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Abstract: In a study that combined event related potential (ERP) and magnetic field (ERMF) data, we
analyzed the timing and direction of information flow between striate (S) and extrastriate (ES) cortex
by applying a generalized mutual information measure (DIT for ‘‘directed information transfer’’) dur-
ing a visual spatial attention task. ERP and ERMF recordings showed that selective attention to stimu-
lus arrays in one visual field enhanced late responses (around 200 ms after the stimulus presentation)
that were localized in S (ERMF) and ES (ERP) cortex. The results of the DIT analysis indicate there is a
significant attention related increase in the flow of information back from ES to S cortex at around
220 ms, with an associated decrease in the flow of information forward from S cortex to ES cortex.
These results support the hypothesis that a feedback mechanism guides attention-related processing in
primary visual cortex and provide evidence that DIT can by used to evaluate the direction of informa-
tion flow between cortical areas. Hum Brain Mapp 29:193–206, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Electroencephalography (EEG) and Magnetoencephalog-
raphy (MEG) can be used to analyze the tempo-spatial dy-
namics of neural activity underlying cognitive processes.
One standard approach for analyzing event related poten-
tials (ERPs)/ event related magnetic fields (EMRFs)
assumes that distinct cortical regions will process different

aspects of information at specific times. In addition to this
approach, which primarily investigates the functional seg-
regation of cognitive processing in time, the investigation
of the functional connectivity between spatially distinct
brain regions has recently also gained widespread atten-
tion [Friston, 1994; Friston et al., 1993 for a general over-
view of measures of connectivity]. Early approaches of
functional connectivity relied on linear statistical measures
like correlation and regression analyses in the time or fre-
quency domains [Aertsen et al., 1989; Ahissar et al., 1992;
Bressler and Kelso, 2001; Ding et al., 2000; Gerstein et al.,
1978; Gross et al., 2001; Lachaux et al., 2002; Schack et al.,
1999; Varela et al., 2001]. Because of their symmetric prop-
erties these measures are not able to identify the direction
of any interregional interaction. This is also true for the
mutual information measure [Papoulis, 1991; see Ioan-
nides, 2001, for an application to MEG data], which is a
generalization of the correlation technique. However,
knowledge about the direction of connectivity is essential
for understanding whether certain cognitive processes rely
on a top-down or bottom-up mechanism. Arnhold et al.
[1999] and Gross et al. [2002] (using Rosenblum’s 2001
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directionality index) have provided a partial solution to
this problem by adapting algorithms from non linear dy-
namics, but only for the special case of coupled cortical
oscillators.
A general definition of causal relations has been estab-

lished by Granger [1969]. This approach assumes that a
signal X is the cause of a signal Y if the predictability of Y
is improved by the combination of the past of both X and
Y rather than relying on the past of Y alone. This concept
was applied by Freiwald et al. [1999], Sameshima and Bac-
cala [1999] (focusing the Ganger causality to selected fre-
quency bands by means of partial coherences), Kaminski
et al. [2001], Hesse et al. [2003] and Bakardjian et al. [2006]
to analyze causal interrelations between EEG-signals using
multivariate adaptive linear models as predictors. A simi-
lar procedure was applied by Brovelli et al. [2004] to ana-
lyze causal interactions among local field potentials (LFP)
recorded from a group of cortical patches in monkeys.
Moreover, David et al. [2006] quantified causal connectiv-
ity between different cortical areas based on a physiologi-
cally guided framework of neuronal interaction in conjunc-
tion with a Bayesian estimation scheme. A limitation inher-
ent in all these approaches, however, is that they require
the a priori assumptions of a model to describe the interac-
tion mechanism. Since the required model parameters are
usually unknown in neuroimaging studies, this requires
model-free measures of temporally varying causal interac-
tions. Such a model free estimate should permit the detec-
tion of both linear and nonlinear couplings.
One model free approach was formulated by Saito and

Harashima [1981] and further developed by Kamitake
et al. [1984]. It is derived from information theory by gen-
eralizing the mutual entropy measure [see, for instance,
Papoulis, 1991]. This approach has fewer formal restric-
tions than the approaches noted earlier. It does not simply
quantify the information shared by two random variables
at a certain time point, but rather evaluates two temporal
sequences of random variables. The resulting ‘‘directed in-
formation transfer’’ (DIT) measure specifies the directed in-
formation flow between two signal sources using their
multivariate nonparametric signal statistics. Liang et al.
[2001] have used this method to infer causal interactions
between cortical areas based on LFP. These LFPs were
recorded invasively from a macaque brain during a visuo-
motor pattern discrimination task. A similar approach was
recently used by Chavez et al. [2003] to identify the model
free Granger causality (see earlier) between pairs of corti-
cal and in-depth EEG recordings with epileptic patients.
Recently, we showed [Hinrichs et al., 2006] how the

DIT approach can be used to identify causal interactions
between cerebral activations observed with functional
magnetic resonance imaging (fMRI). Here, we adapt this
technique for use with noninvasive event related EEG
and MEG recordings. First we confirmed the efficacy of
the DIT measure with data of this type using a simulated
data set. Then we employed it to address the temporal
dynamics of the causal interactions produced by visuo-

spatial attention in human visual cortex. In an experiment
reported earlier by Noesselt et al. [2002], MEG- and EEG-
data sets were acquired simultaneously, while subjects
performed a visual spatial attentional task. Because MEG-
recordings primarily pick up tangential sources, while
EEG-recordings measure a mixture of tangential and ra-
dial sources [Cohen and Cuffin, 1983], the combined
MEG/EEG recordings allowed a dissociation between
higher cortical sources picked up with EEG and primary
cortical sources picked up with MEG (see later for
details). We extend the observations made by Noesselt
et al. [2002] by performing a DIT analysis on the com-
bined EEG and MEG signals. The results of this analysis
show that during the time interval from 180 to 280 ms
‘‘information’’ flows from ES to primary visual cortex.
These results provide direct evidence that the primary
visual cortex is subject to top-down control, supporting
earlier theoretical claims of attentional control from higher
to lower cortical areas [Noesselt et al., 2002; Martinez
et al., 1999, 2001].

MATERIALS AND METHODS

The Visual Attention Experiment [see Noesselt

et al., 2002, for additional details]

ERP and ERMF were simultaneously acquired while
subjects performed a visual spatial attention task. A cen-
trally presented left or right arrow cue was followed by a
sequence of 10 bilaterally presented 3 � 3 stimulus arrays.
The arrays were made up of ‘‘plus’’ signs that were super-
imposed upon a globally and locally smoothed back-
ground checkerboard, with a central element that consisted
of a letter T. In each array this T was randomly displayed
either upright or inverted. The subject’s task was to cov-
ertly direct attention to the array indicated by the initial
arrow cue (ignoring the array in the opposite field), and
report by pressing one of two buttons whether the center
T of the attended array was upright or inverted. In a
‘‘neutral condition,’’ a central diamond was presented and
subjects were required to push a button upon the appear-
ance of the bilateral arrays with no discrimination
required. Cue presentations lasted 500 ms, the cue-array
ISI was sometimes 0.5 but usually 3.5 s, array presenta-
tions lasted 200 ms, and the ISI between the arrays in each
sequence was jittered between 800 and 4000 ms. Subjects
were initially trained to a 75% correct criterion. Since the
task was demanding, initial training required 0.5–2 h.

Subjects

Nine healthy adult subjects (6 male, age range 19–35
years, mean age ¼ 25.7 years) with no psychiatric or neu-
rological disorders participated in the combined EEG/
MEG recordings after providing written informed consent.
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MEG/EEG Recording

MEG data were acquired at a sampling rate of 255 Hz
and a bandwidth of 0.0–50 Hz using a 148 magnetometer
whole head system (Magnes 2500 WH, 4D-Neuroimag-
ing). EEG data were acquired simultaneously at the
same sampling rate and bandwidth from 32 electrode
sites (Fp1, Fp2, F7, F3, Fz, F4, F8, FC1, FC2, T7, C3, Cz,
C4, T8, CP1, CP2, P7, P3, Pz, P4, P8, PO7, PO3, PO4,
PO8, Oz, O9, Iz, and O10, left mastoid, right horizontal
and vertical EOG; right mastoid serving as reference)
according to the 10–20 system of the American Electro-
encephalographic Society. The MEG sensor coordinates
were localized with respect to the subject’s head using a
spatial digitization device (Polhemus Fastrack). Coregis-
tration of the MEG-sensors with the individual struc-
tural MR images was accomplished by interactively
localizing skull landmarks in the images. Eye move-
ments were monitored using an infrared video device.

EEG-/MEG Preprocessing

EEG

Stimulus related EEG-epochs were selectively extracted
for each attention condition (attend-left, attend-right, and
neutral) using an epoch length of 1.230 s. To provide base-
line data, sampling epochs started 200 ms prior to each
array presentation. Accordingly, in the case of the shortest
inter-array interval of 800 ms (see earlier for the timing of
the stimulus sequence) there the sampling epoch over-
lapped the presentation of the next array in a sequence by
230 ms. However, as explained later, all data analyses
were performed on an epoch interval that ended prior to
this overlap period. Artefacts were labeled and rejected if
the maximum–minimum difference amplitude in an epoch
exceeded a 100 mV peak-to-peak threshold (EEG and
EOG). For the estimation of information flow the nonaver-
aged raw data epochs were evaluated, whereas the selec-
tively averaged epochs (ERPs) were used for the topo-
graphical and temporal localization of the attention related
effects [Noesselt et al., 2002]. In addition, we derived
the global field power (GFP) of the ERP as the spatial
standard deviation of the EEG amplitudes including all
EEG-electrodes.

MEG

Environmental noise was removed by subtracting an
individually weighed sum of MEG reference signals from
each of the MEG channels [Robinson, 1989]. Artefact label-
ing was done in the manner described for the EEG (ampli-
tude criterion of 5 pT). MEG epochs that were recorded
during eye movements, as indicated by the EOG (ampli-
tude threshold 100 mV) were discarded. Again, raw and
averaged data were used, respectively, to estimate infor-
mation flow, to localize signals and to determine the GFP
in the manner described for the EEG.

Selection of Latency Range and Sensors for

Causal Analysis

Unlike data derived with functional imaging techniques
(fMRI, positron emission tomography), superficially re-
corded EEG and MEG signals cannot be directly attributed
to one restricted brain area. This is the case because EEG
and MEG sensors pick up the combined activity from a
number of concurrently active areas. Therefore, it can be
difficult to attribute the results of connectivity analyses
performed on the raw-data gathered with these techniques
to interactions between specific brain structures. Bearing
this in mind, we restricted our analysis to a latency range
in which previous source analyses [Noesselt et al., 2002]
have indicated that the EEG- and MEG signals picked up
by certain occipital sensors on average reflect neural activ-
ity that is predominantly extrastriate (ES) (EEG) or striate
(S) (MEG) in origin. This source specificity can be attrib-
uted to the tangential dipole orientation of the S and the
radial source orientation of ES generator observed with
MEG and EEG, respectively. The dominant ES effects as
seen in the ERPs may have obscured the S component in
this modality. In contrast, the MEG for physical reasons is
blind with respect to radial sources thus reflecting only the
S activity. Accordingly, only a minor increase in the good-
ness of fit was observed when adding the source locations
derived from the MEG-analysis in the EEG-fit and vice
versa. This suggests that the raw-waveforms we recorded
were suitable for use in the information-flow analysis
without further preprocessing. Alternatively, one could
argue that the analysis of the single trial dipole waveforms
might be the best way to derive the flow of information.
However, the low number of dipoles modeling the average
ERP-activity and ERMF is hardly suitable to adequately
describe the much more complex structure of the sponta-
neous nonaveraged EEG and MEG [Michel et al., 2004],
which is required to estimate the information flow (see ap-
pendix).
Attributing ERP- and ERMF-activity to S and ES cortex

was further supported by functional imaging (fMRI) data
obtained in the same study by Noesselt et al. [2002]. This

data showed a modulation in primary and lateral occipital

cortices contralateral to the attended hemifield. This effect

was observed in six out of six subjects in both the left and

right hemisphere. The contralateral attentional enhance-

ment was not only observed when comparing attend left

with the attend right condition, but also when comparing

the attend left/right conditions with the unfocused atten-

tion condition.
The latency range selected for our EEG-/MEG- analysis

was 180–280 ms. Within this time window, the source
model of dipoles located in S and ES cortex explained
more than 90% of the variance in the observed data in the
combined ERMF and ERP source analysis. Moreover, the
explained variance never fell below 85% if the ERP- and
EMRF-source models were independently estimated with
two bilateral dipoles in the ES cortex for the ERPs and one
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dipole in S cortex (very close to midline) for the MEG. A
second dipole in right temporo-parietal cortex was needed
to model unspecific MEG activity.
While we observed a significant contralaterality of the

attentional effect in both ES and S cortex, the attentional
effect in the ERMF-data was even more robust when the
focused attentional conditions were compared with the
unfocused attention condition [Noesselt et al., 2002]. Here,
we again observed a modulation in lateral occipital and S
areas for the combined ERP/ERMF data as described ear-
lier. We therefore used this comparison when conducting
the causal analysis.
For each experimental condition (i.e., attend left, attend

right, neutral), the causal analysis was conducted with the
signals obtained as the average over three sensors in
regions where the ERP and fields exhibited the strongest
attention related modulations. For the EEG, two topo-
graphically symmetric regions, each represented by three
electrodes (P3, PO7, PO3 and P4, PO8, PO4 in the 10-20-
system, Fig. 3) were selected. The topographical distribu-
tion of the attention related ERMF component only varied
a little between the attention conditions. Consequently, the
strongest attention related ERMF-amplitudes were observed
at identical sensor sites in these two conditions. Three
sensors (Fig. 3) located at the center of right hemisphere
dipolar field distribution were, therefore, selected to repre-
sent the magnetic S activity in both attention conditions.
As outlined in the appendix, the calculation of the flow
measures in both directions (i.e., S to ES and ES to S)
included both the EEG and MEG signals. After artefact
rejection the number of combined EEG- MEG-epochs per
subject and condition averaged 558 with a standard devia-
tion of 152.

Application of the Information Flow

Measure to ERP and ERMF

The methodological details of the information flow mea-
sure are described in the appendix. As outlined there, the
flow from a signal at time k to another signal at a future
time k + m is estimated taking into account N preceding
samples of each signal. In the current experiment the infor-
mation flow from ES to S and vice versa is estimated by a
measure that combines the raw EEG- and MEG-data using
the sequence of event related single trials.
Basically, the estimation of the information flow applies

a generalized version of the mutual information (MI) mea-
sure, which is the average information (‘‘entropy’’) shared
by two signals. In contrast to the standard definition of the
MI [Gallager, 1968] this generalization is non symmetric.
This is a prerequisite for identifying the direction of inter-
actions between two signals. Our measure is similar to the
formalism of the Granger causality (GC) in that both quan-
tify the influence of a signal’s past on future values. How-
ever, while GC is based on an assumption of linear pre-
dictability that is usually model dependent [see for
instance Hesse et al., 2003], the information flow measure

quantifies model-free information shared by a signals’ past
and the future). Like the similar approach of Chavez et al.
[2003], the DIT approach may be interpreted as a model-
free nonlinear extension of the GC. Moreover, in contrast
to GC, the information flow measure is able to include
future values beyond the immediate successor the current
time point, making it more suitable for identifying delayed
interactions.
Numerically DIT measurements require the estimation

of several multivariate covariance matrices. In the context
of ERPs and ERMFs, an analysis of the flow of information
over time requires that multivariate covariance matrices be
calculated individually for each time point k (latency with
respect to stimulus onset). These matrices must include N
preceding samples of both signals and the future sample
that the flow is targeting.
The information flow starting at a latency k extends in

principle into an unlimited future, i.e., k + m, with m ¼
1,2,. . . (see appendix for a detailed description of the infor-
mation flow measure). However, recent literature [Call-
away, 1998; Van Essen et al., 1992] suggests that the delay
between subsequent processing pathways within the occi-
pital visual cortex is limited by only a few synapses. With
an estimated maximum delay between S and ES sources of
40 ms in anesthetized animals [Lee et al., 1998; Schmolesky
et al., 1998], or 25 ms in awake macaques [Chen et al.,
2006; Lamme and Roelfsema, 2000; Ledberg et al., 2007]
we considered a maximum delay of 40 ms as sufficient to
describe the temporal dynamics of interconnections that
might exist between the various S and ES structures, and
restricted our analysis to a maximum delay of D ¼ 10
samples at the sampling rate of 255 Hz.
With the goal of estimating the total information flow

between the two time series involved, at each latency k we
cumulated the flow over this 40 ms period according to
the following equation.

CIXYðkÞ ¼
XD

i¼1

IXYðk; iÞ and CIYXðkÞ ¼
XD

i¼1

IYXðk; iÞ:

Determination of the Direction

The main direction of interaction (i.e., the driver–re-
sponder relation) can be identified by taking the difference
(subsequently labeled as the difference flow) between the
flows obtained for the two opposite directions as follows:

CDIðkÞ ¼ CIXYðkÞ � CIYXðkÞ:
If CDI(k) is significantly greater than 0 for a certain k,

then the series X(k) may be interpreted as the driver of
Y(k) at time k and vice versa. However, entropy rates may
differ between the signals thus causing an intrinsic asym-
metry in information flow [Schreiber, 2000]. This could
render the interpretation in terms of a driver–responder-
relation debatable. Therefore, following usual principles of
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ERP evaluation, we evaluated the differential task related
flow modulations, i.e., the contrast CDIattended(k) versus
CDIneutral(k) with ‘‘attended’’ and ‘‘neutral’’ indicating the
different task conditions.
In addition to the cumulated flow the temporal details

of the flow at a certain latency k can be further analyzed
by looking at the noncumulative difference flow values
defined as

DIðk;MÞ ¼ IXYðk;MÞ � IYXðk;MÞ:

Here, the temporal distance M will be referred to as
delay. Each differential flow of information is thus indexed
by the latency k and delay M over, which the information
flow will be assessed.

Method for Determining the Number of Past

Samples to be Included

In ‘‘real-world’’ applications of this method the number
of past samples to be included (i.e., N) needs to be
defined. Anderson [2004] has shown, that criteria to find
the appropriate model order for linear models may well
serve to define the order of general, i.e., both linear and
non linear models. Consequently, we applied Schwarz’s
[1978] Bayesian information criterion as implemented in
the ARFIT-MATLAB-package [Neumaier and Schneider,
2001]. The BIC penalizes large model orders p by a term
2p/L (L denoting the sample size), whereas the popular
Akaike information criterion accounts for large model
orders p by a term p*ln(L)/L, which produces a tendency
to overestimate the model order in cases of large samples
sizes [Hannan and Rissanen, 1982]. Using the BIC we esti-
mated the appropriate order p as the average over the
order values derived independently for each signal
included in the analysis. From this, N was derived as p-1
because the DIT-formula combines N predecessors plus
the actual value).

Influence of the Reference Electrode

It is known, that connectivity measures like coherence
[Nunez et al., 1999] and Granger causality [Kaminski et al.,
2001] are not entirely independent of the choice of the ref-
erence electrode. We wished to test for a potential influ-
ence of the reference electrode on the measure of DIT. We
therefore re-referenced the three EEG signals obtained in
the left hemisphere (P3, PO7, PO3, acquired with right
mastoid as reference) to the left mastoid. As a consequence
signals that potentially carried spurious left attention spe-
cific activity (see the map in Fig. 3) as well as uncorrelated
activity was subtracted from the original EEG signals. One
would therefore expect that the ratio of uncorrelated to
attention specific EEG activity would be reduced. Accord-
ingly, the information shared between the EEG and MEG
sensors should be decreased. Bearing the definition of the
information flow measure in mind, one would therefore

expect a reduced attention related flow from ES (EEG) to S
(MEG) cortex. To check this expectation we calculated the
cumulated flow from ES to S under the attend right condi-
tion based on the modified signal for all subjects and com-
pared these values to the original ones.

Statistical Evaluation

Simulated data

Since only one simulated data set is available (see later),
analytical analyses carried out over a group of data sets
cannot be applied here. The statistical evaluation of a sin-
gle data set is hampered by the fact that, to the best of our
knowledge, the statistical distribution of IXY, IYX for
uncoupled processes (corresponding to the null-hypothe-
sis) is unknown. Therefore, we empirically determined
thresholds representing the level of information flow above
which values had less than a 5% and 1% probability of
occurring by chance. For this purpose each pair of simu-
lated time series was used to generate 3000 independent
pairs of surrogate time series, as proposed by Theiler et al.
[1992]. In accordance with this method, each data set was
independently transformed by a Fourier transform. The
resulting complex spectrum was modified by adding ran-
dom phase values uniformly distributed over the interval
(0. . .2p) [using the random number generator provided by
MATLAB V. 6.0 (The Mathworks company)]. Finally, the
spectrum was transformed back to the time domain. This
procedure keeps both the original amplitude distribution
and the autocorrelation structure of each series but
destroys the relation between the two time series. For each
of these pairs of randomized time series we derived the
IXY and IYX as well as the difference values as specified
above. Finally, the thresholds required to exceed by chance
with probabilities of P < 0.1, 0.05, and 0.01 were derived
from these pairs of data sets by determining the 5% and
1%, quantiles of the sorted IXY and IYX and difference
series.

Experimental data

All amplitude values were averaged over a 4 sample-/
16 ms-interval before being subjected to further analysis.
Since the flow values are positive by definition they were
logarithmically transformed prior to statistical analyses to
approximate a normal distribution [Bland and Altman,
1996]. Statistical comparisons of the information flows val-
ues were based on one or two way repeated measures
analyses of variance (RANOVA).
In all analyses the significance threshold was set to P <

0.05.

Simulated Data

For a general test of the ability of the method to identify
directed interactions within various delays we simulated a
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data set using a modified version of a linear model first
proposed by Saito and Harashima [1981]:

xi ¼ zi�d�l þ awx

yi ¼ zi�d þ wy

zi ¼ bzi�d�l þ wx

Here, wx and wy are zero mean white noise processes with
standard deviation of 1 and 0.5, respectively, and a ¼ 0.5,
b ¼ 0.8. In this model, x leads y through the intermediate
variable z and should therefore give rise to an information
flow from x to y with delay d. As shown by Saito and Har-
ashima [1981], a cross-correlation analysis detects the inter-
action between x and y but fails to identify the direction,
since it exhibit peaks of almost identical strength with
both positive and negative lags. We generated 400 realiza-
tions (i.e., 400 trials), each with a length of 150 samples.
For the 1st, 2nd, and 3rd sets of 50 samples the delay was
set to d ¼ 1, d ¼ 2, and d ¼ 3, respectively.

RESULTS

Simulated Data

The information flow as well as the cross correlation
were estimated separately for each sample of the simu-
lated time series. According to the Schwarz-criterion, the
estimated mean model order averaged over all trials was
5.9 with a standard deviation of 2.4. Therefore, we set N to
7. As is shown in Figure 1, the cross correlation is charac-
terized by peaks of almost identical amplitude with the
positive and negative lags. The data demonstrate what
theory predicts: This measure is not suitable for determin-

ing the direction of an interaction. In contrast, the informa-
tion flow measure (i.e., IXY(k,I) and IYX(k,I)) shows a clear
asymmetry in favor of a flow from x to y (Fig. 2). In detail,
there is a flow from x towards y, which is most pro-
nounced at a delay of 1, 2, and 3 for the first, second and
third sets of 50 samples, respectively, whereas almost no
flow occurs in the opposite direction (i.e., y?x), which is
in accord with the generating model. Surrogate based sta-
tistics showed that the calculated flow x?y at lag 1, 2, and
3, respectively, as well as the difference between the flow
in the two directions, is significantly (P < 0.01) greater
than zero. In contrast, in no case does the flow in opposite
direction differ significantly from zero (P > 0.1). This anal-
ysis demonstrates that the new measure is reasonably sen-
sitive to directional information.
Replacing sequence x by z yields a virtually identical

result except for a slightly larger strength of flow towards
y (0.65 on average for x?y but 0.8 for z?y). In contrast,
no flow in either direction occurs between x and z.

Experimental Data

ERP and ERMF-results

First, we briefly revisit the ERP-and ERMF-findings for
the attention experiment previously reported by Noesselt
et al. [2002]. When the attend left visual field (LVF) and
attend right visual field (RVF) conditions are compared,
the earliest significant attentional ERP-modulation is
observed over occipital sensors contralateral to the
attended hemifield starting at a latency of around 90 ms
post stimulus. Please note, that an initial response starting
around 50 ms poststimulus was not modulated by atten-

Figure 1.

Left: Cross correlation between

the simulated data sets (x and y,

see methods section) at selected

time points (see index) for a lag

(delay) of 610 sampling inter-

vals. Right: Comprehensive over-

view for the whole period.
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tion. Using an equivalent current dipole model, the corre-
sponding sources could be located in contralateral ES cor-
tex. fMRI-activations could be observed in virtually identi-
cal lateral occipital visual areas contralateral to the side of
attention. In the same area, a subsequent attention specific
component (latency >150 ms, peaking at about 230 ms)
was elicited that had similar contralateral topographical
distribution (Fig. 3). The dipole model indicates this com-
ponent was generated by a second modulation of the ES
area. An attention specific component with a similar late
latency was also observed in the ERMF, but peaked
slightly later around 250 ms. Here, the dipole fit revealed
a S source but no lateral occipital activity. The lack of
ERMF-evidence for an ES modulation might be due to the
mainly radial dipole orientation in this area [Cohen and
Cuffin, 1983]. On the basis of the combined results from
MEG, EEG, and fMRI, we speculated that the observed
‘‘late’’ attention-related S modulation could be due to feed-
back connections from ES cortical areas.

Results of the causal analysis

Number of preceding samples for the estimation of
information flow. Using the Schwarz-criterion, we deter-
mined the appropriate number of predecessors to be
included for the 180–280 ms latency range separately for
each trial and each subject, both in the selected EEG and
MEG channels. The mean value was 5.2 with a standard
deviation of 0.4. Consequently we included N ¼ 5 preced-
ing samples in all calculations.

Task specific modulations of the cumulated information
flow. As indicated in Figure 3, the visual attention effect is
most prominent in the cortical hemisphere contralateral to
the attended visual hemifield. In Figure 4A, we show the
escalation in the cumulated information flow from contra-
lateral ES to S cortical areas over the flow in the reverse
direction [reflected by the CDI(k)-values] for the attend left
versus neutral, attend right versus neutral, and collapsed
attend left + right versus neutral conditions. In all cases,
throughout the latency range under consideration a flow
enhancement of up to 80% occurs in the direction ES to S
during the attend condition relative to the neutral condition,
peaking around 220 ms. In contrast, during the neutral con-
dition no such excess in favor of the direction ES?S is
observed. As shown in Figure 4B, the superior flow from
ES to S at this latency can be observed in almost all subjects
for both the attend left and the attend right condition.
We validated this observation in three steps: First, the

cumulated flow values (i.e., CI) from ES?S and S?ES as
observed during the attend condition around 220 ms were
evaluated to test if the flow in the two opposite directions
differs significantly. A two way RANOVA of these flow
values with factors direction (ES?S vs. S?ES) and hemi-
sphere (left vs. right) showed a significant direction [F(1,8) ¼
7.37, P < 0.027) and hemisphere [F(1,8) ¼ 8.91, P < 0.018]
main effect but no direction � hemisphere interaction (P >
0.1). This result indicates the enhanced flow towards S cor-
tex during the attend task is statistically reliable. In the
framework of Granger causality, one could thus conclude
that ES Granger causes S during the attend condition. In

Figure 2.

Information flow estimated for

the simulated data sets (x and y).

Upper row: Flow from y to x.

Left: Temporal distribution of the

flow at individual time points up

to a delay (lag) of 10 sample

intervals. Right: Comprehensive

overview for the whole period

Lower row: Same but for oppo-

site flow direction, i.e., x to y.
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addition, the hemisphere-effect confirms the different
strengths of this flow enhancement in the two hemi-
spheres, as can be seen in Figure 4A.
A subsequent analysis aimed at validating a significant

task related modulation of the flow difference, i.e., of the
CDI(k) values. Therefore, we conducted a two way
RANOVA of the difference flow values at 220 ms with fac-
tors hemisphere (left vs. right) and condition (attend vs. neu-
tral). The CDI values are modulated by condition [F(1,8) ¼
10.4614, P < 0.0120] but not by hemisphere (P > 0.1), and
there is no condition � hemisphere-interaction (P > 0.1).
Finally, a two-way RANOVA with factors hemisphere

(left vs. right) and direction (ES?S vs. S?ES) was con-
ducted at 220 ms for the flow values [i.e., CIXY(k) and
CIYX(k)] in the neutral condition. The only significant effect
was a main effect of hemisphere (P < 0.05). There was no
main effect of direction and no direction � hemisphere inter-
action (P > 0.1). Figure 4 suggests a larger flow from
S?ES in the neutral condition around 250 ms, but this dif-
ference also does not reach statistical significance (P > 0.1).
Together, these analyses suggest that attention generates

an increased flow of information from contralateral ES cor-
tex towards S cortex.
To investigate the temporal dynamics of the ES–S cou-

pling observed around 220 ms, we analyzed the noncumu-
lated difference in the information flow [i.e., DI(k,m)] over
the delay period of 1 to 10 samples (4 –40 ms) at that la-
tency. As shown in Figure 5, the largest difference flow
towards S was observed for delay values between 8 and
28 ms, peaking around 15 ms in the attend-condition. A
one way RANOVA with factor direction (ES?S vs. S?ES)

was conducted individually for each delay. This analysis
confirmed significant differences (P < 0.05, see Figure 5 for
the normalized difference values) during the period of 8–
28 ms. The difference at latencies from 12 to 28 ms remain
significant (P < 0.05) even after a Bonferroni correction for
the 10 concurrent tests.
The observed modulation of the difference flow between

ES and S could be due to either an increased flow from
ES?S or a decreased flow from S?ES or to a combination
of both. We analyzed the two flow directions separately to
disentangle these possibilities. Comparing the flow CIXY
from ES?S (collapsed over both hemispheres) for the two
conditions shows an attention related increase around 220
ms (Fig. 6 for the normalized values). This modulation
was validated by a one way RANOVA with the factor con-
dition (attend vs. neutral) [F(1,17) ¼ 4.5792, P < 0.047]. In
contrast, the inverse flow CIYX(k) (i.e., S?ES, Fig. 6)
decreases at the same latency when the subjects switch
from the neutral to attend condition. The corresponding
RANOVA shows that this difference is significant [F(1,17)
¼ 4.5792, P < 0.013]. However, this decrease only reaches
its maximum around 250 ms [F(1,17) ¼ 9.0475, P <
0.0079]. Thus, both an attention related (ES?S) increase
and a more pronounced S?ES decrease contribute to the
observed CDI effect, but they do so at different latencies.
To test the contralaterality of this differential attention

effect we also calculated the CDI values between ES and S
under the attend-condition for the hemisphere ipsilateral
to the attended field at 220 ms. A two-way RANOVA with
factors hemisphere (left vs. right) and attention (left vs. right)
revealed no significant main effects (P > 0.1) but a strong

Figure 3.

ERP- and ERMF-scalp topogra-

phy (grand average, spline inter-

polation) of the late attention

effect. The signals analyzed in

the present study were acquired

from the sensors marked by

black dots.
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attention � hemisphere interaction [F(1,8) ¼ 48.1943, P <
0.0002], suggesting a contralateral preference at the latency
where the modulation of the flow from ES to S cortex is
strongest.

Influence of the reference electrode. The flow from ES to
S at the attend right condition decreased in the left hemi-
sphere from 0.0275 6 0.0095 (averaged over all nine sub-
jects) to 0.0186 6 0.0130 after re-referencing to the left mas-
toid. This is in accordance with the assumption of a reduc-
tion of attention specific activity and/or an increase in
uncorrelated activity because of the subtraction of the left
mastoid reference signal from the left hemispheric EEG.
This outcome confirms that the DIT measure is sensitive to
reference chosen.

DISCUSSION

The goal of this study was to demonstrate that a mea-
sure derived from mutual entropy theory, the DIT, can
identify the time course, strength and direction of the
functional coupling between cortical regions measured
with combined EEG- and MEG recordings. To do this, we
reanalyzed data from a visual spatial attention experiment
by Noesselt et al. [2002]. On the basis of their original anal-
ysis of these data, Noesselt et al. [2002] concluded that ES
structures might act on S cortex by means of a recurrent
mechanism. This view was supported by the fact that S
cortex showed a late activation following an initial atten-
tion specific modulation in ES regions. While this conclu-
sion seems reasonable, the results provide only indirect
evidence for the proposed feedback-mechanism. Here, we

Figure 4.

A: The enhanced cumulated information flow from contralateral

extrastriate (ES) to striate (S) cortical areas, related to the flow

(S?ES) under the ‘‘attend’’ and the ‘‘neutral’’ condition. Both the

EEG and MEG data were included when deriving the flow values

(see methods section for details). All data were low pass filtered

at 24 Hz cut off frequency. B: Single subject data of the contra-

lateral flow form extrastriate to striate versus the flow from

striate to extrastriate cortex. Same normalization as in subfigure

A. C: Global field power for the event related potentials (ERP)

and the event related magnetic fields (ERMF). The data reflect

the attend left + right collapsed condition.
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assessed the neural interaction directly using DIT. The
algorithm employed allows (i) an analysis of the temporal
modulation of the flow of information from one area to
another at specific latencies with a temporal resolution in
the ms-range (determined by the sampling rate), and (ii)
the calculation of the directed connectivity without the
need to specify an underlying model. Moreover, the new
approach is capable of detecting both linear and non-linear
interactions. In the present study, however, we restricted
the analysis to linear relations to limit the computational
load. The results obtained with this analysis confirmed
Noesselt et al.’s [2002] earlier conclusion that the S cortex
is modulated by ES areas.
In principle, the DIT measure computes the generalized

mutual information between two time series, thereby esti-
mating the joint information in the actual samples of one
series and future samples of the other series, given the
past of both series. As shown by Liang et al. [2001] this in-
formation flow is not symmetrical between the two series,
so that the driver–responder relationship can be detected.
By calculating this measure individually for each member
of a set of future time points (termed ‘‘delay’’ earlier), the
detailed temporal structure of the directed connectivity
can be resolved. The total flow at a certain latency is esti-
mated using the cumulated flow values over the delay pe-
riod. Thus, the DIT measure allows for a detailed connec-
tivity analysis, which goes beyond standard correlation
measures [see for instance Peled et al., 2001; Winterer
et al., 2003], since these are restricted to the analysis of the
strength of interactions. Structural equation modeling
(SEM) is a variant of the correlation method that is also
able to provide directional information between the nodes
of a network model predefined by the user. However, it
can neither derive the direction in case of a single pair of

signals, nor track the temporally varying strengths and
directions of interactions. Moreover, measures such as
SEM are by definition restricted to linear relations. A
recent non linear connectivity measure proposed by Gross
et al. [2002] is capable of detecting directed dependencies
between pairs of oscillatory signals, but does not consider
the timing of an interaction.
Using simulated data, the difference with respect to

directional information between DIT and correlation coeffi-
cients is obvious. The cross correlation function shows a
decaying sequence of almost identical correlation coeffi-
cients for positive and negative lags. From this analysis, it
is impossible to draw any conclusion regarding the direc-
tion. In contrast, the DIT measure shows a clear asymmet-
rical flow of information that accords with the driver–
responder relation imposed by the linear model used for
generating the data. In addition, the temporal delay at
which the flow occurs precisely matches the lag imposed
by the data-generating model.
When calculating the total flow at a specified latency,

one needs to address the question of the delay across,
which flow values should be cumulated. That is, one has
to decide what temporal distance from the latency of the
signal generating the flow it is appropriate to investigate.
A ‘‘shotgun’’ approach would be to cumulate over all flow
values after the current latency, but this would lead to an
accumulation over many delay values where no real inter-
action occurs, which could obscure the genuine interac-
tions. In the present study, we tried to derive an upper
bound for the temporal delay of interaction from some
physiological considerations.
Our results reveal that the S activation observed in the

MEG in the latency range from about 180 ms up to 280 ms
after stimulus onset is driven by a statistically significant
flow of information from ES to S cortex, peaking around

Figure 5.

Excess of cumulated information flow towards striate areas (see

Fig. 4 for the normalization) at various delays of interaction

between contralateral extrastriate (ES) and striate (S) areas under

the ‘‘attend’’ condition. The curve was derived at a latency of 220

ms where the cumulated difference flow between ES and S is larg-

est under the ‘‘attend’’ condition. Levels of significance: ‘‘*’’ ¼ P <
0.05, ‘‘**’’ ¼ P < 0.01, ‘‘***’’ ¼ P < 0.005, ‘‘****’’ ¼ P < 0.001.

Figure 6.

Difference between cumulated flow of information (both ES?S

and S?ES observed under the ‘‘attend’’ and the ‘‘neutral’’ condi-

tion. All values are related to the flow obtained at the neutral

condition. The data were low pass filtered at 24 Hz cut off fre-

quency.
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220 ms but extending over a much larger temporal range.
This feedback flow shows a contralateral preference at a
slightly later then about 250 ms (where the flow from S to
ES cortex is minimal, see later), which suggests it is associ-
ated with an attentional control mechanism. Significant
interactions between ES and S sensors extended over a
delay range of 8–28 ms, and were largest at a delay of 24–
28 ms. This compares with the mean latency difference of
20 ms between neural activity in V4 and V1 which Schmo-
lesky et al. [1998] observed in intracerebral recordings of
anesthetized macaques. Moreover, other studies on awake
monkeys have reported onset latencies of 30 (V1) and 40
(V4) ms, respectively, for visual stimulation [Chen et al.,
2006]. Applying the 3/5 rule [Schroeder et al., 1995] to
account for the human-simian latency differences an V1–
V4 latency of roughly 17 ms can be expected in humans.
The slightly longer latencies we observed suggest that

the feedback mechanism observed in our experiment
might be mediated by two synaptic connections. In an
experiment investigating visual pattern discrimination in
macaques by means of invasively recorded LFP, Liang
et al. [2000] observed a Granger causal influence, which
was mainly directed from S to ES cortex at early latencies
but subsequently changed to the opposite direction. Taking
into account the 3/5 rule (see earlier) to compare latencies
between the different species, the timing of the feedback ac-
tivity largely resembles our result. From this it would have
been interesting to analyze the flow of information in our
data in an earlier time window where one would expect an
enhancement of the information flow in opposite direction
(S?ES). However, given the results of the dipole based
source analysis [Noesselt et al., 2002], at latencies below 180
ms the ERP and ERMF cannot be attributed uniquely to ES
and S cortex. Below 180 ms, there is too much overlap in
sensor space to be able to define a subgroup of electrodes/
sensors that reflects activity arising primarily in S or ES cor-
tices, so the direction of the information flow cannot be
clearly specified. The observed time window of 180–280 ms
is nonetheless in accord with previous monkey studies
[Metha et al., 2000] in which the authors reported an effect
in V4 starting around 100 ms. Furthermore, Ledberg et al.
[2007] reported that the earliest stimulus-specific processing
effects occur around 100 ms poststimulus. In humans such
an effect should be observable at around 180 ms. Most stud-
ies have also failed to find an effect on the initial response
in V1, suggesting that the first feedforward sweep is not
modified by top-down processes [see e.g., Lamme and
Roelfsema, 2000 for a review].
One could argue that the modulation of the information

flow might mainly reflect the course of signal-to-noise-ratio
in the underlying ERPs and ERMF. However, the fact that
the peak of the directed flow values occurs at a latency of
about 220 ms, which is clearly after the ERP- and before
the ERMF-GFP-peak-values (200 and 270 ms, respectively,
Fig. 4C), argues against this view. Comparing the ERP-/
ERMF- and the DIT-waveform one might in fact consider
them as orthogonal measures.

Re-referencing the left hemispheric EEG to the left mas-
toid led to a drop of the corresponding flow from ES to S
in this hemisphere of about 30% under the attend condi-
tion. This observation indicates that the choice of reference
must be taken into account when interpreting flow values
derived from EEG data. In particular, the fact that the right
hemispheric flow from ES to S observed under the attend
left condition is lower than the corresponding flow for the
attend right condition (observed with the original signals)
in the left hemisphere (Fig. 4) may be due to this effect
since the right hemispheric electrodes are located closer to
the reference used during acquisition. However, unless the
reference electrode does not reflect another concurrent
mental process it will only lead to a degradation of the
ability to find a directional bias in the information flow
rather than creating an imbalance when there is none.
We found the attention specific increase in the difference

flow between ES and S can be attributed to both to an
increase in flow from ES to S and a subsequent decrease of
flow from S to ES. This observation is in line with the hy-
pothesis that the feedback from ES to S guides the spot-
light of attention, and the consequent increase in spatial
selectivity leads to a reduced flow from S to ES. The com-
bined data give rise to the following hypothesis: The flow
of information from ES back to S cortex guides a S neural
selection process (reflected in the EMRF), which reduces
the forward data stream by limiting processing outside the
‘‘refocused’’ spotlight of attention, enabling more efficient
processing of detailed features within the spotlight at
higher processing stages. This kind of mechanism has been
proposed, for instance, by Vidyasagar [1999], Deco and
Zihl [2001], and Roelfsema et al. [1998] [see also Hopf
et al., 2005 for review]. Lateral interactions because of local
processing routines are unlikely to have caused the effect,
because those interactions should not be reflected in a
modulation in the DIT-measure bearing in mind that the
DIT measure only accounts for interactions between areas
but not within one area.
Regarding general applications of the reported method

to the field of EEG- and MEG-analysis, the method (like
other connectivity measures) requires a pair of signals,
which reflect activity in different cerebral structures, so
that the driver and responder functions can be uniquely
defined with respect to these structures. This requirement
is usually met by functional imaging data as long as the
corresponding voxels are separated by more than the full
width half maximum distance. However, in case of electro-
physiological data, additional criteria are needed to ensure
that the two signals represent different brain structures. As
demonstrated in this study, source analysis of the aver-
aged ERP and fields is one way to provide this informa-
tion. Alternatively, given a sufficient signal to noise ratio,
a source analysis of the raw (nonaveraged) signals (ob-
tained, for instance, with beamforming techniques) with
the DIT analysis applied to the resulting epoch based
source strength might provide a data set suitable for a DIT
analysis of epochs of source strength. A similar approach
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was recently presented by Bakardjian et al. [2006] for a
causal EEG analysis. As a side effect this method would
circumvent the problem of choosing the appropriate refer-
ence electrode.
In conclusion, the measure of information flow reported

here is an asymmetrical data-driven measure capable of
extracting the direction of information flow from combined
ERP/EMRF data. The only a priori constraint, which has
to be applied to the analysis is the window length in
which the cross-regional interaction occurs. The results
from the reported visual attention experiment support the
view that the attentional modulation of primary visual cor-
tex is associated with a flow of information from higher
visual cortices into the primary visual cortex.
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APPENDIX

Information Theoretic Background of the Causal

Measure-Directed Information Transfer

Let us assume two stochastic processes X ¼ {X1,
X2,. . .,XL} and Y ¼ {Y1, Y2,. . .,YL} each of length L. With
respect to ERP and ERMF analysis each epoch may be
interpreted as a realization of X or Y. X and Y may be
written in the form

X ¼ XNXkX
M ðA1Þ

Y ¼ YNYkY
M ðA2Þ

with XN ¼ Xk�N . . .Xk�1 and YN ¼ Yk�N . . .Yk�1 representing
the past and XM ¼ Xk+1. . .Xk+M and YM ¼ Yk+1. . .Yk+M the
future of X and Y with respect to k, with L ¼ N + 1 + M.
According to Saito and Harashima [1981] the mutual in-

formation between times series, i.e., the information shared
by the two series, is defined as

IðX;YÞ ¼
X
k

IkðX;YÞ: ðA3Þ

This states that the total information shared by the two
time series is the sum of the generalized mutual informa-
tion of each individual time point, which is defined as

IkðX;YÞ ¼ IðXk;Y
MjXNYNYkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Xk!YM

þ IðYk;X
MjXNYNXkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Yk!XM

þ IðXk;YkjXNYN:Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Xk$Yk

ðA4Þ

In this notation, the first term, specifies the mutual infor-
mation between the time series X at time k and future M
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values of Y based on the past of both X and Y. This term
is referred to as the DIT. The DIT can be interpreted as the
information flow from the actual value of X to future val-
ues of Y. The second term gives the inverse DIT from Y to
X, while the third term marks the instantaneous flow.
Applying basic laws of information theory [see for instance
Papoulis, 1991], it can be shown that Xk ? YM is different
from Yk ? YM so that DIT is a causal measure of informa-
tion flow.
Restricting YM to Yk+M and applying some basic algebra

from information theory [Saito and Harashima, 1981; Gall-
ager, 1968] the term specifying the flow Xk ? Yk+M can be
rewritten as

IðXk ! YkþMjXNYNYkÞ ¼ HðXNYNYkYkþMÞ �HðXNYNYkÞ
�HðXNYNXkYkYkþMÞ þHðXNYNXkYkÞ ðA5Þ

where H(...) represent the entropies of the multivariate dis-
tributions specified by the arguments. The definition of
entropies can be found in standard textbooks [Papoulis,
1991]. Given this definition, the task is now to estimate
these entropy values from the sequence of event related
signal epochs, i.e., from the raw data.

Estimation of Multivariate Entropies

To calculate the entropies, the various multivariate
probability distributions for each time point k need to be
estimated from the measured raw data. According to

Scott [1992] kernel estimation procedures are recom-
mended when the available data is limited. However, due
to the computational limitations this estimation is not
practical for more than five dimensions (this means N �
1). Given the much larger N dictated by the order estima-
tion procedure (see results section), this approach is not
appropriate for the analysis our of ERP/ERMF experi-
ment.
However, the probability estimation is greatly simplified

if one assumes the time series to be normally distributed.
Then, the entropies can be directly computed from the de-
terminant of the corresponding covariance matrices [Liang
et al., 2001; Papoulis, 1991]. With X and Y data sets reflect-
ing the raw data, i.e., the individual trials, the formula to
calculate the DIT can then be rewritten as:

IðXk ! YkþMjXNYNYkÞ ¼ 1

2
log

jRðXNYNXkYkÞj � jRðXNYNYkYkþMÞj
jRðXNYNXkYkYkþMÞj � jRðXNYNYkÞj

ðA6Þ

with log(*) denoting the natural logarithm and k the deter-
minant of the covariance matrices R(...). We note that this
simplification has the drawback that only linear dependen-
cies are covered by the DIT-results, since the algorithm
relies on the covariance matrices rather than on the raw
data. In the text the follow, the terms I(Xk?Yk+M|XNYNYk)
and I(Yk?Xk+M|YNXNXk) will be abbreviated by the terms
IXY(k,M) and IYX(k,M), respectively.
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