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Abstract: This article reviews progress and challenges in model driven EEG/fMRI fusion with a focus
on brain oscillations. Fusion is the combination of both imaging modalities based on a cascade of for-
ward models from ensemble of post-synaptic potentials (ePSP) to net primary current densities (nPCD)
to EEG; and from ePSP to vasomotor feed forward signal (VFFSS) to BOLD. In absence of a model,
data driven fusion creates maps of correlations between EEG and BOLD or between estimates of nPCD
and VFFS. A consistent finding has been that of positive correlations between EEG alpha power and
BOLD in both frontal cortices and thalamus and of negative ones for the occipital region. For model
driven fusion we formulate a neural mass EEG/fMRI model coupled to a metabolic hemodynamic
model. For exploratory simulations we show that the Local Linearization (LL) method for integrating
stochastic differential equations is appropriate for highly nonlinear dynamics. It has been successfully
applied to small and medium sized networks, reproducing the described EEG/BOLD correlations. A
new LL-algebraic method allows simulations with hundreds of thousands of neural populations, with
connectivities and conduction delays estimated from diffusion weighted MRI. For parameter and state
estimation, Kalman filtering combined with the LL method estimates the innovations or prediction
errors. From these the likelihood of models given data are obtained. The LL-innovation estimation
method has been already applied to small and medium scale models. With improved Bayesian compu-
tations the practical estimation of very large scale EEG/fMRI models shall soon be possible. Hum Brain
Mapp 30:2701–2721, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

The principled combination of information from both
modalities to achieve images with simultaneously high
spatial and temporal resolution is what we shall term
EEG/fMRI fusion [Ritter and Villringer, 2006]. It can be ei-
ther data driven or model driven (see Fig. 1). Although
data driven fusion provides empirical constraints for mod-
eling, it is model driven fusion that will provide deeper
understanding of neural mechanisms. This article shall
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review progress and challenges in analyzing brain oscilla-
tions with model driven EEG/fMRI fusion. Some recent
methodological advances will also be highlighted. At the
onset, we state that we limit our analysis to resting state
oscillatory brain activity due, not only to space limitations,
but also because there is a consistent body of work in this
area that can also provide insight into the analysis of
evoked and induced activity. When relevant we will

include information on models with steady state stimula-
tion. Another advantage of limiting our attention to resting
state activity is that here we sidestep the mismatch in tem-
poral resolution between EEG and fMRI, only occupying
our attention with slow variations in the parameters of the
resting state.
Nevertheless the theoretical interpretation of this type of

activity is of great importance. Oscillatory brain activity

Figure 1.

Strategies for EEG/fMRI data analysis. A: Simplified underlying

forward models (FMs) for fusion. In a given voxel neural activity

generates an ensemble of postsynaptic potentials (ePSP). Along

the left branch of the diagram the temporally and spatially

synchronized summated PSPs of neurons with open fields pro-

duce the primary current density (PCD). This is the PCD FM.

The volume conductor properties of the head transform the

PCD into EEG/MEG which is the FM for this type of signal.

Along the right branch of this diagram, the ePSP generates a vas-

omotor feed forward signal (VFFS) via its own FM, which in turn

is transformed via the hemodynamic FM into the observed BOLD

signal. Note that any one of the model constructs enumerated

here (ePSP, PCD, VFFS, EEG/MEG, BOLD) is time dependent and,

according to the type of modeling, can be defined as either a sin-

gle variable or a vector of variables. B: Fusion by measuring cova-

riation of the EEG and BOLD. In this data driven approach to

EEG/fMRI fusion the EEG is considered to have the same time

evolutin as the PCD which is considered as a driver for the

BOLD signal. The time varying power in an EEG band is con-

volved with a hemodynamic response function , h(t), and then

correlated with the BOLD signal (correlation denoted by a thick

arrow). Since the temporal dynamics of the EEG are taken as a

surrogate for the VFFS this is an asymmetrical type of fusion. C:

Fusion by measuring co-variation of the PCD and VFFS. This is

also a data driven approach in which the FMs for the EEG/MEG

and BOLD are inverted, by solving respectively a spatial and tem-

poral inverse problem to yield estimates of the PCD and VFFS.

These estimates are then correlated (thick arrow) to accomplish

a fusion that is symmetrical in that both modalities are given equal

a priori weight. D: Model Driven Fusion by estimating the ePSP

from EEG and BOLD. This is a model driven approach in which

simultaneous Bayesian inversion is carried out with all FMs. In

practice this involves repeated simulations with tentative values of

ePSPs and other parameters and then modifying them to maxi-

mize an statistical measure of fit. One possible method for this

estimation is shown in Figure 4.
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seems to be the weft that holds together the fabric of neu-
ral computations [Varela et al., 2001]. Several types of rest-
ing state and evoked rhythmic activity have been observed
in local field potential (LFP)[Engel et al., 2001], electro and
magneto-encephalographic activity (EEG/MEG)[Buzsaki
and Draguhn, 2004] as well as, more recently, in record-
ings of blood-oxygen-level dependent signals (fMRI)[Fox
and Raichle, 2007]. These rhythmic activities have been
found to be signatures of different behavioral states. The
concurrent measurement of both the EEG and fMRI [Ives
et al., 1993; Laufs et al., 2008] and the emergence of EEG/
fMRI fusion methods promises improved identification of
the neural ensembles—and the connections between
them—that generate these different brain rhythms
[Goldman et al., 2002].
Regarding EEG/fMRI fusion methods, are all based

on the conceptual framework shown in Figure 1A. It is
assumed that neural activity is transformed into
recorded EEG or BOLD signal by corresponding for-
ward models. We simplify current knowledge by
assuming that the ensemble of postsynaptic potentials
(ePSP) of neurons at a given voxel is the main contribu-
tor to both types of recordings [Attwell Iadecola, 2002;
Logothetis, 2002; Riera et al., 2008]. To arrive at the
EEG, a first forward model summarizes ePSPs from
neurons with the appropriate geometry, spatial arrange-
ment and temporal synchronization resulting in a net
primary current density (PCD) distribution. This, in
turn, is subject to a second transformation, a linear spa-
tial convolution with the EEG Lead Field [Nunez and
Silberstein, 2000]. The pathway to the BOLD signal also
comprises two transformations, one which transforms
the ePSPs into a local Vasomotor feed forward signal
(VFFS) that then undergoes a (possibly nonlinear) tem-
poral convolution with the hemodynamic response func-
tion (hrf). Usual inference from the data to the unob-
served quantities proceeds in isolation along each
branch solving the following inverse problems:

� Estimating the PCD from EEG/MEG–the EEG (spatial)
inverse problem [Trujillo-Barreto et al., 2004]

� Estimating the VFFS from the BOLD-fMRI deconvolu-
tion or (temporal) inverse problem [Glover, 1999]

In contrast, EEG/fMRI fusion involves combining infor-
mation (either observed data or estimated constructs) from
both of the two cascades of forward models shown in Fig-
ure 1A. Fusion methods may be classified according to
two criteria:

1. Asymmetrical versus symmetrical fusion: If onemodality
is given privileged status as a prior for the other modality
we shall call this ‘‘asymmetrical fusion.’’ For example if
BOLD activation is used as a spatial constraint for EEG
sources [Liu et al., 1998]. By contrast ‘‘symmetrical
approaches’’ do not assign an a priori inferential prefer-
ence to any given modality [Trujillo-Barreto et al., 2001].

In symmetrical fusion the best of each modality will be
exploited and their relative importance determined from
the data [Daunizeau et al., 2007].

2. Data versus model driven fusion: A further distinction
is that of data driven fusion which is based on meas-
uring mutual dependence between the two modalities
in contrast to model driven fusion which exploits mod-
els of the chain of events leading to observed measure-
ments. More specifically, the aim is to estimate the ePSP
from both either the PCD or the VFFS. In terms of a
widely used distinction [Friston, 1994] data driven
approaches establish functional connectivities between
observables/constructs while model driven approaches
establish effective connectivity between them.

We now describe in more detail data driven EEG/fMRI
fusion of resting state oscillatory activity that serves as a
constraint for model driven efforts. For convenience of the
reader a list of terms used in this article and their abbrevi-
ations are presented in Table I.

CONSTRAINTS PROVIDED BY

DATA DRIVEN FUSION

Most work on data driven EEG/fMRI fusion of resting
state rhythms has mapped measures of association or cor-
relation of the EEG signal and BOLD as schematized in
Figure 1C. According to our classification it has been
of the asymmetrical fusion type, the EEG serving as a

TABLE 1. List of the abbreviations used in the paper

Abbreviation Meaning

ACP Anatomical Connection Probability
BOLD Blood Oxygenation Level Dependent
CBF Cerebral Blood Flow
DCM Dynamic causal model
DWMRI Diffusion weighted magnetic resonance imaging
EEG Electroencephalogram
ePSP Ensemble of post-synaptic potentials
EPSP Excitatory post synaptic potential
fMRI Functional magnetic resonance imaging
fdr False discovery rate
hrf Hemodynamic Response Function
Inh Inhibitory interneurons
IPSP Inhibitory post synaptic potential
LL Local linearization
LRC Long range connections
MHM Metabolic/hemodynamic model
ODE Ordinary Differential Equation
PCD Primary current density
PSP Post-synaptic potentials
Pyr Pyramidal cells
RDE Random differential equations
RE thalamic inhibitory reticular neurons
SDE Stochastic differential equations
SRC Short range connections
SSM State-space models
St Stellate cells
TC thalamocortical excitatory relay neurons
VFSS Vasomotor feed-fodward signal
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surrogate for the VFFS (Fig. 1A). Towards this end, esti-
mates of power in specific spectral bands are summarized
over certain EEG channels, convolved with a standard he-
modynamic response function, and then correlated with
the BOLD time course at each voxel. The resulting image
is then thresholded to produce a SPM map of EEG-BOLD
correlation. Goldman et al. [2002] found positive alpha
band/BOLD correlations in the thalamus and negative
ones in the occipital cortex, somatosensory areas and the
insula. Such findings have been replicated and extended
by several other authors as nicely reviewed by Laufs
[Laufs, 2008]. The initial findings were obtained with sin-
gle EEG frequency band, alpha, averaged over posterior
leads. This univariate approach is open to the criticism
that the observed correlations with BOLD might actually be
due to other, unobserved EEG frequency bands. This prob-
lem was remedied by multiple regressions of the BOLD on
all EEG frequency bands [Laufs et al., 2003; Mantini et al.,
2007]. This procedure highlighted the relation of the b2
band with the ‘‘default’’ fMRI resting state mode. An even
more comprehensive approach is that of [Martinez-Montes
et al., 2004] who carried out EEG/fMRI fusion of the origi-
nal Goldman et al. data set by a structured combination of
spatial, temporal and frequency information of the EEG via
a multilinear version of partial least squares. This method
recognizes that a multichannel EEG time varying spectrum
is a 3 dimensional array indexed by channel, frequency and
time that can be decomposed into a sum of EEG ‘‘atoms’’
which each have a given spatial, spectral and temporal sig-
nature. The way these atoms are extracted ensures maximal
covariance of their temporal signatures with those of BOLD
atoms (with time and spatial signatures). Figure 2A shows
the inverse solution of the EEG alpha atom spatial signature
[Bosch-Bayard et al., 2001] and the fMRI alpha spatial signa-
ture with a significant correlation that is positive for the
thalamus and negative for cortical areas. It also shows that
the EEG sources that mainly contribute to these correlations
are concentrated in the occipital areas. The pattern has been
speculated to be due to desynchronization of EEG genera-
tors with fluctuations to higher levels of vigilance and lower
alpha power a conclusion reinforced by the experimental
manipulation of these atoms by switching the subject from a
resting state to mental arithmetic [Miwakeichi et al., 2004].
Data driven methods for EEG/fMRI fusion of brain oscil-

lations can be further improved. We now give a example.
As mentioned these methods are asymmetrical in the sense
that the EEG is taken as a surrogate for the VFFS but this
involves degrading the temporal resolution of the EEG sig-
nal by filtering with a low pass signal (the hrf). A higher re-
solution, symmetrical, data driven fusion can be gained by
measuring the correlation between estimates of the PCD and
VFFS instead of using the usual correlation between the hrf
filtered EEG and BOLD. Results from a 96 channel concur-
rent EEG/fMRI recording of the resting state are shown in
Figure 2B. The estimate of power at the alpha peak of the
nPCD was obtained by means of the VARETA inverse solu-
tion [Bosch-Bayard et al., 2001]. The VFFS at each voxel was

obtained by a spline variant of BOLD deconvolution (Ap-
pendix A). We found more widespread correlations with
nPCD/VFFS fusion than with EEG/BOLD fusion, the pat-
tern here being thalamic and anterior cortical areas directly
related and posterior cortical areas inversely related to alpha
power. It should also be pointed out that much higher corre-
lations (range 20.73 to 0.52) were found when comparing
the logarithms of PCD and VFFS than when comparing EEG
and BOLD (range 20.54 to 0.41).
Thus a consistent pattern for resting state EEG/fMRI

relations has been described by a number of authors. We
now turn to model driven EEG/fMRI fusion methods to
see if these patterns can be explained.

MODEL DRIVEN EEG/fMRI FUSION: STATE

SPACE MODELS

Model driven EEG/fMRI fusion is predicated on the for-
mulation of explicit biophysical model for the two differ-
ent chains of forward events (Fig. 1A) that lead from the
ePSP to the EEG, on the one hand, and to BOLD on the
other. Once these models are formulated it is possible to:

� Simulate EEG and fMRI signals originated by neural
activity and study their interrelation

� Given data, estimate neural activity—the ePSP—as
well as other model parameters (Figs. 1D and 4).

EEG/fMRI models are particular cases of State Space
Models (SSM)[Kalman, 1960]1

_x tð Þ ¼ f x tð Þ;vðtÞ;Hð Þ þ lþ R _w tð Þ
yt ¼ g xt;H;vðtÞð Þ þ et

ð1Þ

The first line expresses the state equation, a set of sto-
chastic differential equations (SDE) that describe how the
state vector x(t) of the system evolves in continuous
time. The vector v(t) describes external inputs, controls
or causes that influence the system. The set of parameters
specifying the model is Y. The vector _w tð Þ contains the
dynamic noise, random inputs to the system that are mod-
eled as a Gaussian white noise process2. l is the mean of
the random input and R is a square root of a covariance

1Mathematical Notation: lower case Latin symbols f denote scalars, lower
case bold symbols f vectors, upper case symbols F matrices, and Greek letters
/ unknown parameters. FT is the transpose of F, Tr(F) its trace, F21 its
inverse, Fj j its determinant. f tð Þ ¼ df tð Þ

dt the derivative of the time dependent

function f(t) Fx(x0) is the Jacobian matrix of derivatives of with f respect to x,

evaluated at x 5 x0,
@f xð Þ
@x

���
x¼x0 ;

. Similarly, the Hessian matrix of f with respect

to its i-th component is defined as Fi;xx x0ð Þ ¼ @2 fi xð Þ
@x@x

���
x¼x0 ;

. ft shall denote the

value at time instant t of the discretized process f(t). diag (f) will denote the di-
agonal matrix with elements of f on the main diagonal. The matrix toeplitz(f)
will denote the symmetric matrix with each elements of f along the corre-
sponding diagonal.

2According to stochastic differential calculus (Protter, 1990; Ito, 1951, 1985)
the derivative _w tð Þ does not actually exist since w(t) is a Wiener process or
Brownian motion that is nowhere differentiable. In that formalism the equa-
tions for a SDE are actually expressed in terms of differentials which are a
shorthand to denote stochastic integral.
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Figure 2.

(Color) A: Fusion by correlation of EEG time varying spectra

over all channels and BOLD. Data driven asymmetrical fusion as

in Figure 1b where EEG spectra convolved with hemodynamic

response function is correlated with BOLD signal using multi-lin-

ear partial least squares which detects common atoms in both

modalities. Top: Spatial signatures of PCD for the EEG alpha

atom estimated by f inverse solution. Bottom: spatial signature

of BOLD alpha atom. B: Fusion by correlation of log PCD alpha

power and log VFFS. Symmetrical data driven EEEG/fMRI fusion

as in Figure 1c obtained by estimating the time course of EEG

source power in the alpha band using the VARETA inverse solu-

tion, estimating the VFFS by smooth deconvolution of the BOLD

signal with a standard hemodynamic response, and correlating

the log of these quantities at each voxel. C: Correlation of

source EEG and BOLD in neural mass network of moderate

size. Correlation of estimated PCDs and VFFS obtained from a

medium sized simulation of realistically connected neural masses.

Connectivity measures for neural masses were estimated by

means of DTI images. Correlation values threshold using the

local false discovery rate (fdr). Red corresponds to positive cor-

relations, blue to negative correlations. Simulations produced by

the Local Linearization (LL) integration scheme for stochastic dif-

ferential equations. D: Correlation of source EEG and BOLD in

large scale neural mass network (surface of cortex and thalamus.

Correlation of estimated PCDs and VFFS obtained from a very

large sized simulation of realistically connected neural masses.

Correlations shown for the cortical surface (above) and the thal-

amus (below not shown to scale) with the rostral part shown to

the left. The cortical surface comprised 8203 Jansen modules

were placed) and the left portion of the thalamus 438 TC/RT

modules. The simulation produced (not shown) similar distribu-

tions for the right brain. All modules interconnected using the

connectivity matrix shown in Figure 5. Note positive (red) PCD/

BOLD correlation for caudal thalamus and negative (blue) for

part of the occipital cortex marked by an arrow. Simulations

produced by the approximae Local Linearization (aLL) integra-

tion scheme for stochastic differential equations.



matrix. The second equation, the observation equation,
describes how the observations yt are determined by the
states xt 5 x(t) at discrete time instants t, and corrupted by
measurement noise et. SSM are well known in control
theory since the 1960s [Frost and Kailath, 1971; Kalman,
1960].
In the neuroimaging literature SSM have become popu-

lar under the name Dynamic Causal Models (DCM)

[Friston et al., 2003]. The initial formulation of DCM
[Friston et al., 2003] did not consider noise inputs (R 5 0)

and was therefore a deterministic SSM stated in terms of
ordinary differential equations (ODE). More recent ver-

sions have been in terms of SDEs [Chen et al., 2008; Fris-

ton et al., 2008; Stephan et al., 2008]. We note that since
the focus of this article is EEG/fMRI fusion of resting state

oscillations, we shall not consider in the remainder of this
article the external inputs v(t) in Eq. (1). SSM (DCM) with

external inputs v(t) are of course necessary for studying

event related [(David et al., 2006b,c; Friston, 2006]) or
induced activity [Chen et al., 2008].
Mapping the EEG/fMRI generative model of Figure 1A

onto a SSM we define:

� xePSP are the state variables that define the evolution
of ePSP according to some neural model.

� P is a projection matrix that selects and sums
those components of the ePSP that contribute to the
PCD.

� K is the lead field matrix that projects the PCD to an
observed EEG/MEG measurement.

� R is the projection matrix that transforms xePSP into
the VFFS xVFFS; _xMHM are the state variables that to-
gether with xVFFS define the evolution of a metabolic
hemodynamic model (MHM) [Sotero and Trujillo-
Barreto, 2007, 2008].

� gBOLD is the model that relates the MHM model to the
observed BOLD signal.

� yt
EEG and yt

BOLD are the discretized EEG and BOLD
measurements respectively.

The particular form of SSM that underlies model driven
EEG/fMRI fusion (Fig. 1D) is then

_xePSP tð Þ ¼ fePSP xePSP tð Þ;HePSP
� �þ lþ R _wePSP tð Þ

xVFFS tð Þ ¼ RxePSP tð Þ
_xMHM tð Þ ¼ fMHM xVFFS;xMHM tð Þ;H� �

8>><
>>:

yEEG
t ¼ KPxePSP

t þ eEEG
t

yBOLD
t ¼ gBOLD xMHM

t ;HBOLD
� �þ eBOLD

t

( ð2Þ

In these equations state variables, functions, dynamic

noises, measurement noises and parameters all are labeled

with corresponding superscripts that describe the part of Fig-

ure 1A they refer to. Note that we have assumed a determin-

istic model for the MHM though this can be generalized to a

stochastic model with dynamic noise [Sotero et al., 2008].

Models fePSP for describing the evolution of ePSPs (at
the root of Fig. 1A) can be constructed at various levels of
detail. Recent examples [Izhikevich and Edelman, 2008]
have incorporated comprehensive information about the
microcircuitry [Riera et al., 2008] of the brain. We shall
focus rather on a mesoscopic level more suited to the
coarse grained nature of both EEG and fMRI measure-
ments. These are the class of neural mass models for EEG
oscillators [David and Friston, 2003; Jansen and Rit, 1995;
Lopes da Silva et al., 1974; Moran et al., 2007; Valdes et al,
1999a,b; Wilson and Cowan, 1972] obtained by mean field
approximations of subpopulations of excitatory and inhibi-
tory neurons each governed by well known dynamics. See
[David et al., 2006a; Harrison et al., 2006] for a review on
how to obtain these equations. We shall now specify these
mesoscopic models in a format slightly different from the
cited references.
Consider i 5 1,. . .,Nm neural mass models that give rise

to the state vector xePSP, these are chosen to correspond to
a discretization of the brain that can be as coarse as the
grid for estimating nPCD, BOLD or even finer. Each neural
mass xi

ePSP is cast as a noisy oscillator (Fig. 3A)

_xePSP2i�1 tð Þ ¼ xePSP2i tð Þ
_xePSP2i tð Þ ¼ Aiai li þ ri _wi tð Þ þ S zi tð Þð Þ½ � � 2ai x

ePSP
2i tð Þ

� a2i x
ePSP
2i�1 tð Þ ð3Þ

The variable x2i21
ePSP(t) is the average output ePSP pro-

duced by each neural mass which can be either excitatory
(EPSP) or inhibitory (IPSP) while _xePSP

2i tð Þ is its time deriv-
ative. The variables x2i21

ePSP(t) are the transformation of the
net input to the mass zi(t) by the application of first a non-
linear sigmoid function S(zi(t)) and then a linear convolu-
tion with the neural PSP impulse response functions hi(t).
The Laplace transform of hi(t) originates the second order
ODE. Note that dynamic noise li þ ri _wi tð Þ may be added
to S(zi(t)) transforming (3) into a SDE.
The sigmoid function is defined [David et al., 2006a] as

S vð Þ ¼ 2e0

1þer v0�vð Þ, where 2e0 is the maximum firing rate, v0 is
the postsynaptic potential (PSP) corresponding to a firing
rate e0, and parameter r controls the steepness of the sig-
moid function S(zi(t)). These sigmoid function parameters
are usually fixed. The impulse responses are defined as
hi(t) 5 Aiaite

2ait where the parameter Ai represents the
maximum amplitude of the EPSP or IPSP, while the
lumped parameters ai depends on passive membrane time
constants and other distributed delays in the dendritic net-
work. Note that these constants differ for excitatory and
the inhibitory neural masses respectively, though they are
usually considered constant for whole groups of neural
masses (see Appendix B for typical parameter values).
A Neural Mass model is the interconnection of several

neural masses. The ePSPs x2i21
ePSP(t) produced by each com-

ponent population will feed into other neural masses. Note
that zi(t) is the sum of the ePSPs that are emitted from
other connected neural masses, amplified by the synaptic
contact coefficients zi tð Þ ¼

PNm

j¼1 ci;j x2j�1 tð Þ, where C 5 {ci,j}
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indicates synaptic strengths of connections from neural
mass j to neural mass i. By convention these synaptic con-
nectivities will be negative when j is an inhibitory cell.
These relations are summarized by:

z tð Þ ¼ CxePSP tð Þ ð4Þ

In correspondence with the general EEG/fMRI SMM (2)
the recorded EEG is

yEEG
t ¼ KPopenCxePSP

t þ eEEG
t

Popen ¼ popenl;j

h i
; l ¼ 1; . . . ;Nvoxels; j ¼ 1; . . . ;Nm

popenl;j

¼ cl;j; if j excitatory and belongs to voxel l

¼ 0; otherwise

� ð5Þ

in which expression several things have happened

� xePSP(t), and therefore z(t) has been discretized (see
the next section on correct ways of doing this).

� Of all zt only those corresponding to neural popula-
tions with open fields [Nunez et al., 2000, 2001] will
contribute to the nPCD, as selected by the matrix Popen

which also determines the level of spatial averaging
we shall select for the primary current.

� The EEG is obtained by projection to the lead field
and addition of sensor noise.

Both EPSP and IPSP may contribute to the BOLD signal
[Sotero and Trujillo-Barreto, 2007, 2008; Sotero et al., 2008;

Riera et al., 2006; Babajani and Soltanian-Zadeh, 2006;
Babajani et al., 2005]. We will therefore consider additional
variables that form part of the VFSS vector. These are the

Figure 3.

Neural Mass model for EEG/fMRI fusion. This model is obtained

by linking the parameters of a interconnected set of Nm neural

masses to the forward models for EEG and fMRI outlined in fig-

ure 1A where averaged population values of postsynaptic poten-

tials (PSP) serve as state variables. A: State Space Model (SSM)

for a Neural Mass. Each Neural Mass (numbered as i) is shown

on the right part of the figure and depicted as a component

which receives two external inputs: the net input PSP zi(t) (con-

tinuous arrow), and Gaussian white noise _wi tð Þ (dashed arrow).

The neural mass produces as an output the ePSPs x2i21
ePSP which

are also the state variables for this SSM. The ePSPs will feed

into other neural masses. Note that zi(t) is the sum of the ePSPs

that are emitted from other connected neural masses, amplified

by the synaptic contact coefficients zi(t) 5
P

j51
Nm ci,j x2j21(t),

where ci,j indicates connections from population j to i. By con-

vention these synaptic connectivities will be negative for when j

is an inhibitory cell. On the left is shown in more detail the

sequence of operations which take input to output: 1 2 zi(t) is

converted into an average pulse density of action potentials pi(t)

5 S(zi(t)) by a static nonlinear sigmoid function S(v). 2-The noise

input, with mean li and standard deviation ri, is added to the

pulse density. 3 - pi tð Þ þ li þ ri _wi tð Þ is converted into the out-

put x2i
ePSP(t) by linear convolutions with the neural PSP impulse

responses hi(t). The complete neural mass model creates two

additional signals (not shown) that will act as the two compo-

nents of the VFSS signal originating the BOLD signal. These are

the sum of all EPSP uE(t) 5
P

i51,Nm;j excitatoryci,j x2j21
(t) and all

IPSP uI(t) 5 2
P

i51,Nm;j inhibitory
ci,j x2j21

(t). B: Model for a Jansen-

Rit Cortical Module. Here Nm 5 3. Pyramidal cell (Pyr), stellate

cell (St), and inhibitory interneuron (Inh) populations generate

ePSPs, denoted respectively by {x1
ePSP (t), x3

ePSP(t), x5
ePSP(t)}. The

output of Pyr cells, x1
ePSP(t), multiplied by c1,2, c3,2 drives the St

and Inh populations. Pyr receives feedback from St and Inh with

coefficients c2,1, c2,3 respectively. The only dynamic noise input is

to the St Population. On the one hand, the nPCD is the trans-

membrane PSP of the Pyr population which is equal to the net

input PSP z2(t) generated by the St and Inh populations z2(t) 5
c2,1 x1

ePSP(t) 1 c2,3 x3
ePSP(t) (EPSP-IPSP). This is also equal to the

EEG with the trivial lead field K 5 1. Loosely speaking, this is as

though we were actually measuring a Local Field Potential (LFP).

On the other hand, The VFFS has two components

uE tð Þ ¼ c2;1x
ePSP
1 tð Þ þ c1;2 þ c3;2

� �
xePSP3 tð Þ, the sum of excitatory

PSP and uI(t) 5 c2,3 x5
ePSP(t) the inhibitory PSP. The VFSS compo-

nents are fed into the Metabolic Hemodynamic Model (MHM)

which we shall not detail here (see Appendix C) a system of

ODE which depends on additional state variables x7(t),. . .,x14(t).
The observed BOLD is generated by the Balloon model then is

transformed to BOLD by the equation y2(t) 5 gBOLD

(x13(t),x14(t)).
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sum of all EPSP uE(t) and all IPSP uI(t) in a volume gener-
ating the BOLD signal

uE tð Þ ¼
X

i¼1;Nm;j excitatory
ci;jx2j�1 tð Þ

uI tð Þ ¼ �
X

i¼1;Nm ;j inhibitory
ci;jx2j�1 tð Þ

xVFFS tð Þ ¼ RxePSP tð Þ
R ¼ rl;j

� �
; l ¼ 1; . . . ; 2Nvoxels; j ¼ 1; :::;Nm

r2l�1;j

¼ cl;j; if j excitatory andbelongs to voxel l

¼ 0; otherwise

�

r2l�1;j

¼ �cl;j; if j excitatory and belongs to voxel l

¼ 0; otherwise

�
ð6Þ

Generation of the BOLD signal proceeds then according
to Appendix C

y2 tð Þ¼gBOLD x13 tð Þ;x14 tð Þð Þ¼V0ða1 1�x14 tð Þð Þ�a2 1�x13 tð Þð Þð Þ:

With this formalism in place we can discuss the dif-
ferent models, of every increasing complexity, have
been dealt with in the literature. We shall classify these
models into small scale, medium scale, and large scale
models according to the ability to deal with hundreds,
thousands and hundreds of thousands of neural
masses.

SIMULATION OF STATE SPACE MODELS

We shall now review methods for simulations of
SSM. These simulations are useful for two reasons. In
the first place inspection of the simulated time series
and comparison with actual data can provide face va-
lidity for the models being proposed. Moreover bifurca-
tions of the modeled nonlinear systems with changes in
parameter values suggest neural mechanisms of normal
and abnormal brain activity [Lopes da Silva et al., 2003;
Breakspear et al., 2006; Coombes et al., 2007]. In the
second place, as will be argued in the next section,
repeated simulations are the basis for the estimation of
states and parameters.
Simulation consists of integrating the system of SDE (1)

which, for interesting nonlinear cases, cannot be done ana-
lytically. Therefore it is customary to find either:

� global approximations that allow analytical solutions
for theoretical work [Moran et al., 2007] or

� local approximations in order to calculate numerical
values of the state vector xtk 5 x(tk) for time steps tk 5
k Dt by integrating the system from t to t 1 Dt where
Dt is the integration step [Valdes et al., 1999a,b].

The basis of such approximations is the Taylor-Ito expan-
sion [Kloeden and Platen, 1995; Jimenez et al., 1999] of a
SDE around a reference point x0. Retaining only first order

terms this leads to the following approximation for the
SSM (1) around a reference value x0

_xðtÞ ¼ fðxðtÞ;HÞ þ R _wðtÞ � fðx0;HÞ þ Fxðx0;HÞðxðtÞ � x0Þ
þ t� t0

2
bðx0;HÞ þ R _wðtÞ ð7Þ

with b(x0, Y) 5 {bi(x0, Y)} 5 {Tr(SSt Fi,xx (xt, Y))}, Note
that for a deterministic SSM R 5 0, we are dealing with a
ODE instead of a SDE, and Eq. (7) reduces to the usual
Taylor expansion. However for a SDE the Ito calculus
takes into consideration a further term.
Global approximations have been mostly of the linear

deterministic kind that is to say assuming R 5 0 and tak-
ing x0 to be fixed for the whole analysis. Unfortunately, as
mentioned before, this ignores the stochastic component of
the SSM. Examples with expansion around x0 5 0 are
some formulations of DCM [Friston et al., 2003; Friston
et al., 2007]. This is a rather arbitrary choice and for that
reason an alternative is x0 5 xs, the solution to the steady
state equation f(xs,Y) 5 0. Such is the choice taken for
example by [Robinson et al, 2004; Moran et al., 2007, 2008;
Zetterberg et al., 1978]. As long as the system is operating
around this steady state values the approximation is valid
and allows transformation of the equations to the fre-
quency domain and the analytical determination of notable
properties of the system. However the linearized system
does not preserve some important nonlinear properties.
This is evident, for example, when several equilibrium
points are present or there is a stable attractor such as a
limit cycle which will not appear in the globally linearized
discretization which only has a single point attractor.
For this reason many articles examine simulated trajecto-

ries of the state space variables. For the EEG most [Lopes
da Silva et al., 1974; Jansen and Rit, 1995; Babajani et al.,
2006] have used off the shelf methods developed for Ordi-
nary Differential Equations (ODE). This can be problematic
for several reasons. In the first place, even for deterministic
SSM (where the noise component is set to zero), these
methods are not guaranteed to reproduce the properties of
the original continuous dynamical system, in other words
they may alter the dynamical invariants of the original
continuous system [Biscay et al., 1996; Carbonell et al.,
2007]. For SDEs the situation is even worse. Tong has
shown [Tong, 1990] that simulations of stochastic systems
with polynomial based methods (such as Runge-Kutta) are
almost sure to explode. Additionally, many of these meth-
ods are computationally very expensive and are not well
suited to migrate up to large scale simulations. Avoiding
polynomial expansions and based on the Taylor-Ito expan-
sion in Eq. (7) one can obtain integration methods by
retaining only the constant term which lead to the Euler
(ODE) and Euler-Maruyama (SDE) methods. These how-
ever have poor orders of convergence.
These are pitfalls avoided by the fully stochastic Local

Linearization technique of Ozaki (henceforth designated
the LL Method). The LL method integrates the linear
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approximation of the SSM (7) around the current point
x0 5 xt in the orbit of the system in state space:

xtþDt ¼
ZtþDt

t

�
f
�
xt;H

�þ Fx

�
xt;H

��
x
�
u
�� xt

�

þ u� t

2
b
�
x0;H

�þ R _w
�
t
�� � du ð8Þ

This integral has an exact solution which can be stated
as

xtþDt ¼ xt þ
RDt
0

eFx xt;Hð Þu � du
 !

Fx xt;Hð Þ

þ Dt
RDt
0

eFx xt;Hð Þu � du
 !

� RDt
0

u:eFx xt;Hð Þu � du
 !" #

1
2b x0;Hð Þ

þ1t ð9Þ
with 1t a stochastic process with mean 0 and covariance
matrix

ZtþDt

t

eFx xt;Hð Þ� tþDt�uð Þ � RRTeF
T
x xt;Hð Þ� tþDt�uð Þdu:

Expression (9) is quite imposing but several different
fast and accurate methods for calculating it are available.
These numerical variants are known as ‘‘LL-schemes’’
[Jimenez and Carbonell, 2005; De la Cruz et al., 2007] and
care should be taken because some have proven to be
more accurate than others. The major computational bur-
den in these schemes is the evaluation of matrix exponen-
tials such as eF

x(xt,Y)Dt.
The LL method is accurate, stable and conserves the dy-

namical properties of the original continuous time system.
It was first introduced by [Ozaki, 1989, 1992a], later elabo-
rated by [Biscay et al., 1996] and extensively developed in
recent years [Carbonell et al., 2002, 2005, 2006, 2007, 2008;
Carbonell and Jimenez, 2008; De la Cruz et al., 2007; De la
Cruz et al., 2006; Jimenez et al., 1998, 1999, 2002, 2005,
2006; Jimenez, 2002; Jimenez and Biscay, 2002; Jimenez
and Carbonell, 2006]. Though originally restricted in its
applications to neuroimaging [Valdes et al., 1999a,b; Riera
et al., 2004, 2006, 2007], the LL method has gained popu-
larity in recent years. A recent article incorporates it for
the first time into the DCM of fMRI signals [Stephan et al.,
2008] though using a less accurate LL-scheme.

ESTIMATION OF STATE SPACE MODELS

Given data [y1,. . .,yNt
] gathered at Nt time points, in our

case the EEG/fMRI measurements, it is often of interest to
estimate information about the SSM under examination.
The two main estimation problems are

� Assuming Y known, to estimate the xt. Predicted
estimates x̂t�1

t are obtained sequentially from data
gathered previously to time t, [y1,. . .,yt21]. Filtered

estimates x̂t
t are obtained sequentially from data gath-

ered up to time t, [y1,. . .,yt]. Finally, smoothed esti-
mates x̂Nt

t are obtained with the whole sample of
observations, [y1,. . .,yNt

].
� Assuming either filtered or smoothed estimates of the
states, to estimate the parameters of the system, Y.

The methods for estimation depend critically on the sim-
ulation (approximation) method selected. As discussed in
the previous section, the type of approximation determines
the properties that the estimated system will be able to ex-
hibit. For example, with a global linear deterministic
approximation of the SSM [Robinson et al., 2004; Moran
et al., 2008] around a stable operating point xs, and a linear
observation equation the SSM is essentially treated as a lin-
ear device. The SSM equations (including a stochastic
input) how read

xtþDt ¼ fþeFDtxt þ 1 tð Þ
yt ¼ Gxt þ et

ð10Þ

with f 5 f(xs,Y), F 5 fx(xs,Y), and G 5 g(xt,Y,v(t)).
Transforming these equations to the frequency domain

and rearranging terms yields

yx ¼ G ei2pDtI� eFDt
� ��1

1x þ ex ð11Þ

where the subscript x indicates discrete frequencies and
noise variables now have a complex multivariate Gaussian
distribution. This expression can then be used to estimate
the parameters Y. In practice expression (11) is not used
for parameter estimation [Robinson et al., 2004; Moran
et al., 2008]. Rather the spectra (variance of complex val-
ues) of yx are used as the data. This discards all the phase
information available in the time series. It would be inter-
esting to see if improvements in estimation could be
obtained by using (11) or directly the linear SSM (10) with
the methods to be described next.
Instead of global linearization, an alternative is to

respect the full nonlinearities of the system by repeatedly
generating EEG/fMRI simulations in the time domain (or
equivalently calculating their mean and covariance at
each point) and maximize their likelihood given the data
by adjusting the parameters Y. In short, we advocate the
use of the the LL-innovation method, designed to pre-
serve the dynamical properties of the continuous time
models. This method, outlined in Figure 4, was originated
by T. Ozaki [1992b] and further developed in [Biscay
et al., 1996; Valdes et al., 1999a,b] . It consists of the fol-
lowing steps:

1. The same LL discretization scheme described in the
section on SSM simulation is used to generate a linear
SDE for a given position at a trajectory in state space.

2. Once a locally linearized discrete state evolution is
available, it can be fed together with the linearized
observation equation and the data to any of several
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variants of the Kalman Filter in order to get predicted
x̂t�1
t and filtered x̂t

t estimates of the states.
3. Of extreme importance is that these prediction

estimates may be used to estimate the innovations et
5 yt 2 E[g(xt

t21, et)] or prediction error, the extra in-
formation about a state space orbit, given the past
data and after accounting for observation noise. As
shown early on by Ozaki [1992b], with a properly
chosen model for the dynamics, the innovations will
be distributed as Gaussian white noise even if the
system is highly nonlinear and the noise processes
are not Gaussian.

4. Finally in view of the Gaussian nature of the innova-
tions, the log likelihood of the SSM given the data
may be calculated as:

lnp e y;Hjð Þ¼�1

2

XNt

t¼1

ln W Hð Þj jþetW Hð Þ�1eTt þln2p
� �

ð12Þ

with WðHÞ¼RðHÞRðHÞT .
The importance of obtaining the innovations is that it

removes temporal dependencies and whitens the observed
time series xt into an independent series. To perform this
whitening step we need to find a suitable dynamic SSM
providing the prediction of the time series by using past
observations. Whitening, i.e. removing the temporal

dependencies on the past, and finding a suitable causal
dynamic model is in fact the same thing. By whitening the
causal relations are extracted from the observed time se-
ries, and a relevant dynamic model is obtained.
The concepts described so far are supported by a very

strong mathematical theorem given by [Levy, 1956]; see also
theorem 41 in [Protter, 1990] which states that ‘‘for any con-
tinuous-time Markov process x(t) the corresponding innova-
tions can be represented, under mild conditions, as the sum
of two white noise processes, namely a Gaussian noise pro-
cess and a Poisson noise process’’. This theorem is a stronger
version of the well-known theorem for Markov diffusion
processes [Ito, 1951, 1985; Doob, 1953] according to which
‘‘any dynamic process can be represented by a differential
equation driven by Gaussian white noise, if the process is
Markov and continuous (i.e. without any discontinuous
jump)’’. The case of additional observation noise has been
treated by [Frost and Kailath, 1971]. Consequently we expect
that, under the assumption of continuous dynamics, the
time series of resulting innovations, for an optimal predictor,
will be uncorrelated (in fact, independent) and Gaussian,
even if, due to possible nonlinearities in dynamics, the pro-
cess is non-Gaussian distributed. This theorem implies that,
if we employ a properly chosen model for the dynamics, the
prediction errors will be distributed as Gaussian white noise.
Then the log-likelihood function for the time series may be
calculated using the standard Gaussian likelihood, even
though the original observed time series may have dis-
played nonlinearities and non-Gaussian distribution.
The methodology based on Levy’s theorem has been

employed in time series analysis since the early 1990s
[Ozaki, 1992b]. In the neurosciences it has been applied to
the identification of dynamic causal models, such as the
Zetterberg model for EEG time series [Valdes et al.,
1999a,b] and Balloon model for fMRI time series [Riera
et al., 2004]. Finally, the log-likelihood function for the
time series may be calculated using the standard Gaussian
likelihood, even though the original observed time series
may have displayed nonlinearities and non-Gaussian dis-
tribution. Thus the parameter set Y may be adjusted
(using an optimization technique) to yield the maximum
likelihood estimators. An evident extension is to augment
the likelihood with a penalty function (negative log prior)
to carry out Bayesian estimation.
The LL-innovation approach to SSM estimation is not

the only one currently available [Singer, 2008; Jiménez
et al., 2006]. Popular alternatives are:

1. The Expectation Maximization (EM) algorithm devel-
oped by [Shumway and Stoffer, 1982]. which alter-
nates between estimating the smoothed estimates x̂Nt

t

and the parameters Y.
2. Monte Carlo based methods that select a set of sam-

ple points or ‘‘particles’’ and follow their trajectories
sequentially [Chen, 2003]. Particle methods can cope
with quite general SSM but are currently limited to
very small scale models.

Figure 4.

Local linearization (LL)-innovation approach to estimating states

and parameters of nonlinear random systems. A state space

model of a dynamical system is the combination of: (a) A contin-

uous time stochastic differential equation describing the evolu-

tion of system states x, and (b) A discrete time observation

equation that explains how the observations yt are obtained

from the states. Discretization of the state equation by means of

the Local Linearization scheme allows the application of sequen-

tial Bayesian inference of the unobserved states via the Kalman

Filter. This in turn allows the estimation of the innovations

or prediction error which in turn can be used to estimate the

likelihood of the model. Once the likelihood has been obtained

estimation of model parameters and comparison of models is

possible.
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3. A series of methods derived from Variational Bayes
techniques which reformulates the SSM by means of
a path integral [Kappen, 2008; Wiegerinck and Kap-
pen, 2006; Archambeau et al., 2007a,b]. Use of mean
field approximations promise computationally very
efficient estimation procedures.

4. A variant of these Variational techniques is the quite
recent Dynamic Expectation Maximization (DEM)
[Friston et al., 2007, 2008; Friston, 2008] which refor-
mulates the SSM in terms of generalized coordinates
and therefore eschews use of sequential methods
such as the Kalman filter.

5. The Ensemble Kalman Filter (EnKF) [Evensen and
van Leeuwen, 2000; Evensen, 2003] a variant of parti-
cle methods developed by geophysicists that is suited
for very large scale SSM. It is to be noted that the
term ‘‘ensemble’’ used here refers to the set of par-
ticles to be integrated using nonlinear SDE and not to
‘‘ensemble learning’’ which is a synonym for Varia-
tional Bayes methods.

It is to be noted that any combination of these methods
may be combined with the LL integration technique to de-
velop new estimation methods. These approaches are cur-
rently being explored. Nevertheless the LL-innovation
approach outlined here is a quite feasible alternative. Just
as an example, when compared to the EM method, the lat-
ter has a higher computational cost (with a backward pass
of the Kalman smoother) and yields state estimates that
are not always reliable. It is also recognized that the EM
algorithm may be quite slow in convergence.

SMALL SCALE EEG/fMRI MODELS

This type of modeling will illustrated with a EEG/fMRI
model consisting of a single voxel housing the classical
Jansen and Rit neural mass for a single cortical column
[Jansen and Rit, 1995; Zetterberg et al., 1978] which is
essentially the same as the Zetterberg model. This cortical
module will be a component in subsequent more compli-
cated models and is shown diagrammatically in Figure 3B.
It only contains 3 interconnected populations of excitatory
pyramidal (Pyr) and stellate (St) cells as well as inhibitory
interneurons (Inh). Using the notation introduced for
EEG/fMRI SSM, xePSP(t) 5 {x1

ePSP(t),x3
ePSP(t),x5

ePSP(t)} for
Pyr, Inh, St cells respectively. The system matrices are:

C ¼
0 0 c1;2 0 0 0
c2;1 0 0 0 c2;3 0
0 0 c3;2 0 0 0

" #

Popen ¼ c2;1 0 0 0 c2;3 0½ �

R ¼ c2;1 0 c1;2 þ c3;2 0 0 0
0 0 0 0 �c2;3 0

	 


K ¼ 1

l ¼ 0 l 0 0 0 0½ �TX
¼ diag 0 r 0 0 0 0½ �ð Þ

ð13Þ

Note that the only population with a stochastic input is
St, assumed to be the input from the thalamus.
In this model the nPCD is generated by the transmem-

brane potential of Pyr. This is just the difference between
EPSP and IPSP generated by St and Inh, nPCD 5
z1
ePSP(t) 2 z3

ePSP(t). For the sake of simplicity, the lead field
is assumed to be K 5 1, thus the EEG is equal to the
nPCD. Loosely speaking this is as though we were actually
measuring the Local Field Potential (LFP). The VFFS has
two components ue 5 z1 1 z2, the sum of EPSP and ui 5
z3 the IPSP. As mentioned before, the VFSS feeds into the
Metabolic Hemodynamic Model (MHM) [Sotero and Tru-
jillo-Barreto, 2007] (see Appendix C), a system of ordinary
differential equations (ODE) depending on additional state
variables x7(t),. . .,x14(t). The observed BOLD is generated
by the Balloon model then is transformed to BOLD by the
equation y2(t) 5 gBOLD (x13(t),x14(t)) in Appendix C. Sum-
marizing, for this cortical module the EEG/fMRI model
the complete state vector is x(t) 5 {x1(t),. . .,x14(t)}. Usual
values for constants in this article are listed in Appendix
B. A typical simulation obtained using the LL method for
integrating the SDE is shown in Figure 2C. Matlab code is
provided in the supplementary material to generate this
figure.
Using this type of approach, Neural Mass Modeling,

has been producing for decades seemingly correct simula-
tions of EEG rhythms (David and Friston, 2003; Lopes da
Silva et al., 1974; Zetterberg et al., 1978) that not only pro-
duce EEG like signals but also predict nonlinear bifurca-
tion behavior that can be interpreted, for example, as an
explanation of epileptic seizures [Breakspear et al., 2006;
Lopes da Silva et al., 2003]. In addition, as already men-
tioned, [Moran et al., 2007; Rowe et al., 2004] have carried
out valuable theoretical analysis of EEG models [Moran
et al., 2008; Robinson et al., 2004] by means of global lin-
earization around system steady states and passing to the
frequency domain. They also have fitted small scale neu-
ral mass models to EEG data by comparison of data ver-
sus model spectra.
However, to our knowledge, the first time full nonlinear

neural mass models were fit to actual EEG recordings by
means of the LL-innovation method [Valdes et al., 1999a,b]
used to estimate the parameters of Zetterberg’s model
[Zetterberg et al., 1978] for the alpha rhythm.
Fitting the parameters of this neural mass model corre-

sponds to solving the inverse problem from the EEG to the
dynamics of the ePSPs in Figure 1A. In our example, the
parameters to be estimated are Y 5 {c1,2,c2,1,c2,3,c3,2,l,r}.
Unsurprisingly, the LL-innovation approach found param-
eter values that, when used to produce simulated produce
recordings, provided traces very similar to the original
data. A new aspect was the calculation of the likelihood of
the fit useful for model comparison. Even more, examina-
tion of the Gaussianity and independence of the innova-
tions allowed the identification of several alpha rhythm
recordings that could not be explained by this model-thus
providing a criterion for falsification of the theory.
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What did come as a surprise was a predictive aspect of
this model. The Zetterberg model exhibits a stochastic
Hopf bifurcation, in which changes in parameter values
transform the topology of the stable manifold in state
space from a point attractor to a limit cycle. The parame-
ters estimated for each EEG recording corresponded either
to a point attractor or to a limit cycle. This model driven
fingerprint for dynamic behavior was then independently
confirmed with a data driven procedure. This involved fit-
ting non parametric nonlinear time series models and
ascertaining if it’s ‘‘skeleton’’ (dynamics when the dynamic
noise is turned off) was of the appropriate type. The iden-
tification of a bifurcation in a data set through model fit-
ting is a topic of major interest. Of course, there are many
types of bifurcations, each of which bear their dynamical
signature in data and not all of which are displayed by a
given model [Izhikevich, 2006]. Hence a complementary
approach to model fitting is the visual analysis of the
bifurcation structure of a given model and comparison to
appropriate data as for example in [Breakspear et al.,
2006]. A relevent review of combining model and data
driven exploration of nonlinear dynamics can be found in
[Valdés et al., 1999].
A number of biophysical models have been proposed

for BOLD signals [Stephan et al., 2004]. The global approx-
imation around a steady state and analysis in the fre-
quency domain has also been applied to this type of model
[Robinson et al., 2006].
Regarding fully nonlinear models, [Sotero and Trujillo-

Barreto, 2007] have developed a biophysical model of the
coupling between neuronal activity and the BOLD signal
(metabolic/hemodynamic model, MHM) that allowed
explicit evaluation of the role of both excitatory and inhibi-
tory activity. In addition to glycolysis, the ‘‘glycogen
shunt’’ is assumed in the astrocytes. They also assume that
cerebral blood flow is not directly controlled by energy
usage, but it is only related to excitatory activity. Appen-
dix C summarizes this model. By means of simulations
with the LL approach, these authors successfully predicted
the appearance of negative BOLD phenomena. In a subse-
quent article [Sotero et al., 2008], they were able to use the
LL-innovation method to fit a stochastic version of this
model to BOLD signals obtained in a motor task. Using
the Bayesian Information Criterion (BIC) allowed selection
among several competing models. In particular it was
found that observations seemed to be generated by only
an excitatory population rather.
With regard to EEG/fMRI fusion, [Riera et al., 2006,

2007] were the first to use the full LL-innovation approach
for estimating a local electro vascular coupling model. LL
simulations explained the continuous dynamics of electri-
cal and vascular states within a cortical unit. They explic-
itly dealt with the mismatch in temporal resolution of EEG
and fMRI by incorporating this information into the
model. The innovation approach was then used to estimate
state variables and system parameters from the EEG and
BOLD signals in selected regions of interest. They applied

this algorithm to recordings obtained from two subjects
while passively observing a radial checkerboard with a
white/black pattern reversal. The EEG and fMRI data
from the first subject was used to estimate the electrical/
vascular states and parameters of the model in V1.
These examples of small scale models illustrate the feasi-

bility of creating neural mass based methods for EEG/
fMRI fusion. Unfortunately it is only at this small scale
that the LL-innovation estimation has been applied. At
larger scales only simulations have been possible as yet.

MEDIUM SCALE EEG/fMRI SIMULATIONS

Small scale simulations must be considered only as a
proof of concept for EEG/fMRI fusion. More realistic situa-
tions must involve at least thousands of neural masses.
Several issues become critical then. One problem is that of
specifying the connectivities between distant neural popu-
lations since in the cortical module model the matrix C

only contains local intra module connections (which we
will denote as contained in the matrix C0). [Babajani and
soltanian-zadeh, 2006] postulated exponential decay with
distance of short range (SR) connectivity strength of both
excitatory and inhibitory populations to neighboring voxels
which can be included in the connectivity matrix CSR. Thus
in their case they use the connectivity matrix C 5 C0 1
CSR. With these specifications, these authors successfully
simulated EEG and the associated BOLD signals using
decay parameters described in the literature. A distinctive
feature of their model is the inclusion of a large number of
cortical modules per voxel which addresses the issue of
generator synchronization discussed on the EEG and
BOLD. However, the integration methods used were stand-
ard creating the doubt if the dynamical behavior observed
corresponded to the original continuous time system.
Another example of a medium sized simulation can be

found in [Sotero et al., 2007]. Here the generation of EEG
rhythms was studied using a model with several dozen
cortical regions comprising thousands of neural masses.
These regions were coupled with connectivity coefficients
obtained from a neuroimaging database. This simulation
included a number of new features:

� Modification of the cortical module model to include
Pyr to Pyr connections and 16 SDE3.

� Inclusion of the thalamus as a single module as a set
of 12 SDE with local connectivities which was also
coupled with the cortical modules. The thalamic mod-
ule consisted of an excitatory thalamic relay popula-
tion receiving visual dynamic noise input. The relay
population projects to cortex as well as to the inhibi-
tory reticular thalamic population which feed back to
the relay population.

3In reality Random Differential Equations, but see (Carbonell et al., 2007) for
the equivalence in this particular case.
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� Use of the connectivity matrix C 5 C0 1 CSR 1 CLR

which includes in CLR the coupling strength of inter-
area or Long Range (LR) connections between large
cortical areas.

� Additionally, the model was modified to take into
consideration conduction delays collected in the ma-
trix T. These were used to modify the PSP functions
have variable longer time courses [Jansen and Rit,
1995; Sotero et al., 2007].

� A realistic lead field K was used to generate the EEG

The matrices CLR and T were defined according to their
anatomical connections probability (ACP) matrix [Iturria-
Medina et al., 2007]. The ACP gives the probability that
any two areas are connected at least by a single nervous
fiber according to diffusion weighted Magnetic Resonance
Imaging (DWMRI) techniques and Graph Theory. This ma-
trix is estimated as follows:

1. The cerebral volume was represented as a non-directed

weighted graph Gbrain,0 5 [N0,A0,W0], where N0 is the

set of voxels (nodes) having a non-zero probability of

belonging to some cerebral tissue, A0 is the set of white

matter links (arcs) between contiguous voxels in N0,

and W0 is a set of real numbers representing arcs

weights. The weight of an arc is chosen so that it repre-

sents the probability that contiguous linked nodes are

really connected by nervous fibers.
2. An iterative algorithm was employed for finding the

most probable trajectory between any two nodes,

which is assumed to be the hypothetical nervous fiber

pathway running between these points. A node-node

anatomical connectivity measure (ranging between 0,

not connected, and 1, perfectly connected) is defined

as the lowest weight of the arcs set belonging to the

most probable path.
3. After computing the node-node connectivity measure

between any two nodes of the brain surface, a thresh-
old value of 0.6 was applied to retain values higher
than 0.6, which were assigned to the matrix CLR (ele-
ment cij represents the connectivity between nodes i
and j) .

4. The delay matrix T 5 {si,j} i,j 5 1,. . .,Nm was
estimated as the average path length between voxels
(nodes), multiplied by a conduction velocity of 10 m/
s. Both matrices were then averaged over neighboring
voxels as to obtain the corresponding matrices
for the reduced set of vertices actually used in the
simulation.

The previously described model results in quite a large
system of SDE. In LL schemes, the limiting step for their
solution is calculating matrix exponentials. Fortunately this
can now be done efficiently for sparse systems using Kry-
lov subspace methods [Jiménez, 2002; Jiménez and Car-
bonell, 2005], a feature taken advantage of with the empiri-

cal sparseness of the estimated anatomical connectivity
matrix as described by [Iturria-Medina et al., 2007].
Simulations of different types of human brain rhythms

were carried out in order to test the model. Changing pa-
rameter values allowed the simulation of different EEG
rhythms in a similar fashion as described in [David et al.,
2006a,b; David and Friston, 2003]. The simulated alpha
rhythm was reactive to increase of thalamic input (visual
stimulation). However alpha activity was only obtained by
using in simulations the connectivity patterns estimated
from DWMRI. Alpha disappeared when the elements of
CLR were randomly reshuffled. This shows that the con-
nectivity pattern assumed for EEG/fMRI simulations can
be quite critical. [Sotero and Trujillo-Barreto, 2008] then
went on to augment this EEG model with their MHM
model (Appendix C) for BOLD generation. The VFFS (the
input to the MHM) was the number of active synapses
within the voxel. The simulated EEG and BOLD signals
where then subjected to the data driven EEG/BOLD corre-
lation method described in Figure 1B. Strikingly, the
observed pattern of positive BOLD-EEG correlations in
thalamus and negative BOLD-EEG correlations in the occi-
pital cortex present in real data (Fig. 2A) was also obtained
for the simulated data (Fig. 2C).

LARGE SCALE EEG/fMRI SIMULATIONS

The previously described medium scale simulations
have at most modeled a total of 1032 neural masses– the
basic limitation for larger simulations is just computa-
tional. We now report a new type of integration scheme,
the LL-algebraic method, which is particularly adapted to
the analysis of very large networks of neural masses. The
motivation for this new type of LL scheme comes from
techniques used for the analysis of electrical circuits
[Schuster and Unbehauen, 2006] and other modular sys-
tems, in which the nonlinear components are described by
ODE or SDE and their interconnections through algebraic
equations. These types of systems which combine differen-
tial equations and algebraic equations are known as Differ-
ential Algebraic equations (DAE) and Stochastic Differen-
tial Algebraic equations (SDAE) [Denk and Winkler, 2007]
and can be solved very efficiently. For example, the tech-
nique we shall use involves solving iteratively and sepa-
rately the algebraic equations and the SDE [Vijalapura
et al., 2005]. In fact it can easily be seen from that our neu-
ral mass models are already in a differential algebraic for-
mulation in which Equation (3), the formula that specifies
neural mass dynamics, is the differential part, and (4), the
part that specifies connectivities, is the algebraic part.
The LL-algebraic integration method alternates between

two steps:

1. Assuming that the inputs zi(t) to each neural mass
have been calculated, Eq. (3) is now a second order
random differential equation (RDE). RDEs are
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functions of stochastic process that do not enter the
equation linearly and are not necessarily Gaussian
white noise (as is the case for SDE). RDEs do not
pose any special problem since methods for their LL
integration have been recently developed [Carbonell
et al., 2005].

2. Given the outputs from all neural masses, the inputs
z(t) may be calculated using x(t) using expression (4)
z(t) 5 Cx(t).

Two factors may be used to speed up the simulations by
orders of magnitude. One is that the numerical integration
in step 1 may be carried out analytically (IV) for example
using the program Mathematica 6.0 (Wolfram Research
Inc.). A program for this derivation is provided in the sup-
plementary material. Denoting the states of the i-th neural

mass states by xi;t ¼
xePSPt;2i�1

xePSPt;i�1

" #
the integration step found

analytically is:

xi;tþDt ¼ xi;t þAxi;t þBei;t ð14Þ

With A ¼ e�aiDtðaiDtþ 1Þ � 1 e�aiDth

�a2i e
�aiDtDt e�aiDtð1� aiDtÞ � 1

" #
;

B ¼
Aie

�aiDt �aiDtþeaiDt�1ð Þ
ai

Ae�aDt aiDtþeaiDtðaiDt�2Þþ2ð Þ
a2
i
h

aiAie
�aiDtDt

Aie
�aiDt �aiDtþeaiDt�1ð Þ

aiDt

2
64

3
75

and ei;t ¼ _wtþDt þ SðztÞ
_wtþDt � _wt þ ztþDt � ztS

0ðztÞ
	 


The second speed up factor is that, as discussed in the
previous section, brain connectivity matrices are very
sparse– speeding up step 2. An additional bonus
of this method for integration is that the second step
can now be modified to include explicitly conduction
delays

zi tð Þ ¼
XNm

j¼1
ci;jx2j�1 t� si;j

� � ð15Þ

This contrasts with the suboptimal approach of slowing
down the PSP functions as has been done in [Jansen and
Rit, 1995; Sotero et al., 2007].
A similar approach can be used to optimize computa-

tions for the MHM model. Careful examination of Appen-
dix C reveals that it can be decoupled into pairs of RDE
that are linked by algebraic identities. Thus these may be
solved using the approach outlined above of interleaving
differential and algebraic steps. The differential integration
steps have also been solved analytically. Finally we men-
tion that these integration steps for both neural masses
and the MHM are all in a format that allows the use of
vectorized MATLAB operations making simulation of hun-
dreds of thousands of neural masses possible in approxi-
mately real time on a state-of-the-art desktop PC. A dem-

onstration program in MATLAB is available in the supple-
mentary material.
In order to show the feasibility of this approach for large

scale simulations, the T2 image of a normal subject was
transformed to MNI space and segmented into three dif-
ferent brain tissues (cerebral spinal fluid, gray matter and
white matter). Each individual gray matter voxel was la-
beled based on an anatomical atlas (constructed by manual
segmentation) using the transformation matrix obtained in
the previous step. All segmentation procedures were
implemented by using SPM5 (Statistical Parametric Map-
ping, FIL, UCL) and the IBASPM (Individual Brain Atlases
using SPM) toolbox (Cuban Neuroscience Center, http://
www.fil.ion.ucl.ac.uk/spm/ext/#IBASPM). Then, the sur-
faces for the thalamus, gray and white matter (for both
hemispheres) were extracted using the marching cubes
algorithm as well as, the previously computed individual
atlas. This yielded a set of 65,728 vertices for further analy-
sis. This was down-sampled to 16138 vertices for use in
the simulation.
A Jansen-Rit cortical module was placed at each of the

cortical vertices (8203 for the left hemisphere, 8362 for the
right hemisphere). A thalamic module was placed at each
of the vertices on the thalamic surfaces (438 for the left
and 465 for the right). This yielded a total of 106,614
RDEs for the neural masses to which 99,390 additional
ones are added to include the MHM for each voxel. The
connectivity and delay matrices were calculated as
described in the section on medium scale simulations.
However instead of calculating these parameters only for
large cortical areas, the long range connection matrices
contain all 16138 by 16138 connections and delays. Figure
5A illustrates the connections of the visual cortex. These
matrices were also found empirically to be quite sparse
(Fig. 5B).
Simulations were carried out based on the parameter set

described in Appendix B. Resting state EEG epochs of 15.3
s duration were simulated with a Gaussian white input to
the relay cells of the posterior right thalamus with mean
20 and variance 2 pulses/second. Changing levels of tha-
lamic stimulation were achieved by increasing the input to
the thalamus to a mean of 100 pulses/second during 2 s.
A continuous Morlet wavelet transform was used to esti-
mate the power in the alpha band of the Local Field Poten-
tial at each of the cortical and thalamic modules. A refer-
ence signal was calculated for each module by convolving
the power at 9 Hz with a standard hemodynamic response
function. The correlations between the reference signal and
the simulated BOLD signal are shown in Figure 2D (left
side view). It is to be noted that this simulation produces
the same empirical pattern shown in Figure 2A–C.

DISCUSSION AND CONCLUSIONS

This article presents a general framework for EEG/fMRI
fusion on which both data driven and model driven
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methods are based. For data driven methods it provides a
conceptual framework for improvement. For example the
framework suggests that instead of the usual approach of
directly correlating hrf convolved EEG power changes with
BOLD [Goldman et al., 2002; Martinez-Montes et al., 2004],
an alternative approach might be to solve the spatial inverse
problem for the EEG and the temporal inverse problem for
BOLD and directly compare estimates of nPCD and VFSS
(Appendix A and Fig. 1C). However independently of the
level of comparison, a consistent finding for all data driven
analyses of EEG power in the alpha band has been that of
positive correlations between EEG alpha power and BOLD
in both frontal cortices and thalamus; and negative ones for
the occipital region. These findings provide empirical con-
straints that should be a test of the predictive powers of
more theoretical approaches to EEG/fMRI fusion.
We argue that the appropriate level of description for

model driven fusion is the mesoscopic level that can be
implemented using neural mass modeling. In this article a
general model Neural Mass-Metabolic Hemodynamic
Model is set out as a State Space Model (aka DCM) that
couples a neural mass EEG/fMRI model with a metabolic
hemodynamic model. This model generalizes many others

that have been presented before and is based upon a par-
ticularly simple form. This form consists of stating each
neural mass as a distinct module and separating out the
synaptic connections and conduction delays between pop-
ulations as algebraic constraints, thus allowing the use of
efficient numerical techniques developed for differential-
algebraic equations.
Of primary importance is to implement computer simu-

lations that preserve the dynamical properties of the origi-
nal continuous time system. We show that the Local Linea-
rization (LL) method for integrating ordinary, stochastic,
and random differential equations is appropriate for use in
neural mass modeling. LL simulations of small and me-
dium sized network were able to produce many types of
EEG rhythms and were consistent with the appearance of
negative BOLD signals. Additionally they reproduced the
EEG/BOLD correlations found by data driven fusion
methods. These simulations clearly show that the emer-
gence of EEG rhythms depends critically on the use of re-
alistic anatomical connectivity information estimated from
DWMRI. A new LL-algebraic method allows simulations
with hundreds of thousands of neural populations and full
voxel to voxel connectivities and conduction delays.

Figure 5.

Connectivity matrix used for large scale simulations. Sample

estimated nerve fiber pathways between voxels of the left and

right occipital poles (left panel) of cortical tessellation shown in

Figure. From these pathways anatomical connectivity values

between these voxels were estimated. For use in the large scale

neural mass simulations shown in Figure 2a, in reality all the vox-

els on both cortical and thalamic surfaces were used to calculate

the overall connectivity matrix. This connectivity matrix (dimen-

sions 16138 3 16138) is summarized for purposes of illustration

here to a region to regional representation corresponding to 90

well-known anatomical areas (right panel). The same technique

also estimates the length of the fiber connections that is used to

infer conduction delays between voxels. Note the extreme

sparseness of connections.

r EEG/fMRI Fusion of Brain Oscillations r

r 2715 r



The neural mass models used in this article are deriva-
tions of the Jansen model [Jansen and Rit, 1995] and corre-
spond to mean field approximations of integrate and fire
neurons. The present framework can easily accommodate
more realistic neural mass model that go beyond such sim-
plifications by considering the second moments of neural
masses [Marreiros et al., 2008] or mean field approximations
of neurons with intrinsic properties [Robinson et al., 2008].
The LL integration method can be combined with many

other procedures as an alternative to the Extended Kalman
Filtering, the usual staple for engineering applications. In
particular the LL-innovation method for estimation con-
sists of the discretization of the continuous time system in
order to permit Kalman filtering estimate of the states as
well as the data innovations or prediction errors [ Galka
et al., 2004; Kalman, 1960]. Under very general conditions
these innovation errors will be Gaussian so the likelihood
or Bayesian criteria may be easily calculated.
The LL-innovation method has already been applied to

the estimation of small scale EEG network which revealed
hidden dynamical characteristics of alpha rhythm record-
ings that distinguish point attractor versus limit cycle
behavior. This classification was then independently veri-
fied with non parametric data driven modeling. Estimation
for BOLD signals allowed model selection and distin-
guished the contribution of inhibitory and excitatory PSPs
to fMRI. Finally, combined EEG/fMRI models were able to
carry out joint estimation of physiological parameters.
However to avoid trivial model fitting it is important to
clearly identify predictions of the EEG/fMRI model that
would allow its falsification. These might be susceptible to
verification via behavioral, TMS, or pharmacological modi-
fication of brain states.
EEG/fMRI should soon become a more effective tool for

the explanation of inter individual differences in resting
state or event related EEG. For example the increasing
availability of extensive EEG/fMRI/DWMRI data sets may
decide between contrasting views of the origin of brain
oscillations. Such a comparison begs to be carried out
between local [Lopes da Silva et al., 1974] and global
[Nunez et al., 2001] models of the EEG. A perhaps more
complex issue is that of EEG/fMRI fusion becoming a
bridge to understand cognitive functions. For this, a junc-
tion must be made between our type of modeling and that
of neural information processing systems.
Until now the LL-innovation for estimation approach

has been limited to small scale models. Fortunately there
are promising developments in large scale state and pa-
rameter estimation problems, the Ensemble Kalman Filter
[Evensen and van Leeuwen, 2000] and Dynamic Expecta-
tion Maximization [Friston et al., 2008] being two recent
examples. Additionally, special methods are being devel-
oped for the estimation of differential algebraic systems
[Becerra et al., 2001; Gerdin et al., 2007; Jorgensen et al.,
2007]. It is to be expected that the combination of these
techniques with the new large scale integration techniques
discussed in this article will allow the estimation of realis-

tic models with appropriate resolution in the near future.
One of the most complicating factors is that even with
prior DWMRI constraints the number of connectivities to
be estimated may become very large. In this case the use
of Bayesian estimation methods geared to finding sparse
models might be necessary [Valdes-Sosa et al., 2006].
Finally it should be emphasized that this article has lim-

ited itself to the analysis of EEG and fMRI data recorded
concurrently. Many useful experiments are carried out
with non concurrent data so that modifications of our
model driven framework for this situation are worthwhile.
A promising approach is to apply Bayesian data augmen-
tation methods for datasets with at least partial overlap
(for example to combine MEG/EEG and EEG/fMRI).
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APPENDIX A. TEMPORAL DECONVOLUTION

OF THE HEMODYNAMIC RESPONSE

FUNCTION

For a given voxel the following estimator for the VFFS
was used:

v̂ ¼ arg min
v

b�Hvk k2þk Lvk k2 ðA1Þ

where v denotes the vector of VFFSs for time instants
t 5 1, . . . ,NT, b the BOLD waveform, H the matrix form
of the hemodynamic response, L the one dimensional
Laplacian operator toeplitz ([21 2 –1,]T), and k a
regularizing parameter. Note that this is a temporal
spline inverse solution that generalizes with a smooth-
ness constraint the deconvolution method of Glover et al.
[1999].

APPENDIX B. EXTENDED NEURAL MASS

MODEL. VALUES OF PARAMETERS AND THEIR

PHYSIOLOGICAL INTERPRETATION

Parameters with the same value in all simulations

Parameter Physiological interpretation Value

A Average synaptic gain for Excitatory, Inhibitory neurons 3.25 mV, 22 mV
e0, v0, r Parameters of the nonlinear sigmoid function 5 s21, 6 mV, 0.56 mV21

a,b,at,bt Average synaptic time constants for Cortex and thalamic
Excitatory and Inhibitory populations.

100 (s21), 50, 100, 40

c1, c3 Synaptic contacts made by pyramidal cells on excitatory and
inhibitory interneurons within a cortical module

150, 40

c2, c4 Synaptic contacts made by excitatory and inhibitory interneurons
on pyramidal cells within a cortical module

120, 40

c5 Synaptic contacts between pyramidal cells within a cortical module 150
c6, c7 Synaptic contacts made by pyramidal cells on pyramidal cells of

different cortical module corresponding to short and long
range connections.

50,10

c7t Synaptic contacts made by pyramidal cells on thalamic TC cell 100
c1t, c3t Synaptic contacts made by thalamic TC cells on RE and on stellate cells. 50, 80
c2t Synaptic contacts made by RE neurons on TC cells 50
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APPENDIX C. METABOLIC/HEMODYNAMIC

MODEL

In Sotero and Trujillo-Barreto (2007) the role that inhibi-
tory and excitatory activities play in the generation of the
BOLD signal was studied with the help of a biophysical
model. All the variables are normalized to baseline values.
According to the model, changes in excitatory (ue(t)) and
inhibitory (ui(t)) neuronal activities are linked to the corre-
sponding changes in glucose consumption, x7(t) and x9(t)
respectively, by means of linear differential equations:

_x7 tð Þ ¼ x8 tð Þ
_x8 tð Þ ¼ ae

se
ue t� deð Þ � 1ð Þ � 2

se
x8 tð Þ � 1

s2e
x7 tð Þ � 1ð Þ

�

_x9 tð Þ ¼ x10 tð Þ
_x10 tð Þ ¼ ae

se
ue t� deð Þ � 1ð Þ � 2

se
x10 tð Þ � 1

s2e
x9 tð Þ � 1ð Þ

�

Then, the total glucose consumption is calculated as a
weighted average of the excitatory and inhibitory contribu-
tions. The glucose variables were then directly related to
the metabolic rates of oxygen for excitatory (me(t)) and in-
hibitory (mi(t)) activities, as well as to the total oxygen con-
sumption (m(t)):

z ¼ 1

1þ e�c x7 tð Þ�dð Þ ; mi tð Þ ¼ x9 tð Þ; me tð Þ ¼ 2� z

2� z0
x7 tð Þ;

m tð Þ ¼ gme tð Þ þmi tð Þ
gþ 1

For describing CBF (x11(t)) dynamics, the MHM uses the
model introduced in Friston et al. (2000) but with the addi-
tional assumption that CBF is not coupled to inhibitory ac-
tivity:

_x11ðtÞ ¼ x12ðtÞ
_x12ðtÞ ¼ e ue t� df

� �� 1
� �� x12ðtÞ

ss � x11ðtÞ � 1
sf

(

As in earlier approaches, in the MHM (Sotero and Tru-
jillo-Barreto, 2007) the Balloon model (Buxton et al, 2004)
is employed for linking the output of the metabolic and
vascular models to normalized cerebral blood volume
(x13(t)) and deoxyhemoglobin content (x14(t)).

_x13 tð Þ ¼ 1
s0

x11 tð Þ � fout x13 tð Þð Þð Þ
_x14 tð Þ ¼ 1

s0
m tð Þ � fout x13 tð Þð Þ x14 tð Þ

x13 tð Þ
� �

; fout x13 tð Þð Þ ¼ x13 tð Þ1a

(

Knowing x13(t) and x14(t), the BOLD signal is calculated
as in Buxton et al. (2004):

y2 tð Þ¼gBOLD x13 tð Þ;x14 tð Þð Þ¼V0 a1 1�x14 tð Þð Þ�a2 1�x13 tð Þð Þð Þ

The interpretation and values of MHM parameters are
displayed in the following table:

APPENDIX D. EXPLICIT EQUATIONS FOR LL

INTEGRATION OF A NEURAL MASS

As described in (Carbonell et al., 2005) the local lineari-
zation of a Random Differential (RDE) is as follows. Let’s
assume that a k-dimensional random process q(t), t [ [t0,T]
and a nonlinear function f are given and define the d-
dimensional RDE

dx tð Þ ¼ f x tð Þ;q tð Þð Þdt
x t0ð Þ ¼ x0

Then, given a step size Dt, the local linearization scheme
that solves numerically the equation above at the time
instants tn 5 t0 1 nDt, n 5 0,1,. . .. is given by:

xnþ1 ¼ xn þ LeCnhr;

Parameter Interpretation Value

ae Efficacy of glucose consumption
response to excitation

1

ai Efficacy of glucose consumption
response to inhibition

1

se Time-constant of the excitatory
glucose consumption impulse
response.

1

si Time-constant of the inhibitory
glucose consumption impulse
response

0.8

c Steepness of the sigmoid function x 2.5
d Position of the threshold of the

sigmoid function x
1.6

de Delay between excitatory neuronal
activity and corresponding glucose
consumption.

0.1 s

di Delay between inhibitory neuronal
activity and corresponding glucose
consumption.

0.1 s

df Delay between excitatory neuronal
activity and CBF response

0.2 s

g Baseline ratio of excitatory to
inhibitory synaptic activity
in the voxel

5

e Efficacy of blood flow response to
excitation

0.6

ss Constant for CBF signal decay 1.5 (Friston
et al., 2000)

sf Constant for CBF autoregulatory
feedback

2.4 (Friston
et al., 2000)

s0 Transit time through the balloon 1 s (Buxton
et al., 2004)

a Coefficient of the steady state flow-
volume relationship

0.4 (Buxton
et al.,2004)

a1 Weight for deoxyhemoglobin
change

3.4 (Buxton
et al., 2004)

a2 Weight for blood volume change 1 (Buxton
et al., 2004)

V0
Baseline blood volume 0.02 (Friston

et al., 2000)
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where L 5 [Id, 0dx2], r 5 [01x(d11),1]
T and the (d 1 2) 3

(d 1 2) matrix Cn is defined by blocks as

Cn¼
_fx tð Þðxn;qðtnÞÞ _fq tð Þðxn;qðtnÞÞqðtnþ1Þ�qðtnÞ

Dt fðxn;qðtnÞÞ
0 0 1
0 0 0

0
@

1
A

ðA2Þ

Now consider the neural mass:

_x1;t ¼ x2;t

_x2;t ¼ Aa _wþ S zð Þ½ � � 2ax2;t � a2x2;t
ðA3Þ

The required Jacobian matrices are

fx ¼ 0 1
�a2i �2ai

� �
fq ¼ 0 0

aiAiSz½z� aiAi

� �
ðA4Þ

Substituting expressions (A3) and (A4) into the formula
(A2) produces an expression which can be solved symboli-
cally making it possible to obtain expression (14) in the main
text. A Mathematca 6.0 (Wolfram Research Inc.) program to
do this is included in the supplementary material. A similar
analysis is valid for the MHM equations (Appendix C). Note
that these equations for the MHM are organized in pairs with
algebraic constraints linking them. Thus it is possible to use
the same strategy as just outlined for the neural mass.
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