or their level of phase locking or both)
occurred while processing statements with ‘‘Some,’’ suggesting that this was a relatively simpler sce-
nario with one example to be figured out, instead of the many examples or the absence of a counterex-
ample searched for while processing statements with ‘‘Every.’’ A self-generated reward system seemed
to resonate the recruited circuitry when the contradictory task is successfully completed. Hum Brain
Mapp 30:4187–4197, 2009. VC 2009 Wiley-Liss, Inc.

Keywords: contradictory reasoning; electroencephalography (EEG); independent component analysis
(ICA); logical operators
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INTRODUCTION

Reasoning is one of the core expressions of human intel-
ligence and is pivotal to effective social interactions, as
well as to the solution of everyday practical problems. The
identification of contradiction, which is crucial for logical
reasoning, plays an important role in communication,
understanding, and learning. Western culture, which
largely derives its models from Aristotelian logic, relies on
a model that polarizes contradictory perspectives, i.e.,
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deciding if two apparently divergent propositions are con-
tradictory. In philosophical and historical perspective, con-
tradictions are embedded in the social structure of society
and can inherently lead to economic and cultural crises
and eventually revolutions. In conversations, when trying
to prove the contradiction of a general statement we fre-
quently search for a counterexample. To refute the state-
ment ‘‘Every man is tall,’’ it is therefore sufficient to state
‘‘Napoleon is short.’’ In logic, the same statement would
be contradicted with the formulation ‘‘Some men are
short.’’ Above and beyond being fundamental structures
in logic, ‘‘Every’’ and ‘‘Some’’ are key conceptual catego-
ries of human reasoning. We rely on these operators when
generalizing properties of objects or phenomena or alterna-
tively to describe their specific attributes. ‘‘Every’’ and
‘‘Some,’’ pervade natural language, provide a means of
communicating quantities and are central to conducting a
debate. A profound cultural awareness of the importance
of these categories promotes communication and dialogue
aptitude across the whole of society.

Considerable progress has been made over the past dec-
ade in understanding the neural basis of human reasoning
[Goel, 2007; Kroger et al., 2008] with the aid of noninva-
sive brain imaging tools. Techniques like functional mag-
netic resonance (fMRI) [Goel, 2003, 2007; Goel and Dolan,
2001, 2003, 2004; Goel et al., 2000, 2007; Newstead et al.,
1997; Prado and Noveck, 2007] and electroencephalogra-
phy (EEG) [Luo et al., 2008; Prado et al., 2008; Qiu et al.,
2007] offer a window on brain function that is complemen-
tary to more traditional measurements of psychophysical
performance, such as reaction times and other psychomet-
ric parameters. Extensive and distributed brain networks
organized with a high degree of modularity have been so
far identified as sustaining logical reasoning, with a con-
sistent involvement of frontal areas [Goel, 2007; Greene
et al., 2004].

In this study we have used high resolution EEG to
investigate the electrophysiological correlates of cognitive
processing while identifying whether a conclusion cor-

rectly contradicted a premise. Given the complexity of the
putative processing networks, we decided to approach the
reasoning network recognition through independent com-
ponent analysis (ICA). Surprisingly, to researchers accus-
tomed to thinking that EEG sources can only be separated
by solving the biophysical inverse problem, ICA does not
require any ‘‘a priori’’ assumptions on network properties
or head model during the separation step. This algorithm
is able to identify the brain sources supporting the investi-
gated function by exploiting the most accurate information
provided by the electrophysiological techniques, i.e. the
dynamical properties of the recorded signal [Barbati et al.,
2004; Jung et al., 2000; Makeig et al., 2002; Porcaro et al.,
2009]. Beyond separating stereotyped nonbrain artifact sig-
nals including eye movements, line noise, cardiac artifacts,
and muscle activities [Makeig et al., 2004], ICA can iden-
tify large or small neuronal pool activities with diverse
physiological and functional roles [Hyvärinen and Oja,
2000; Makeig et al., 1999; Vorobyov and Cichocki, 2002].
Appropriate procedures must be applied to identify the
ICs representing brain sources of interest, generally with a
set of ICs corresponding to one brain source with specific
spatio-temporal properties. After IC separation on the ba-
sis of time signal statistical properties, and after the second
step of IC identification on the basis of the expected spa-
tio-temporal characteristics, proper algorithms must be run
to characterize the 3D configuration of these sources. In
other words, after IC separation, ICA allows the use of
source localization algorithms having isolated the field dis-
tribution generated by the specific source of interest.

We used typical forms within the Aristotelian categori-
cal proposition structure in the context of a naturalistic
debate, presenting premise-conclusion pairs like ‘‘Every
man is mortal—Some men are immortal.’’ The two senten-
ces were presented in a dialogue-like fashion, with a pro-
ponent formulating a statement, and an opponent
attempting its refutation. The subject was asked to recog-
nize the correctness of the opponent refutation independ-
ent of the correctness of the sentence content (see Fig. 1).

Figure 1.

Experimental setup. The beginning of the trial was signaled by a

‘‘þ’’ appearing in the centre of the screen for 1 s, followed by

the presentation of the premise categorical proposition for

2.5 s. Thereafter the sentence disappeared for 0.5 s (Waiting pe-

riod), followed by the presentation of the conclusion categorical

proposition for 2.5 s. Then, a question mark appeared for 1.5 s,

requiring the subject to press one push button if the conclusion

contradicted the premise and a different push button if the con-

clusion did not. If they were unable to make a clear choice, they

were told to omit the response (i.e., to not push either button).

Finally, a feedback advised the subject whether any button had

been pressed or not, with no indication about the correctness

of the contradiction identification. ‘‘New Trial’’ appearing on the

screen advised the subject that the next trial was starting.
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We investigated whether identification of contradiction
corresponded to different activation dynamics for the uni-
versal (‘‘Every’’), as opposed to the particular (‘‘Some’’) op-
erator. To this end, the 200 premise-conclusion couples
were evenly divided between contradictory (C) and not
contradictory (NC), half of them presenting a premise with
the ‘‘Every’’ logical operator (UNIVERSAL) and the other
half with the ‘‘Some’’ logical operator (PARTICULAR).

MATERIALS AND METHODS

Subjects

Subjects consisted of 11 healthy native Italian speakers
(mean age: 30.5 years; range: 24–38 years; five men, six
women) took part in this experiment. None of the subjects
had specific background knowledge or experience in logic.
Subjects gave their informed written consent after the na-
ture of the study was explained to them. The study
occurred at Aston University and was authorized by the
Aston University Ethics Committee. All subjects were
healthy, right-handed, and had normal or corrected-to-nor-
mal vision.

EEG Recordings

Scalp EEG signals were recorded continuously during
the protocol using an EGI data acquisition system (Electri-
cal Geodesics, Eugene, OR, USA; http://www.egi.com)
with the third generation of EGI dense array net, the
HydroCel Geodesic Sensor NetVR [128-channel HCGSN—
Tucker, 1993]. Gain and zero calibration were performed
before the start of each EEG recording; channel impedan-
ces were kept below 50 kX for all net sensors [Ferree et al.,
2001]. EEG amplified signals were sampled at 500 Hz (pre-
sampling analogical filter 0.1–200 Hz) and collected for
off-line processing. All channels were referenced to the
vertex (Cz) electrode.

Stimuli

Subjects were comfortably seated at a distance of 1 m
from the front of a 19-in. monitor. Stimulus presentation
was carried out via a Dell PC using E-Prime experimental
programming software (Psychology Software Tools;
http://www.pstnet.com), which provides triggers for the
EGI recording apparatus with highly accurate timing. The
protocol contained 200 pairs of sentences, evenly divided
into the following four forms: 50 Every Some-Contradic-
tory (ES-C), 50 Some Every-Contradictory (SE-C), and 50
Every Some-Not Contradictory (ES-NC), 50 Some Every-
Not Contradictory (SE-NC). In the ES-C and ES-NC
the premise is universal (E: Every) and the conclusion is
particular (S: Some), with the conclusion contradictory
for the first set (ES-C) and not contradictory for the other
(ES-NC). Similar conditions were used for the SE-C and
SE-NC.

For example, one set of the four conditions is provided
in Table I. The four conditions were randomly presented.

Experimental Setup

Prior to recording, the experiment was described to the
subjects (see Fig. 1) and they were given a test training
session. Subjects were asked to evaluate whether the con-
clusion was contradictory or not, with respect to the pre-
mise independent of the correctness of the sentence
content. After the conclusion was reached, and at the
appearance of a go signal (a question mark), subjects had
to press one push button if the conclusion contradicted the
premise and a different push button if the conclusion did
not. If they were unable to make a clear choice, they were
told to omit the response (i.e., to not push either button).

Data Analysis

The data were low pass filtered (100 Hz) prior to the
off-line analysis. The analysis strategy aimed at extracting
signals generated only in response to the task. For this
purpose, we assumed the set of EEG signals to be gener-
ated by the mixing model:

x tð Þ ¼ As tð Þ; (1)

where t ¼ 0,1,2, : : : is the discrete sampling time; x(t) ¼
[x1(t), : : : ,xm(t)] is the m-dimensional vector of the observed
signal recorded by m sensors; A is an n � m (with)
unknown full-rank mixing matrix; s(t) ¼ [s1(t), : : : ,sn(t)]

T is
the n-dimensional unknown vector of the sources (see Fig.
2). The model is approached by processing sensor signals
by an ICA demixing system described in the form:

IC tð Þ ¼ Wx tð Þ; (2)

where IC(t) ¼ [IC1(t), : : : ,ICn(t)]
T is the n-dimensional vec-

tor of the estimated Independent Components (ICs) and W
is the separation matrix, i.e., the estimate of the inverse of
the unknown mixing matrix A, up to permutation and
scaling:

W ¼ Â
�1

(3)

TABLE I. Stimuli example

Logical operator

Contradictoriness Universal Particular

Contradictory Every man is mortal Some men are mortal
Some men are

immortal
Every man is

immortal
Not Contradictory Every man is mortal Some men are mortal

Some men are mortal Every man is mortal

An example of the four experimental conditions. ES-C: Universal-
Contradictory; ES-NC: Universal-Not Contradictory; SE-C: Particu-
lar-Contradictory; SE-NC: Particular-Not Contradictory.
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Figure 2.

Reasoning Network Identification. For representative ICs in one

paradigmatic subject, the criteria used to classify them as arti-

facts (upper panel) and cerebral sources (bottom panel) are

shown. From the left column: an exemplificative segment of IC

signal (Time Evolution), the average triggered by the premise

presentation across all 200 trails (ERP); Single Trail image with

each epoch including premise-conclusion pair represented in

color code in the abscissa with successive epochs in the ordi-

nate (ST); and the Time Frequency plot representing each time

point in the abscissa, the color coded spectral content in the

ordinate (TF), vertical solid lines indicate the presentation of

each sentence, the dashed line the end of the premise; spatial

distribution obtained by representing the corresponding IC

weights (Topographic map); the probability density function of

the IC signal (pdf) with the black line indicating the normal

probability density, the values of kurtosis (K) and skewness (S)

are provided. As the ICA procedure performs whitened prepro-

cessing, each quantity is expressed in arbitrary unit (a.u.).

Among the artifacts, the ocular artifact is in the first row, the

cardiac artifact is in the second and line power is in the third.

Among IC classified as cerebral sources, that represented in the

first row, the only one showing clear event-related activity later

than 150 ms, was consequently selected as the Reasoning Net-

work. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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We used the FastICA algorithm proposed by Hyvärinen
[1999] and Hyvärinen et al. [2001]

In the case of a high number of channels (128 in our
case), a direct extraction of all the ICs would have been
extremely time consuming and component selection
extremely challenging. We pursued a dimensionality
reduction by applying an optimized procedure to select a
k ICs-subset such that the corresponding explained var-
iance will be at least 95% [Salustri et al., 2005]. This was
proven to be a suitable procedure for subspace reduction
and avoided the time consuming estimation of all ICs in
the case of high space dimensionality corresponding to the
high number of channels. In our case, on average, 39 ICs
(range 27–49) resulted in a mean explained variance �
standard deviation of 97.58% � 1.12%.

Selection criteria of reasoning network (RN) ICs

As determined by the improvements of ICA model
applications, introduced for example in the context of
fMRI [Beckmann and Smith, 2004] and Foetal Magnetoen-
cephalography [Porcaro et al., 2006], we selected among
the above described IC subset (of about 39 ICs) of those
components showing appropriate spatio-temporal charac-
teristics. We required significant event-related responses
triggered by the conclusion presentation. To this end, each
IC dynamic was averaged, triggered on the second sen-
tence presentation for the time window including the pre-
mise, and lasting until the start of the next trial. As we
used a constant inter-stimulus interval between the pre-
mise and conclusion (3 s) in our paradigm, a single aver-
age evidenced the phase locked response of the IC to both
sentences. The single trial and time-frequency behaviors,
as well as the topographical distribution, were used to
identify ICs of interest (RN ICs, Fig. 2).

Reasoning network localization

After RN identification, its position was estimated in
each subject by retro projecting only the RN ICs and
obtaining the electric potential distribution:

EEGreck ¼ AkICk; (4)

where Ak is the estimated mixing vector [matrix A of Eq.
(1)] for the source ICk and EEGreck is the resulting ICk

retro-projection on the channels space. We submitted
EEGreck to a source localization algorithm (sLORETA)
[Pascual-Marqui, 2002] as implemented on CURRYVR soft-
ware (http://www.neuroscan.com).

Reasoning network dynamics

The RN IC dynamics were studied in response to the
presentation of the premise and the conclusion, i.e., ana-
lyzing the two time periods lasting (�0.5, 2.5) s, with 0
being the sentence presentation. The RN dynamics were
studied in the four different experimental conditions ES-C,

ES-NC, SE-C, and SE-NC, referring to trials with correct
identification.

Statistical Analysis

Behavioral data

While the distribution of errors did not differ from a
Gaussian fit (Kolmogorov-Smirnov P > 0.200 consistently),
the distribution of reaction times differed (P < 0.001) and
they were logarithmically transformed obtaining a suitable
fit (P > 0.200 consistently). Log-transformed reaction times
were analyzed by univariate general linear model (GLM)
with Logical Operator (UNIVERSAL, PARTICULAR) and
Contradiction (CONTRADICTORY, NOT CONTRADIC
TORY) as fixed factors and Subject as Random factor. Per-
centages of errors were submitted to an analysis of var-
iance (ANOVA) for repeated measures with Logical
Operator (UNIVERSAL, PARTICULAR) and Contradiction
(CONTRADICTORY, NOT CONTRADICTORY) as within-
subject factors. Absence of either Logical Operator or Con-
tradiction main factor for Errors was checked, indicating
that the accuracy in performing the tasks did not change in
relationship to the presentation of the different sentences.

Reasoning network behavior

The dynamics of the RN-evoked response were submit-
ted to statistical analyses to assess amplitude differences
in different tasks. The mean amplitude areas included
between the onset of the early negative stage and the
return to baseline and the positive stage onset and the
return to baseline were considered for RN-evoked
response, both following the premise and conclusion pre-
sentations. Since the distributions of these parameters did
not differ from a Gaussian fit (Kolmogorov-Smirnov P >
0.200 consistently), they were submitted to an analysis of
variance (ANOVA) without correcting transformations.
The full model included Sentence (PREMISE, CONCLU-
SION), Logical Operator (UNIVERSAL, PARTICULAR),
and Contradiction (CONTRADICTORY, NOT CONTRA-
DICTORY) as within-subject factors.

A result was reported only if it was statistically signifi-
cant (P < 0.050 Greenhouse-Geisser corrected whenever
the sphericity assumption for ANOVA was violated).

RESULTS

Behavioral Data

Subjects performed the PARTICULAR and UNIVERSAL
tasks with comparable accuracy both for the contradictory
and not contradictory conditions, as demonstrated by the
absence of any main effect from the ANOVA design for
the number of errors (P > 0.200) (Table II).

On the contrary, reaction times showed a strong main
Logical Operator effect [logarithmically transformed time
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F(1, 10.098) ¼ 32.535, P < 0.001, Table II], with longer reac-
tion times for UNIVERSAL tasks than for PARTICULAR
ones. A Contradictory effect was not observed (P ¼ 0.441).

Identification of Reasoning Network (RN)

In every subject a single independent component (IC)
was associated with an event-related response occurring at
latencies subsequent to those traditionally associated with
primary sensory processing (see Fig. 2). This IC accounted
for the majority of the variance of the whole non-artifac-
tual scalp EEG signals along the whole 40-min session in
each subject (Table III, second column). As said before, we
refer to this IC as the reasoning network (RN).

Consistently across subjects, the RN included the bilat-
eral Temporo-polar cortex (middle temporal gyrus Brod-

mann Area (BA) 21 and the most rostral part of the
superior and middle temporal gyri BA 38), the bilateral
Orbitofrontal cortex (BA 10, 11, and 47), and the bilateral
Anterior Cingulate Cortex (BA 32) (Fig. 3, Table III).

Reasoning Network Behavior

At the presentation of the two sentences (Fig. 4a,b), RN
activated much more strongly after the conclusion (mean
1.62 � S.D. 0.69 averaged over the four conditions) than
the premise (1.33 � 0.53, paired t test t(10) ¼ �3.396, P ¼
0.007). Moreover, the processing of the conclusion lasted
much longer (1663 � 651 ms) than that of the premise
(1233 � 454 ms, t(10) ¼ �3.842, P ¼ 0.003). Remarkably,
the RN activated much faster after the conclusion presen-
tation (280 � 87 ms) than after the premise (481 � 101 ms,
t(10) ¼ 12.225, P < 0.001). This last feature underlines the
fact that the reasoning for contradiction identification
starts with the premise processing. On this basis, we
developed the statistical modeling to include both premise
and conclusion as a whole reasoning process.

As for the involved anatomical structures mentioned in
the above section, the RN time-frequency characteristics
were also highly consistent across subjects. RN dynamics
consistently showed an early negative stage in the 150–500
ms time period after sentence presentation (Early Negative
Stage) across trials (Fig. 5, first row). With a similar inter-
trial stability, a positive stage was subsequently found
reaching maximal amplitude between 500 and 2,000 ms
after appearance of both the premise and the conclusion
sentences (Positive Stage). In terms of spectral characteris-
tics, the RN activity was strongly represented in the 0.1–15
Hz frequency range (Fig. 5 second row). Moreover, a clear

TABLE II. Behavioral data

Logical operator

Contradictoriness Universal Particular

Correct responses (%)
Contradictory 98.0 � 3.2 97.5 � 1.9
Not contradictory 97.9 � 2.2 98.5 � 1.7

Reaction times (log s)
Contradictory 2.74 � 0.007 (550 ms) 2.69 � 0.006 (490 ms)
Not contradictory 2.71 � 0.006 (513 ms) 2.70 � 0.006 (501 ms)

In each of the four experimental tasks, mean across subjects
(�S.D.) of the percentage of correct responses and of the reaction
times, i.e. the time between the question mark appearance and the
subject response, after logarithmic transformation. In squared pa-
renthesis the exponential inverse transformation of the mean is
indicated to give an idea of reaction time dimension (ms).

TABLE III. Structures involved in reasoning networks

Subject ICs EV (%)

Temporo-polar cortex Orbitofrontal cortex (OFC)

Anterior
cingulated

cortex (ACC)

L R L R L R

AI 60 20; 21; 38 47
AS 82 38 21; 22; 38 10; 11; 47 10;11; 47 32
CP 84 38 21; 22; 38 11; 47 11; 47
DB 82 38 20; 21; 22; 38 10;11; 47 10; 11; 47 32 32
DF 38 21; 38 20; 21; 38
ET 88 20; 21; 38 20; 21; 38 10; 11; 47 10; 11; 47 32 32
FS 56 21; 38 38 10; 11; 47 10; 11; 47 32 32
GDL 41 38 20; 21; 22; 38 11; 47 11; 47 32 32
LDL 62 21; 38 21; 38 11; 47 11; 47 32 32
MTM 87 20; 21; 38 20; 21; 22; 38 11; 47 11; 47
SC 90 20; 21; 22; 38 20; 21; 22; 38 10; 11; 47 10; 11; 47 32 32
Average 70 21; 38 21; 38 10; 11; 47 10; 11; 47 32 32

For each subject, the variance of the signal from all channels throughout the 40 min explained by the identified IC is expressed as
percentage of the total variance (IC EV). Structures involved within the network are expressed by the corresponding Brodmann areas
classified by the anatomical site.
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Figure 3.

Reasoning Network position. Topography of the reasoning network, averaged across subjects,

localized as described in the methods section on a standard model. It is to be noted that the

potential distribution obtained by retro-projecting only one IC is time-invariant up to a scale fac-

tor, consequently, the subtending current distribution shape is time-independent. [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 4.

Reasoning Network Behavior. (a) RN activity after Premise and

Conclusion presentations during the time periods lasting (�0.5,

2.5) s, 0 being the sentence presentation. (b) The RN activity af-

ter Premise and Conclusion are superimposed to facilitate com-

parison of their dynamics. (c) RN activity compared during the

UNIVERSAL (ES-C, ES-NC) vs. PARTICULAR (SE-C, SE-NC)

premise-conclusion pairs. The grey areas indicate significant

change between the two task groups. (d) As case (c) for the

Contradictory vs. Not Contradictory task comparison. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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dynamic of oscillating activity in the gamma band was
evident for the duration of the task (Fig. 5 second row).

Early negative stage

Full model ANOVA did not display any main or inter-
action effect.

Positive stage

Full model ANOVA indicated clear interaction effects
Sentence � Contradiction [F(1,10) ¼ 14.879, P ¼ 0.003] and
Sentence � Logical Operator [F(1,10) ¼ 5.854, P ¼ 0.036],
indicating that the reasoning network was activated in a
different way during the presentation of the premise and
the conclusion depending on the presence or absence of
Contradiction, and whether a UNIVERSAL or PARTICU-
LAR premise had to be contradicted. To better investigate
the subtended phenomena, the two sentences were sub-
mitted to respective ANOVA reduced models.

Premise

While a Contradictory effect was completely absent (P ¼
0.878), a strong Logical Operator effect was found [F(1,10)
¼ 10.616, P ¼ 0.009], corresponding to a stronger reason-
ing network activation during the presentation of UNI-

VERSAL as opposed to the PARTICULAR sentences (Fig.
4c).

CONCLUSION

A clear Contradictory effect appeared [F(1,10) ¼ 7.402, P
¼ 0.022], corresponding to a stronger reasoning network
activation when the CONTRADICTORY conclusions were
presented than when the NOT CONTRADICTORY ones
were (Fig. 4d). Logical Operator effect did not reach statis-
tical significant (p ¼ 0.193).

To investigate, in greater detail, dynamic properties of
different stages of information processing, the RN activity
periods during the presentation of premises and conclu-
sions were subdivided into earlier ascending and later de-
scending activation phases (Fig. 4c,d), by introducing into
the statistical design the corresponding within-subject fac-
tor Phase (ASCENDING, DESCENDING). The amplitude
of RN activity was calculated as the mean area between
activation onset and the maximum for the ascending
phase, and between the maximum and the return to base-
line for the descending phase.

The analysis of the premise showed that the Logical Op-
erator effect appeared only during the descending phase
[F(1,10) ¼ 5.148, P ¼ 0.047] (Fig. 4c).

The analysis of the conclusion showed, in addition to
the above-mentioned Contradictory effect, the interaction

Figure 5.

Reasoning Network time-frequency behavior. Up: Average

across subjects of the topographical distribution of the electric

potential generated by the RN. Middle: Average across subjects

of single trail image as described in Figure 2 showing the RN

time evolution along the premise-conclusion presentations cor-

responding to the four experimental conditions. Bottom: Again

for each of the four tasks, time frequency plot as described in

Figure 2, averaged across subjects and referred to as the 500 ms

pre-premise period. The green color code represents values

nonsignificantly differing from 0 using a bootstrap technique with

threshold at P ¼ 0.01. Note that different scales hold for the

oscillatory activity amplitude in the two (0–30) Hz and (30–90)

Hz frequency bands. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

r Medaglia et al. r

r 4194 r



Phase � Logical Operator effect [F(1,10) ¼ 4.942, P ¼
0.050]. While RN activations did not differ during the
ASCENDING phase, during the DESCENDING period
UNIVERSAL conclusions induced stronger RN activation
than PARTICULAR ones [reduced model in descending
phase F(1,10) ¼ 5.448, P ¼ 0.042, Fig. 4c,d].

DISCUSSION

Contradiction is a cornerstone concept in logic and is
considered to be the basis for any reasoning process. In
more general terms, contradiction is inherently associated
with a ‘‘truth’’ criterion. Contradictory entities are present
in every significant human experience as the two faces of
a coin: light and darkness, joy and sorrow, passion and
suffering, life and death. Our study on contradiction offers
a novel angle to the discussion on a human reasoning as-
pect intimately connected with the historical tradition of
mathematicians, philosophers, and physicists and sheds
light on a fundamental aspect of cognition.

RN Activity Universal > Particular

During reasoning, to identify whether a conclusion con-
tradicts a premise, our reasoning network shows a signifi-
cantly greater activation when a UNIVERSAL statement is
processed. The more limited computational load required
to process PARTICULAR statements could be due to the
more direct process required to explore a single example
in the case of a ‘‘Some’’ sentence, as opposed to the multi-
ple examples or the absence of a counterexample searched
for during processing of an ‘‘Every’’ sentence. The longer
reaction times found for UNIVERSAL as opposed to PAR-
TICULAR statements seem to support this hypothesis (Ta-
ble II). When reasoning about familiar and concrete
situations—as opposed to unfamiliar and abstract ones
like ‘‘Every A is B : : : ’’—our brain automatically utilizes,
in parallel with formal methods, situation-specific heuris-
tics based on prior knowledge and experience [Goel et al.,
2007]. Previous evidence suggests that the response of the
frontal-temporal system to familiar situations is—at least
to some degree—content specific. In particular, the middle
temporal lobe regions as part of object-based knowledge
networks are more active when reasoning on statements
like ‘‘Every tree is tall’’ and were structures well repre-
sented in our reasoning network. In our experiment, when
processing statements commonly encountered in natural
language, the fronto-temporal system was challenged
more by universal than particular forms. Our result sug-
gested that in processing familiar sentences, generalization
requirements recruit a wider network than would be
required when assigning specific attributes within a lim-
ited field of action.

In spite of an identical inversion required by both logi-
cal operators, we found that universal sentences required
stronger reasoning network activation than particular

ones. This could be explained by a different internal repre-
sentation of the logical operators themselves rather than
by the effect of the applied rule.

RN Activity Dynamics

The early negative stage of the reasoning network event-
related dynamics (Figs. 4 and 5), peaking around 150–500
ms after sentence presentation in correspondence with the
reading phase, was remarkably consistent with intra-corti-
cal recordings from lateral prefrontal cortex during word
reading [Lachaux et al., 2008]. This seems to support the
idea that the reading phase is parallel to cognitive proc-
esses possibly mediated by a coordinated interaction
between regional synchronizations and desynchronizations
of neuronal oscillations, reflecting long-range network
engagement [Lachaux et al., 2008]. This initial phase is fol-
lowed by a strong positive stage lasting �1.5 s when the
presence of a contradictory conclusion is identified. This is
associated with a consistent pattern of an ascending phase
lasting about 300 ms and a successive decay starting at
about 800–900 ms from sentence presentation. This latter
phase corresponds to the period in which the logical oper-
ator is classified during premises and conclusions.

RN Activity Contradictory > Not Contradictory

Subjects had to target the contradictory sentences and
these evoked stronger reasoning network activation than
the control not contradictory ones. As opposed to what is
observed when comparing Universal and Particular sen-
tences, reaction times were similar for contradictory and
not contradictory pairs, suggesting that the higher RN am-
plitude does not reflect a higher processing load during
the identification of contradictoriness. The activated rea-
soning network partially overlaps with the cortical compo-
nent of the central system sustaining decision-making,
strongly involving the orbitofrontal and cingulate cortices.
It has, in fact, been recently determined that, in addition
to the striatum and dopamine systems, activity in these
regions is predictive of the choices of animals and people
[Rushworth and Behrens, 2008]. In particular, enhanced
activity in the orbitofrontal cortex (OFC) is associated with
risk-taking behavior [Doya, 2008]. The anterior cingulate
cortex (ACC) plays an important role in motivating sub-
jects to act based on a cost/benefit estimate [Denk et al.,
2005] The ACC has a strong topographical specificity, with
the gyral component implicated in social learning and the
sulcal in reward-based learning [Rudebeck et al., 2006;
Walton et al., 2002]. In our experiment based on identify-
ing contradictions, stronger sulcal ACC and OFC activities
were found while deciding in favor of the required task.
The feedback consequent to the positive and negative
response was the same; the same behavioral response was
required as a consequence of the decision and subjects
performed with similar reaction times in both cases. The
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absence of any external feedback after the identification of
the contradictory form suggests that neural structures can
develop an intrinsic ability to enhance synchronization
phenomena as a consequence of performing the required
task, without the need of a reward from the external envi-
ronment. Our data could be explained by hypothesizing
that human cognitive structures involved in reward-based
training and decision-making are able—as a result of rein-
forcement-based learning to intrinsically induce an activity
that had previously been dependent on external reward
during the learning process This internal ability is further
supported by recent hypotheses of the rostral prefrontal
cortex (PFC, approximating BA 10) as the key attention-
switching structure focusing either on environmental stim-
uli, or by contrast, on self-generated or maintained repre-
sentations [i.e. the ‘‘thoughts in our head,’’ ‘‘gateway
hypothesis,’’ Burgess et al., 2007].

RN Constituted by ‘‘Expected Areas’’

We found reasoning network activation in every subject.
This involved the temporo-polar, orbito-frontal, and ante-
rior cingulate cortices. Moreover, single trial analysis
showed strong repeatability of network recruitment
throughout the task performance, indicating a fundamen-
tal role of searching for contradiction in human reasoning.
Cognitive neuroscience data are not in keeping with a uni-
tary system being the basis of logical reasoning, suggesting
instead a distributed system that includes dynamic recon-
figuration of the fronto-temporal and anterior cingulate
regions in response to specific tasks and environmental
cues [Goel, 2007]. Language structures are not included in
the networks activated by our paradigm, probably because
reasoning about familiar situations automatically utilizes
situation-specific heuristics, mainly involving orbito-frontal
cortex and inferior-middle temporal regions [Goel, et al.
2007]. Since in all subjects a single component explained
the majority of the signal power throughout the experi-
ment, and very simple common words were used for the
reasoning, it is conceivable that structures processing
semantic-syntactic content were not significantly engaged.

RN Identification Procedure

Brain electric fields recordable from the scalp through
EEG are macroscopic post-synaptic potentials created by
clusters of apical dendrites of neocortical pyramidal cells
firing synchronously [Nunez and Srinivasan, 2006]. The
absence of any appreciable delay in the scalp sensor sig-
nals with respect to neural current dynamics and fre-
quency components, such that quasi-static approximation
of Maxwell equations holds throughout the whole spec-
trum of interest, strongly supports the superposition prin-
ciple, according to which the relation between EEG scalp
potentials and generating cerebral sources may be reason-
ably approximated by a system of linear equations [Sarvas,

1987]. Under these conditions the use of a blind source
separation technique such as ICA seems most advanta-
geous for identifying cerebral activities of interest. ICA
decomposes the data into sources with independent time
courses and scalp maps, without taking into account any
information about head and cerebral current physics and
geometry. ICA, combined with time/frequency analysis
and trial-by-trial visualization, is able to recover compo-
nents indexing physiologically distinct processes. More-
over, the complexity of networks sustaining reasoning
strengthens the suitability of source identification methods
based on source dynamic behavior instead of the mere
localization of their spatial properties.

In conclusion, a consistent reasoning network was
clearly identified in each healthy volunteer that involved
the temporo-polar, orbito-frontal and anterior cingulated
cortices. After an early negative period lasting about 500
ms, this network was more activated for about 1.5 s, when
processing universal statements and contradictory conclu-
sions. Simpler cerebral processing in the heuristic figuring
of a single example instead of many, or searching for the
absence of a counterexample, could be the reason why the
logical operator ‘‘Some’’ induced smaller reasoning net-
work activation than ‘‘Every.’’ A self-generated reward
system appeared to be present in adult humans, with the
ability to resonate the recruited circuitry when a task is
accomplished in the required form.
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