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Abstract: We compare three widely used brain volumetry methods available in the software packages
FSL, SPM5, and FreeSurfer and evaluate their performance using simulated and real MR brain data sets.
We analyze the accuracy of gray and white matter volume measurements and their robustness against
changes of image quality using the BrainWeb MRI database. These images are based on ‘‘gold-standard’’
reference brain templates. This allows us to assess between- (same data set, different method) and also
within-segmenter (same method, variation of image quality) comparability, for both of which we find
pronounced variations in segmentation results for gray and white matter volumes. The calculated vol-
umes deviate up to >10% from the reference values for gray and white matter depending on method
and image quality. Sensitivity is best for SPM5, volumetric accuracy for gray and white matter was simi-
lar in SPM5 and FSL and better than in FreeSurfer. FSL showed the highest stability for white (<5%),
FreeSurfer (6.2%) for gray matter for constant image quality BrainWeb data. Between-segmenter com-
parisons show discrepancies of up to >20% for the simulated data and 24% on average for the real data
sets, whereas within-method performance analysis uncovered volume differences of up to >15%. Since
the discrepancies between results reach the same order of magnitude as volume changes observed in
disease, these effects limit the usability of the segmentation methods for following volume changes in
individual patients over time and should be taken into account during the planning and analysis of
brain volume studies. Hum Brain Mapp 30:1310–1327, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

The ability to segment and quantify brain tissues and
anatomical structures from 3D MRI acquisitions has
increasing importance in the study of brain development
[e.g., Counsell and Boardman, 2005; Nishida et al., 2006],
neurodegeneration [e.g., Cordato et al., 2005; Sepulcre
et al., 2006], and dementia [e.g., Fotenos et al., 2005; Ridha
et al., 2006], and in the assessment of neurological [e.g.,
Meyer-Lindenberg et al., 2005; Ciumas and Savic, 2006]
and psychiatric [e.g. Henriksson et al., 2006; Honea et al.,
2005; Marcelis et al., 2006; Sporn et al., 2003] disorders.
Brain morphometry from MRI is also used to investigate
brain-behavioral relationships such as IQ and memory per-
formance [e.g. Fjell et al., 2005; Frangou et al., 2004; Wal-
hovd et al., 2005], as well as genetic influences [e.g.,
Meyer-Lindenberg et al., 2006; Pezawas et al., 2005].
The history of tissue segmentation from brain MR

images started with the seminal work of Vannier [1985] by
adopting statistical classification software from NASA.
During the last 20 years, there has been an enormous
methodological development in the field of brain segmen-
tation as well as image acquisition techniques (for reviews
see: Zijdenbos and Dawant [1994]; Saeed [1998]; Pham
et al. [2000]; Duncan et al. [2004]).
The simplest but most time-consuming method is slice-

by-slice manual tracing. This operator-dependent method
is still being used, mainly as a ‘‘gold-standard’’ reference
method for whole brain and GM/WM/CSF segmentations
(cf. the Internet Brain Segmentation Repository [http://
www.cma.mgh.harvard.edu/ibsr]), for segmentation of
subcortical structures [e.g., Szabo et al., 2006] such as the
amygdala and hippocampi [e.g., Barnes et al., 2006], and
for correction of local misclassifications as part of the proc-
essing chain in semiautomated segmentation methods.
Semiautomated unsupervised and supervised pattern

recognition techniques using contextual classification meth-
ods and estimation of Mahalanobis distances between tis-
sue types in feature space was proposed by Taxt and Lun-
dervold [1994] for segmentation of multispectral MRI from
the brain. A similar multispectral automated discriminant
analysis approach, including fuzzy classification, was taken
by Harris et al. [1999] and Amato et al. [2003], introduced
independent component analysis (ICA) and tissue-specific
nonparametric probability density functions into multispec-
tral brain image segmentation. However, with the introduc-
tion of 3D MRI acquisitions on modern scanners of today,
enabling whole brain coverage, high spatial resolution, and
good contrast-to-noise ratios within a few minutes mea-
surement time [e.g., Magnotta et al., 2006], the majority of
brain segmentation and morphometric studies make use of
3D image registration and electronic brain atlases (tem-
plates) with prior tissue probabilities for their voxel classifi-
cation, rather than multiple pulse sequences and multispec-
tral analysis. Several software packages for brain segmenta-
tion currently in use (e.g., SPM2/SPM5, FSL, FreeSurfer,
and BrainVoyager) employ such a priori information.

Recent developments also allow integration of volume-
and surface-based methods [Kim et al., 2005; Makris et al.,
2006] to perform cortical topographic measurements, and
mathematics-oriented investigators have started to use
level-sets, PDEs, and variational methods for MR image
processing and brain segmentation [e.g., Cates et al., 2004;
Droske et al., 2005; Leow et al., 2005; Lie et al., 2006].
Apart from these theoretical developments, it is also of

great practical importance to investigate the performance
of competing methods. Several studies have been con-
ducted where different skull-stripping and brain segmen-
tation algorithms are compared, both with each other,
and with manual tracing, or realistic digital brain phan-
toms [Barra and Boire, 2001; Byrum et al., 1996; Cuadra
et al., 2005; Fennema-Notestine et al., 2006; Good et al.,
2002; Grabowski et al., 2000; Greenspan et al., 2006;
Heckemann et al., 2006; John et al., 2003; Kovacevic et al.,
2002; Lemieux et al., 2003; Moretti et al., 2000; Rehm et al.,
2004; Toga and Thompson, 2003; Wang and Doddrell,
2002; Warfield et al., 2004; Zaidi et al., 2006; Bezdek et al.,
1993]. Also, the impact of MR image acquisitions protocols
on tissue segmentation results and brain volumes has
been investigated [e.g., Lundervold et al., 2000; Clark
et al., 2006], and one study specifically addressed reprodu-
cibility of volumetry results over time of Chard et al.
[2002].
In the search for biological causes of brain volume dif-

ferences between diagnostic groups or individual changes
during time in longitudinal studies, the variations due to
MRI measurement technique, data quality, and image seg-
mentation procedure should be explored and accommo-
dated in the data analysis. In the recent study by Clark
et al. [2006], the choice of segmentation algorithm had the
largest impact on variability, whereas the choice of a pulse
sequence had the second largest impact. Moreover, the
classification of gray matter was the most variable, and the
optimal protocol could differ across tissue types. In a sys-
tematic review and meta-analysis of 66 papers comparing
brain volume in patients with a first psychotic episode
with volume in healthy controls, Grant Steen et al. [2006]
concluded that a major problem seems to be that the volu-
metric loss in patients, which is no more than 4% per year,
may be close to the limit of detection by MRI. Thus, poor
precision or low accuracy in even a subset of volumetric
studies would lead to a lack of consensus among the vari-
ous studies.
In this work, we evaluated the performance of three

widely used software packages for brain volumetry: SPM5
[Ashburner and Friston, 2005], FreeSurfer [Dale et al.,
1999; Fischl et al., 1999], and FSL [Smith, 2004]. The aim of
our work was on one side to explore volumetric variation
caused by algorithmic effects and moreover, to address the
question to what extent variations of image quality (noise
and intensity inhomogeneities) influence volumetric results
even when the same method is used. The evaluation of
this within-segmenter performance was achieved by the
use of synthetic data, namely the Montreal Neurological
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Institute BrainWeb digital brain phantom that provides
MRI data sets with varying image quality based on one
gold-standard tissue segmentation mask. We comple-
mented the inter-segmenter analysis by comparing the
volumetry results obtained for multiple-anatomical-model
BrainWeb data sets, real 3D MRI data recorded in a study
of normal aging, and images from the OASIS database
(http://www.oasis-brains.org).

MATERIALS AND METHODS

Statistical Parametric Mapping SPM5

The SPM software package SPM5 is a suite of MATLAB
(The MathWorks, Natick, MA) functions and subroutines
(including some C code) that implements statistical meth-
ods for analysis of functional and structural neuroimages.
The segmentation process in SPM5 is an integrated genera-
tive modeling approach, in which tissue segmentation,
intensity normalization, and nonlinear warping are
performed within the same mixture of Gaussian model
[Ashburner and Friston, 2005]. The segmentation process
does not only work on single voxels but takes contextual
signal intensity information into account that is encoded in
template images containing prior probabilities for GM,
WM, and CSF. These spatial priors are also deformed to
the subject brain to allow registration to a standard space.
For a successful spatial normalization, it is important that
the tested brain is similar to the template brain, e.g., when
examining children’s brains a special template data set has
to be provided. In this study, the standard template brain
included in SPM5 was used. In SPM5, classification is prob-
abilistic in the sense that a probability value of belonging
to each of the classes is assigned to each voxel. These prob-
ability values sum to unity. Total tissue volumes were
calculated by adding up, over all voxels, the assigned prob-
ability of the given class, and then by multiplying by the
known voxel volume [according to Lüders et al., 2002].
Segmentations in this study were performed using

SPM5 Revision 546, released on June 5, 2006. Because ini-
tial proximity to the template was observed to have a
strong effect on result quality, a rigid-body rotation and
translation was first performed on all subjects using the
coregister function in SPM5, and the SPM5 T1 template as
the reference image. All subjects were then segmented
using the default templates (a modified version of the
ICBM Tissue Probabilistic Atlas, located at http://www.
loni.ucla.edu/ICBM/ICBM_Probabilistic.html) and param-
eters for this version. Specifically, these parameters
included 2 Gaussians each for WM, GM, and CSF and 4
Gaussians for everything not fitting these categories, a
warping regularization value of 1, a warp frequency cutoff
of 25, very light regularization (0.0001), a 60-mm cutoff for
the full width at half maximum (FWHM) of Gaussian
smoothness of bias, and a sampling distance of 3. SPM5
segmentation results are output as probability maps with

voxel values between 0 and 255. When generating binary
images (for visualization of STAPLE/VOTING), voxels
with a probability of �0.5 (i.e., 128) were counted as mem-
bers of that particular class. Using a value of 0.5 for the
class membership decision prevents voxels in the border
region between white and gray matter to be classified as
both gray and white matter.
SPM5 can be obtained from http://www.fil.ion.ucl.

ac.uk/spm/.

FreeSurfer

FreeSurfer is a set of tools for automated surface recon-
struction and analysis, which extracts white matter and
pial surfaces, computes measures such as thickness and
sulcal depth, and performs cross-subject analysis using
spherical registration [Dale et al., 1999; Fischl et al., 1999].
FreeSurfer also parcellates the cortex into gross anatomical
regions and produces statistics on thickness, area, and vol-
ume for each region [Fischl et al. 2004]. In addition to its
surface reconstruction package, FreeSurfer includes a so-
phisticated automated segmentation algorithm, which
delineates gross brain anatomy into a series of cortical and
subcortical labels. Briefly, structures are labeled using a
complex algorithm combining information on image inten-
sity, probabilistic atlas location, and the local spatial rela-
tionships between subcortical structures [Fischl et al., 2002,
2004]. For this purpose, calculated volumes for these sub-
cortical labels were summed to derive estimates of total
gray and white matter volume. For gray matter, we calcu-
lated the total combined volume of cerebral and cerebellar
cortex, hippocampus, amygdala, caudate, putamen, globus
pallidus, nucleus accumbens, thalamus, and ventral dien-
cephalon, and for white matter we summed cerebral and
cerebellar white matter, brain stem, and white matter
hypointensities. Additionally, we compared cortical gray
matter estimates from the segmentation algorithm with
totals derived from the cortical parcellation algorithm. For
this purpose, the total volumes of each parcellation label
except unknown and corpus callosum were added to-
gether to obtain one cortical gray matter value.
The reported comparisons were performed using the

FreeSurfer Stable 3.0.2 release, using the default processing
stream (recon-all -all). Data were visually inspected, and
manual interventions were performed where automated
steps had failed. These included manual alignment to the
talairach template in cases where automated registration
was poor, and adjustments to the watershed threshold to
restore areas of the brain that were erroneously removed
during skull stripping. The FreeSurfer software and its
documentation can be downloaded from http://surfer.
nmr.mgh.harvard.edu.
In this study, the volume-based segmentation approach

of FreeSurfer is used. As an addition, we compared the
surface- and volume-based approaches for cortical gray
matter (see section ‘‘FSL’’).
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FSL

FSL (http://www.fmrib.ox.ac.uk/fsl/) is a library of
image analysis and statistical tools for fMRI, MRI, and DTI
brain imaging data. It is composed of several modules
including structural tools (BET, brain extraction; FAST, tis-
sue segmentation; FLIRT, linear registration; FUGUE B0,
unwarping; SIENA, brain change analysis), functional
(FEAT, model-based FMRI analysis; MELODIC, probabilis-
tic ICA temporal model-free FMRI analysis) and connectiv-
ity (FDT, diffusion and tractography, and TBSS, VBM-like
analysis with FA data) components. The segmentation tool
of FSL (FAST, FMRIB’s Automated Segmentation Tool)
segments a 3D image of the brain into different tissue
types (gray matter, white matter, CSF, etc.), while also cor-
recting for RF inhomogeneities. The whole process is fully
automated and can also produce a bias field-corrected
input image and a probabilistic and/or partial volume tis-
sue segmentation, from which tissue volumes were com-
puted. The FAST algorithm is based on a hidden Markov
random field (MRF) model and an associated expectation-
maximization algorithm [Zhang et al., 2001]. It can be
processed in various ways: from scratch (without any a
priori model, only using the MRF), using a priori informa-
tion (a priori maps created from averaging many segmen-
tations) for both initialization and posteriors for the algo-
rithm, or allowing the estimation of partial volume com-
partments. For the segmentation results presented here,
FAST (Version 3.53, part of FSL Version 3.3/4.0) was used
with these different parameter settings, using probability
maps (default settings), partial volume estimation (fast -e),
and a priori information (fast -A). We denote these three
possible uses PBMAP, PVE, and APRIORI, respectively. If
not otherwise noted, PBMAP segmentation is used because
this is the default setting in FAST.
We used both BET (bet2, Brain Extraction Tool Version,

part of FSL) and BSE (brain surface extraction), which is
part of BrainSuite (http://brainsuite.usc.edu) and recom-
mended by Fennema-Notestine et al., 2006.

MRI Brain Data

BrainWeb—Simulated brain data

Simulated MRI data sets were used as test data, gener-
ated with the Internet connected MRI Simulator at the
McConnell Brain Imaging Centre in Montreal http://
www.bic.mni.mcgill.ca/brainweb/. The data sets are based
on an anatomical model of a normal brain that results from
registering and preprocessing of 27 scans from the same
individual with subsequent semiautomated segmentation.
In this data set, the different tissue types are well-defined,
both ‘‘fuzzy’’ and ‘‘crisp’’ tissue membership are allocated
to each voxel. From this tissue-labeled brain volume, the
MR simulation algorithm, using discrete-event simulation
of the pulse sequences based on the Bloch equations, pre-
dicts signal intensities and image contrast in a way that is
equivalent to data acquired with a real MR-scanner (resem-

bling �1.5T images). Both sequence parameters and the
effect of partial volume averaging, noise, and intensity non-
uniformity are incorporated in the simulation results
[Cocosco et al., 1997; Collins et al., 1998; Kwan et al., 1999].
Ten data sets (T1, voxel size: 1 mm3) with variations of

the parameters ‘‘noise (n)’’ (ranging from 1 to 9%) and
‘‘intensity nonuniformity (rf)’’ (20 and 40%) were chosen:
n1rf20, n1rf40, n3rf20, n3rf40, n5rf20, n5rf40, n7rf20,
n7rf40, n9rf20, n9rf40. This selection covers the whole
range of the parameter values available in BrainWeb so
that the comparability with real data can be considered as
sufficient to test the robustness of the different methods at
varying image qualities.
To obtain the ‘‘true’’, i.e., reference volumes, the voxels

labeled as gray and white matter in the discrete brain
phantom (noise 5 0%, RF 5 0%) were counted. The addi-
tional 20 simulated BrainWeb data sets that were used are
each based on an anatomical model of an individual nor-
mal brain and thus allow us to test the segmenter per-
formance when image quality is constant (3% noise, 0%
intensity-inhomogeneity) and anatomy is varied. In the fol-
lowing, these data sets are referred to as ‘‘multiple-
anatomical-model’’ data. For details see Aubert-Broche
et al. [2006] and http://www.bic.mni.mcgill.ca/brainweb/
anatomic_normal_20.html. The discrete model data sets
available online have a higher resolution (362 3 434 3
362) than the simulated data sets (181 3 256 3 256). To be
able to perform a voxel-wise comparison between the dis-
crete and simulated data, discrete data sets resampled to
the resolution of the simulated data were kindly provided
upon our request by B. Aubert-Broche.

Real data

Nine data sets, selected from a sample of healthy volun-
teers (Female 53 yrs, Male 72 yrs, F 71 yrs, F 52 yrs, M 74
yrs, M 55 yrs, M 57 yrs, M 62 yrs, F 54 yrs) participating
in a study of cognitive aging, brain function, and genetic
markers, were recorded on a 1.5 T GE Signa Echospeed
scanner with a standard 8-channel head coil, using 256 3
256 3 124 dual-volume SAG T1 3D FSPGR IR prepared
acquisitions (TR/TE/TI/FA 5 9.5/2.2/450/7 deg) at
voxel-size 0.94 3 0.94 3 1.4 mm3. All subjects gave their
written informed consent to participate in the study, which
was approved by the Regional Committee for Medical
Research Ethics of Southern Norway.
The 48 MP-RAGE data sets were obtained from the

Open Access Series of Imaging Studies (OASIS) at http://
www.oasis-brains.org, disc1 (OASIS datasets number: 1
(74 yrs), 2 (55 yrs), 3 (73 yrs), 4 (28 yrs), 5 (18 yrs), 10 (74
yrs), 13 (81 yrs), 19 (89 yrs), 28 (86 yrs), 31 (88 yrs), 32 (89
yrs), 33 (51 yrs), 35 (27 yrs), 52 (78 yrs), 53 (83 yrs), 56 (72
yrs), 61.1 and 61.2 (20 yrs), 64 (77 yrs), 65 (90 yrs), 67 (71 yrs),
75 (83 yrs), 80.1 and 80.2 (25 yrs), 83 (90 yrs), 85 (70 yrs),
92.1 and 92.2 (22 yrs), 101.1 and 101.2 (29 yrs), 106 (81 yrs),
110 (84 yrs), 111.1 and 111.2 (23 yrs), 117.1 and 117.2
(25 yrs), 122 (83 yrs), 134 (80 yrs), 137 (87 yrs), 145.1 and
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145.2 (34 yrs), 150.1 and 150.2 (20 yrs), 156.1 and 156.2 (20
yrs), 185 (78 yrs), 191.1 and 191.2 (21 yrs). We use the
abbreviations O1, O2, etc. for the OASIS data sets.

Miscellaneous

The software authors were contacted to verify that the
approach we use in this publication is recommended.
The postprocessing of the segmentation results (confu-

sion matrix analysis, STAPLE/VOTING, visualization, etc.)
was implemented and performed using the C11 pro-
gramming language, MATLAB (http://www.mathworks.
com), and NIFTI-Tools (http://www.mathworks.com/
matlabcentral/fileexchange).

RESULTS

BrainWeb

Table I contains the values for the volumes of the (unsi-
mulated) reference brains.

Confusion Matrix Analysis

To assess the sensitivity and specificity of the methods,
which are not necessarily reflected by the simple volume
counts, we calculated the confusion matrices. In the optimal
case of perfect classification, the confusion matrix would be
the identity matrix. The confusion matrix is read as follows:
When i describes the row and j the column, then the confu-
sion matrix element cij contains the relative number of vox-
els that belong to class i and are classified as j, i.e., for a
given i and any j = i, cii contains the relative number of

true positive, cjj the true negative, cij the false negative, and
cji the relative number of false positive voxels. From these
values, the sensitivity [5 tp/(tp 1 fn)]1 and specificity
[5 tn/(tn 1 fp)] of the method can be computed (see later).
Figure 1 shows a multiple confusion plot for the BrainWeb
data of variable quality, providing the results for all three
segmenters for each data set. Table II shows the average
confusion matrices. Overall, SPM5 shows the highest simi-
larity with the identity matrix with a mean probability of
gray matter to be classified as gray matter of 89.1%, which
is 6.3%/8.8% more sensitive than for FSL/FreeSurfer. The
highest off-diagonal values can be found for all segmenters
for the gm-wm, wm-gm, and gm-om2 fields with FreeSurfer
showing the highest probability of classifying gray as white
matter (l 5 12.9%) and FSL being more likely to label gray
as non-white non-gray tissue (l 5 10.4%).
Figure 2 shows the multiple confusion matrix plots for the

20 multiple-anatomical model BrainWeb data sets. Here,
SPM5 and FSL results are similar and relatively close to the
identity matrix when compared with FreeSurfer (the average
probability of gray matter to be classified as gray matter for
SPM5 and FSL is 91.3% and 90.4%, but only 83.2% for Free-
Surfer). The main difference between the two groups is that
the FSL matrix gm-gm field is closer to the identity matrix in
the multiple-anatomical-model data than in the variable-
quality group. The confusion matrix analysis suggests a de-
pendency of the SPM5 results on data quality (decreasing
quality from data set 1 to 10) for gm-gm (Spearman rank cor-
relation rs 5 20.85) and of both SPM5 and FSL results for
gm-wm (rs

SPM5 5 0.95 and rs
FSL 5 0.90). As expected no such

observation can be made in the multiple-anatomical model
group because the simulation parameters are constant, only
the anatomical models used for each simulated data set are
different. The overall configuration of the confusion matrices
does not change between the two groups, i.e., the multiple-
anatomical model data group also shows the highest off-di-
agonal values in the fields gm-wm, wm-gm, and gm-om,
and both diagonals show a high similarity (see Table III).
Based on the BrainWeb data, we computed the average

sensitivities and specificities for the three methods as
shown in Table IV.
Figure 3 shows the segmentation results for an exemplary

slice (subject 06, slice 73) overlaid with the reference data,
and Supplementary Figure 2 shows a similar visualization
for slice 100. This example supports the trend observed in
the confusion matrices that SPM and FSL have a higher ac-
curacy than FreeSurfer, for which the results show a larger
misclassification with a slight anterior–posterior asymme-
try. FreeSurfer underestimates gray (ratio of false negative
voxels and reference number of voxels 5 0.14) and overesti-
mates white matter (ratio of false positive voxels and refer-
ence number of voxels 5 0.1). This aspect of FreeSurfer seg-
mentation is replicated in the volume count results for the
whole brain that consistently show an overestimation of
white and underestimation of gray matter.

TABLE I. Discrete reference data

BrainWeb-volumes in mm3

Data set gm wm gm 1 wm

BrainWeb 1–10 902910 674780 1577690
4 963649 646859 1610508
5 1011083 608520 1619603
6 939339 676213 1615552
18 1053434 572797 1626231
20 997071 604577 1601648
38 1019186 590372 1609558
41 1017517 605186 1622703
42 1031546 574882 1606428
43 1108560 662370 1770930
44 1009779 615385 1625164
45 956830 647479 1604309
46 975585 605093 1580678
47 982427 630089 1612516
48 893987 671902 1565889
49 924584 743026 1667610
50 910180 632713 1542893
51 965621 606954 1572575
52 979283 619042 1598325
53 981646 571190 1552836
54 986608 575658 1562266

BrainWeb 1-10: variable quality data; Data sets 4 to 54: multiple-
anatomical-model data.

1tp, tn, fp, fn: true/false positive/negative.
2om: other matter, i.e., all non-white and non-gray matter.
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Optimization by data fusion

Supplementary Figure 1 and Supplementary Table II

show the results of an (exemplary) optimization attempt

based on fusing the three available segmentations. Two

different fusing methods were used: (1) VOTING, i.e., vox-

els are assigned a specific class label if the majority of seg-
mentations (at least two) agree on the label and (2) STA-
PLE (‘‘Simultaneous Truth And Performance Level Estima-
tion’’) an approach introduced by Warfield [2004] in which
a probabilistic estimate of the true segmentation is com-
puted. Here, the two approaches produce nearly identical

Figure 1.

Multi-confusion-matrix (variable-quality BrainWeb data): Each

element of the confusion matrix contains the results for the

three segmenters for all 10 data sets (Labels 1, 2, 3, etc. corre-

spond to n1rf20, n1rf40, n3rf20, etc.). SPM and SPM _nocoreg

indicate if data sets were or were not registration-transformed

prior to segmentation; gm: gray; wm: white; om: other (non-gm,

non-wm) matter; ‘‘im-jm’’: values denote the relative number of

voxels belonging to class ‘‘i’’ classified as ‘‘j’’ (confusion ratio).
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results. Except for the fact that SPM5 and FSL alone pro-
duce slightly less false positive voxels (SPM5-WM and
FSL-GM/WM), the results obtained with the two fusing
methods overall are as good as or even slightly better than
the best single-segmenter segmentation in comparison
with the reference values. These results derived from a sin-
gle-slice example are supported by the analysis of a larger
dataset that confirms that STAPLE and VOTING produce
the same results in nearly all cases and that they perform
equally well as the best single segmenter (SPM for gm,
SPM and FSL for wm), but do not significantly improve
the segmentation accuracy (see supplementary Table I).
The results also show that FreeSurfer is comparatively bad
at correctly classifying gray and white matter for all eval-
uated datasets (see also ‘‘confusion matrices’’).
The reason for the quasi-identity of the two methods

might be the high similarity of the SPM5 and FSL segmen-
tation results as compared with FreeSurfer. The advantages
of the STAPLE approach as described by Warfield et al.
[2004] might be more obvious in situations in which more
segmenters are used and the results are more incongruent.

Variable Quality BrainWeb Data

SPM5

The deviations of the gray matter classification results
from the reference value ranged between 23.9 and 11.9%,
l3 5 21.6 6 1.8% (6standard deviation) with coregister
preprocessing4 (without: 25.2 and 15.0%, l 5 1.0 6 3.8%)

for different image qualities, white matter results ranged
between 29.6 and 18.3%, l 5 20.01 6 6.1%. Since these
deviations partially counterbalance each other, total brain
matter volume showed smaller variations between 23.1
and 11.3%, l 5 21.2 6 1.9% (Figs. 4 and 5).
Since registration-transformed data sets lead to more

accurate results than un-preprocessed data sets, we pre-
processed all other data sets with the coregister function in
this study.
Correlating the deviations with the data quality, a tend-

ency can be seen that gray matter volumes are overesti-
mated for good quality data and underestimated for data
of relatively bad quality and vice versa for white matter.
Quantification of this observation led to the Spearman
rank correlation coefficient rs 5 0.94 for white and rs 5
20.62 for gray matter (significance levels P < 0.002).

FreeSurfer

FreeSurfer underestimates gray matter volumes for all
image qualities and the deviations ranged between 25.5
and 28.0% (l 5 26.5 6 0.8%). In contrast to gray matter,
white matter volume results are too high in FreeSurfer (l 5
10.0 6 1.5%), so that the GM and WM sums yielded values
relatively close to the reference values (0.0 to 0.8%, l 5 0.6
6 0.3%), only slightly overestimating total volumes. In Free-
Surfer all deviations have the same sign within each group.
No correlation between image quality and segmentation

performance could be observed (Spearman rank correla-
tion |rs| < 0.15 for white and gray matter), and even
though FreeSurfer shows relatively high deviations of sin-
gle white or gray matter from the reference values it can
be considered the most consistent method in terms of de-
pendency of deviation on image quality. This is because
the deviations of white and gray matter from the reference
values have standard deviations of 1.5 and 0.8%, much
less than for SPM5 (WM: 6.1 and GM: 3.8%) and FSL
(WM: 9.4/6.1 and GM: 5.8/3.8%, with/without data set 2).

FSL

FSL (PBMAP) underestimates all total brain volumes, 8
out of 10 gray matter volumes and 6 out of 10 white mat-
ter volumes. When leaving out the extreme values for data
set n1rf405, gray matter volumes vary between data sets of
different quality from 26.6 to 10.1% (l 5 24.6 6 2.1%)
and white matter volumes from 210.6 to 15.4% (l 5 21.2 6
5.3%). Total volumes show values between 25.1 and
21.2% (l 5 23.3 6 1.4%). Similar to SPM5, a correlation
between ranked data quality and deviation can be detected
for white (Spearman rs 5 0.88, P < 0.05), but not for gray
matter, and the deviations do not show a stable pattern
similar to that present in the FreeSurfer data.
For APRIORI we find the following results: in contrast

to PBMAP, APRIORI consistently overestimates gray l 5

TABLE II. Average confusion matrices, BrainWeb

variable quality data

gm wm om

SPM5 gm 0.891 6 0.052 0.068 6 0.047 0.041 6 0.017
FreeSurfer 0.803 6 0.011 0.129 6 0.012 0.068 6 0.002
FSL 0.828 6 0.019 0.069 6 0.028 0.104 6 0.013
SPM5 wm 0.091 6 0.028 0.908 6 0.028 0.005 6 0.002
FreeSurfer 0.092 6 0.007 0.906 6 0.007 0.002 6 0.000
FSL 0.130 6 0.058 0.868 6 0.058 0.002 6 0.000
SPM5 om 0.008 6 0.003 0.000 6 0.000 0.991 6 0.003
FreeSurfer 0.005 6 0.000 0.000 6 0.000 0.995 6 0.000
FSL 0.009 6 0.002 0.000 6 0.000 0.991 6 0.002

Values are the arithmetic means of the confusion matrices of all
data sets 6 standard deviation, gm: gray; wm: white; and om:
other (all non-gm and non-wm) matter.

3l is an estimate of the arithmetic mean. It has to be noted that
the arithmetic mean of the deviations of the computed from the
reference volumes may in certain cases be misleading if negative
and positive deviations counterbalance each other and result in
small average deviations suggesting a high accuracy. Thus it
should always be used in connection with the standard deviation
as in the above statistics, which gives a good estimate of the var-
iance of the deviations.
4We present two variations of SPM5 results: with and without
(shown in brackets) rigid body transformation using the SPM5
function coregister, for details see Materials and Methods section.

5We excluded this extreme outlier from the analysis to ensure
nonexaggerated statistical results.
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6.0 6 5.4% (range 2.4 to 16%) and underestimates white
matter 27.9% 6 8.7% (range 223 to 0.8%). PVE has aver-
age deviations of 21.2% 6 4.9% (range 24.5 to 12%) for
gray and 0.7% 6 7.5% (range 218.3 to 17.5%).

Optimization of volume counts by data

fusion (VOTING)

We also investigated if data fusion by VOTING
improves accuracy and stability of volume counts (we only

perform VOTING because of the quasi-identity of the STA-
PLE/VOTING results presented in section ‘‘Optimization
by Data Fusion’’). We tested different VOTING scenarios
(two or three out of four SPM, FreeSurfer, FSL pbmap, FSL
a priori) and also found no significant improvement as
compared with single methods. Neither the accuracy nor
the stability increased in VOTING results (average of sce-
nario deviation means: l 5 5.3% 6 1.8% (stability: range
5 7.4%) for gray and l 5 2.3% 6 1.5% (range 5 7%) for
white matter).

Figure 2.

Multi-confusion-matrix (multiple-anatomical model BrainWeb data): Each element of the confu-

sion matrix contains the results for the three segmenters for all 20 data sets (compare Fig. 1).
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Multiple Anatomical Model BrainWeb Data

SPM5

For the multiple-anatomical-model BrainWeb data (see
Fig. 6), gray matter results were underestimated in 18 of
20 cases with the deviations ranging from 27 to 13%, l 5
23.5% 6 2.5%. The situation for white is not as clear as
for gray matter, but WM volumes are underestimated by
SPM5 on average as well ranging from 210 to 13%, l 5
21.6% 6 2.9%.
Total brain parenchyma volume deviations between

25.0 and 1.7% result in an on average underestimation of
gray plus white matter of l 5 22.8% 6 22.8%.

FreeSurfer

For the multiple-anatomical-model BrainWeb data sets,
FreeSurfer always underestimated gray (l 5 25.0% 6
1.9%) and always overestimated white matter results (l 5
12.8% 6 3.4%). Deviations from the reference value for
white matter ranged from 6.7 to 19.6% and from 21.8 to
8.0% for gray matter. These deviations partially counterbal-
ance each other so that total brain parenchyma volumes are
more accurate (l 5 1.8% 6 1.1%) ranging from 0.01 to 5.6%.

FSL

The comparison of the FSL segmentation results
obtained with the probability map (PBMAP), partial vol-
ume estimation (PVE), and a priori information (APRIORI)
methods shows the following differences. APRIORI seg-
mentation on average underestimates gray matter by l 5
21.5% 6 1.7% (range: 24.1 to 13.3%), which is slightly
better than PVE (l 5 21.8% 6 2.0%) (range: 24.2 to
13.9%) and less underestimation than PBMAP (26.4% 6
1.7%) (range: 28.2 to 20.9%).
For white matter the situation is nearly opposite, APRI-

ORI show stronger underestimation (l 5 25.3% 6 1.3%)
(range 28.1 to 22.9%) than PBMAP (l 5 21.7% 6 1.1%)

(range 24.8 to 10.6%), whereas PVE overestimates white
matter (l 5 2.0% 6 1.1%). See also Table V.

Evaluation of Segmenter-Specific Aspects

Coregistration improves results in SPM5

Segmentation of the variable-quality BrainWeb data
showed that the rigid registration ‘‘coregister’’ function of
SPM5 improved the segmentation accuracy (see Figs. 1, 4,
and 5). We therefore used coregistration for all data sets
by default unless otherwise noted.

Cortical gray matter: Comparison of surface-

and volume-based results in FreeSurfer

FreeSurfer offers two different approaches to calculate
cortical gray matter (CGM) volumes: One is based on the
surface triangulation and cortical thickness computed for
each vertex (surface-based) and the other computes the
volumes by summing up all cortical gray matter voxels
(volume-based).
We compared the results of the two methods for the

nine BrainWeb data sets of variable image quality. The
surface-based results consistently show smaller CGM vol-
umes than the cortical volume-based results ranging from
9.5 to 14.4% (l 5 13.1% 6 1.6%). The BrainWeb reference
model only provides a single class label for gray matter. It
is thus not possible to exactly determine the accuracy of
the CGM results. In case of total gray matter, FreeSurfer
consistently underestimates volumes for these BrainWeb
data sets. If the assumption is made that this underestima-
tion is equally distributed percentagewise between cortical
and subcortical gray matter (which seems plausible, but
cannot be proven here), this would imply that the volume-
based is more accurate than the surface-based method.

Impact of different brain extraction methods

In FreeSurfer and SPM5, the brain extraction/masking
process is integrated into the brain tissue segmentation
procedure, whereas in FSL the segmentation procedure is
split into segmentation of brain/non-brain-tissue (brain
extraction/masking) and segmentation of brain tissue into
white and gray matter and CSF. In FSL, if a generously
sized mask is used or the brain extraction preprocessing is
omitted completely, the segmentation is highly erroneous
because FAST cannot distinguish between brain and non-
brain tissues leading to huge errors of more than 100%

TABLE III. Average confusion matrices, multiple-

anatomical-model BrainWeb data

gm wm om

SPM5 gm 0.913 6 0.015 0.031 6 0.005 0.056 6 0.015
FreeSurfer 0.832 6 0.015 0.138 6 0.014 0.029 6 0.004
FSL 0.904 6 0.010 0.020 6 0.003 0.076 6 0.009
SPM5 wm 0.065 6 0.019 0.933 6 0.020 0.014 6 0.011
FreeSurfer 0.089 6 0.013 0.908 6 0.013 0.029 6 0.001
FSL 0.048 6 0.009 0.949 6 0.010 0.003 6 0.002
SPM5 om 0.001 6 0.001 0.000 6 0.000 0.999 6 0.001
FreeSurfer 0.005 6 0.001 0.000 6 0.000 0.995 6 0.001
FSL 0.000 6 0.001 0.000 6 0.000 1.000 6 0.001

Values are the arithmetic means of the confusion matrices of all
data sets 6 standard deviation, gm: gray, wm: white and om:
other (all non-gm and non-wm) matter.

TABLE IV. Gray and white matter sensitivities

and specificities based on BrainWeb data

SPM5 FreeSurfer FSL

gm-sensitivity 0.90 0.82 0.87
wm-sensitivity 0.91 0.90 0.91
gm-specificity 0.96 0.95 0.95
wm-specificity 0.97 0.93 0.98
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Figure 3.

Multiple-anatomical-model BrainWeb data set 06 slice 73. Results for different methods and

VOTING overlaid with the template-reference data. Red/blue voxels: segmentation does not

agree with reference data (red: gray matter; blue: white matter).



overestimation as compared with the segmentation results
after brain extraction (results not shown).
To evaluate the impact of the brain masking/extraction

procedure on the segmentation results, we processed the
data sets with FSL using BET and BSE [Fennema-Notestine
et al., 2006]. We then compared the segmentation results
obtained after BET or BSE preprocessing. We visually
inspected the processed images that showed deviations
between BET/BSE-preprocessed segmentation results of
more than 5% to check whether the differences were
caused by an incorrect brain extraction process. For Brain-
Web, data sets 4 and 41 showed large parts of the calva-
rium that were not deleted. Excluding these two, the data
sets show discrepancies between BET- and BSE-based seg-
mentations (using the same segmentation parameters) of
mean 5 0.2% 6 0.3% (median 5 0.1%) for white and
mean 5 0.5% 6 1% (median 5 0.3%) for gray matter,
which is nearly one order of magnitude smaller than the
discrepancies between segmentation results due to differ-
ent segmentation methods (average of BrainWeb devia-

tions: mean 5 3.1% 6 3.0% for gray and 1.9% 6 3.3% for
white matter results of segmentations using probability
maps, partial volume estimation, and a priori information
in FAST/FSL). We also ran two separate analyses of the
OASIS data sets with BSE and BET and the results support
the earlier findings for BrainWeb. From these results we
can conclude that first, discrepant segmentation results are
caused mainly by differences in the brain-tissue (gray/
white matter) segmentation capabilities of the particular
methods and second, that the different masking methods
BSE and BET show a negligible effect on the segmentation
result provided that the brain extraction process did not
fail/did not show any strong, visually prominent errors.

Comparison of Real Data Results

The analysis of the real data sets shows discrepancies
between different segmenters of 13.2% 6 10.2% on average
(maximum 36.6%) for white and l 5 13.9% 6 7.6% (up to
41.6%) for gray matter based on the ratio of the minimal

Figure 4.

Comparison of gray matter results for varying image qualities based on same template brain.

The two different values given for SPM5 (no suffix/suffix_nocoreg) denote the different results

obtained with/without coregistration option.
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and maximal volume for each data set. Initially, following
the recommendation for the default procedure with SPM5,
we did not use the coregister function (see Materials and
Methods section) to preprocess the data sets, which
resulted in gray matter volumes about 50% higher in FSL
or FreeSurfer than in SPM5. Preprocessing with the cor-
egister function significantly decreased these differences
(SPM5 gray matter volumes increased by 34% on average
for the data sets 501, 556, 558). We thus decided to always
coregister-preprocess the data when using SPM5 and not
to include the unpreprocessed results in the global statisti-
cal analysis.
For white matter, FreeSurfer on average computed the

highest (�8% higher than SPM5) and SPM5 the lowest vol-
umes (�3% lower than FSL). FSL on average takes a middle
position. Conversely, FreeSurfer computes the lowest gray
matter volumes (�9% lower than FSL). However, for gray
matter, FSL-derived volumes are highest on average, but
only about 2% deviant from SPM. Although for GM results
no significant differences between the MP-RAGE and other
data sets can be found, the white matter MP-RAGE results
show higher average maximum discrepancies (l 5 30.7% 6
8.1%) than the rest of the data (l 5 9.4% 6 5.3%). These
results could hint at a possible influence of the acquisition
technique on segmentation results in certain cases.

Supplementary Figure 3 shows a visualization example
of subject 560 slice 62 similar to that presented for the
BrainWeb data. However, since no reference data set is
available in this case, segmentation results were compared
pairwise (FreeSurfer-SPM5, FreeSurfer-FSL, and SPM5-
FSL). The overlaid representations of FreeSurfer-SPM5 and
FreeSurfer-FSL show a similar pattern: FreeSurfer consis-
tently underestimates gray matter and overestimates white
matter volumes when compared with both SPM5 and FSL
segmentations, thus calculating higher white and lower
gray matter volumes than both SPM5 and FSL. SPM5 and
FSL segmentations show a relatively higher consensus
especially for gray matter (ratio of number of identical
voxels to number of total voxels: 0.67, for details see sup-
plementary Table III).
These findings show some analogy to the results for the

BrainWeb data, where SPM5 and FSL segmentations were
also similar in comparison with FreeSurfer.

Intra-individual inter-timepoint

segmentation differences

A highly relevant question is whether MR scans of the
same individual at different time points using the same
scanner, protocols, and software can lead to differences in

Figure 5.

Comparison of white matter results for varying image qualities based on same template brain.

The two different values given for SPM5 (no suffix/suffix_nocoreg) denote the different results

obtained with/without coregistration option.
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the segmentation results. We analyzed 48 pairs of datasets
provided by the OASIS database that were acquired from
individuals at two time points not more than 90 days
apart. Since ageing-related changes occur on longer time-
scales and only subjects without pathological changes are
included in this group, comparing the segmentation results
may help to investigate to what extent volumetry differen-
ces can be caused by effects [noise, movement artifacts,
(slightly) different position in scanner, temperature, . . .]
not related to an actual change of the imaged brain
tissue. These data can be considered as the ‘‘real’’ counter-
part to the simulated BrainWeb data sets used in this
study that provide a means to assess brain volumetry
robustness of anatomically identical brains with varying
image quality.
Our analysis shows that differences between two scans

do exist. Although FreeSurfer on average computes vol-
umes that differ �1.5% for the same subject for both white
and gray matter and FSL has a similar behavior for gray
matter, the white matter inter-scan deviations of FSL have
a mean of over 4%. SPM5 computes more reliable results
deviating only around 0.7% for white and gray matter.
However, these numbers present estimates of the mean
difference and even for SPM differences of over 3% occur
while the other segmenters show maximum discrepancies

of 4.4% (FreeSurfer gm) and 5.2% (FSL gm) and 10.3%
(FSL wm).
In patients for whom MR scans over time are used to

evaluate the progression of disease or efficacy of a treat-
ment, it has to be taken into careful consideration that the
effects already seen in the BrainWeb data and confirmed
here using real image datasets potentially over- or under-
state pathological changes of brain volume. In this context,
our results suggest that SPM5 might be more reliable than
the other segmenters.

Impact of ageing on segmentation results

Closely related to what has been described in the previ-
ous section, we used OASIS brain data from different age

Figure 6.

Means (with standard deviations) and ranges of deviations of segmented from true volumes for

BrainWeb data (multiple-anatomical-model), gray (gm), and white (wm) matter. Values are aver-

aged over all data sets for each method. Ranges are differences between largest and smallest

(highest positive and highest negative) deviations.

TABLE V. Multiple-anatomicalmodel BrainWebdeviation

of segmentation results from references values

l 6 SD (%) Gray matter White matter

SPM5 23.5 6 2.5 21.6 6 2.9
FreeSurfer 25.0 6 1.9 112.8 6 3.4
FSL PBMAP 26.4 6 1.7 21.7 6 1.1
FSL PVE 11.8 6 2.0 12.0 6 1.1
FSL APRIORI 21.5 6 1.7 25.3 6 1.3
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groups to investigate whether relative discrepancies of the
volumetry results between segmenters show a dependency
on age. We analyzed the segmentations results for a group
of young (age <35 yrs, 13 individuals) and old (>69 yrs,
16 individuals). The results show that FreeSurfer underes-
timates gray matter when compared with both SPM and
FSL more in the young than in the old group (gm counts
ratio FS/SPM: l(young) 5 211.0% 6 3.7%, l(old) 5 0.3% 6
9.2%, t-test—significance of difference P 5 0.0003), FS/
FSL: l(young) 5 214.0% 6 6.7%, l(old) 5 26.4% 6 7.4%,
t-test—significance of difference P 5 0.007). The compari-
son of the FSL/SPM ratios did not show statistically signif-
icant differences. Given the relatively small sample size,
drawing conclusions from this finding has to be done care-
fully, especially because our observation is counter-intui-
tive because of a (normal) loss of gray matter tissue with
age. The effect might relate to age dependent signal inten-
sities of tissue or the effect of partial voluming on the dif-
ferent segmenters as with age there might be slightly more
CSF in contact with slightly less parenchyma. Another
issue is that the age effect could be related to differences
in the a priori model and templates. Further investigation
of this issue is important especially with regard to ageing
and life span studies in which brain volumetry/morphom-
etry are linked to cognition and genotype.

Error Analysis—Estimation of Required

Number of Subjects

To what extent do the segmenter-dependent effects
described in the previous sections influence the planning
and analysis of clinical studies? Providing concrete and
general advice is difficult because it would depend on sev-
eral quantitative unknown factors, such as the size of the
suspected difference and the quality of the data in general
and systematic quality issues with regard to disease spe-
cific effects (e.g., motion artifacts in patients with demen-
tia). As we have shown, the segmentations results depend
on the data quality (noise, intensity-inhomogeneities).
However, we could show that (except for some aspects of
SPM5 results) no obvious correlation between data quality
and segmentation results can be derived. This means that
even if quality parameters could be easily and robustly
measured or estimated from imaging data, deriving a cor-
rective factor would remain difficult if not impossible. To
address this issue and provide some guidance to the read-
ers, we performed Monte-Carlo simulations based on the
multiple-anatomical-model BrainWeb data, by creating a
two data sets: (1) the original BrainWeb data (numbers
increased to 100, 120, and 150 by randomly generating
gray matter counts in the range given by the minimal/
maximal values in the BrainWeb data) and (2) a group
that was created by multiplying each of the datasets in the
first group with a gray matter reducing ‘‘disease-factor’’
(randomly generated up to 3% negative deviation) and a
‘‘segmenter-factor’’ (randomly generated up to 5% devia-
tion). This would model the situation in a study in which

a group of patients is examined at two time points, e.g., to
assess disease progression). We then performed Student’s
t-tests to assess the impact of the segmenter-factor on the
significance level. We ran 100 Monte-Carlo simulations
each for n 5 100, 120, and 150 subjects and obtained the
following mean t-values (disease-factor 1 segmenter-fac-
tor/disease-factor alone): n 5 100: (t 5 1.7/t 5 2.1); n 5
120: (t 5 2.0/t 5 2.3); n 5 150: (t 5 2.3/t 5 2.6).
These simulation results show that the segmenter-factor

reduces the t-values (and thus the significance level) by
�0.3. When a 98% confidence of significance is desired,
n 5 150 subjects are necessary to obtain the required t-value
when the simulation includes the segmenter-factor, i.e., the
situation we observe in the results presented in this study.
In our simulations, the same significance level could be
obtained with 120 subjects only if the segmentation process
would be perfectly accurate.
This example illustrates how clinical investigators could

estimate the minimal number of subjects needed if an
assumption about the expected volume differences can be
made. In the Monte-Carlo simulation presented here, seg-
menter-dependent effects require an increase of the num-
ber of subjects by �25%.
In contrast to the segmenter-dependent effects on group

comparisons that can be handled as shown here, our
analysis suggests that detecting intra-individual time-
course differences in the order of one-digit percentages
(i.e., patients scanned at different time points to evaluate
disease progression) does not produce meaningful results.

DISCUSSION

Our analysis of real and simulated data sets uncovered
pronounced within- and between-method variation in seg-
mentation results for whole brain and total gray and white
matter volume. In SPM5, the results for the variable-quality
BrainWeb data suggest the following correlation between
volumetric accuracy and image quality: white/gray matter
volumes tend to be under-/overestimated for good quality
data and over-/underestimated for data of relatively bad
quality, with the smallest deviations for mediocre data. A
similar observation can be made for white matter FSL
results. Moreover, the confusion matrix analysis of the vari-
able quality BrainWeb data reveals a positive correlation
between SPM5 gray matter detection sensitivity and
increasing data quality. FreeSurfer consistently under-
(over-)estimated gray (white) matter volume for all Brain-
Web data sets. On the other hand, it was relatively accurate
for brain parenchyma (i.e. GM 1 WM) volumetry and Free-
Surfer was more robust than FSL and SPM5 to changes in
image quality and our data suggest that it is more suitable
for GM 1 WM volume measurements than the other seg-
menters when image quality is indeterminable or varies
within a study. The confusion matrix analysis suggests that
mainly SPM5 and also FSL are more suitable than FreeSur-
fer for tasks where high gray matter sensitivity is required,
i.e., high confidence that voxels belong to gray matter are
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classified as gray matter (see Fig. 3). In this case, the best
performance is achieved when using SPM5 with high-qual-
ity data (i.e., noise level up to �3%). These results presented
in the ‘‘gm’’-row of the variable-quality confusion matrix
(see Fig. 1) may also hint at a higher contribution of noise
in comparison with intensity-inhomogeneity to the image-
quality-related instability of SPM5: pairs of data sets with
the same noise level and different intensity-inhomogeneities
(20 or 40%) show practically the same confusion matrix
value, while differences are obvious when increasing noise
and keeping intensity-inhomogeneity levels constant, a phe-
nomenon also visible in the SPM5 volume counts (see Figs. 4
and 5). This is particularly interesting with regard to 3 Tesla
MR imaging in which intensity-inhomogeneities are more
pronounced than at lower field strengths (here we deal
with 1.5T data). Future studies e. g. comparing individuals
scanned both at 1.5 and 3T or simulated 3T BrainWeb data
sets based on the same atlas as the present 1.5T data will be
necessary to investigate these issues.
Altogether it can be said for the variable-quality BrainWeb

data that with deviations from the reference values of the
volumetry results of more than 10% for SPM5, FreeSurfer
and FSL even using data of relatively good quality, the accu-
racy of the methods must be considered as relatively low.
Thus, comparing volumetry results obtained with different
methods is not advisable. The comparison, for example, of
results for white matter calculated by SPM5 with those pro-
duced by FreeSurfer, can yield discrepancies of 20%. The
analysis of the multiple-anatomical model BrainWeb data
shows similar results. Both arithmetic mean and standard-
deviation/range of the deviations of the segmented from
reference values (measures to estimate accuracy and stabil-
ity of the methods) show percentage values in the order of
single digits up to low two digits. On average, gray and
white matter are underestimated with all methods. The only
strong exception is FreeSurfer that shows an overestimation
of over 10% on average. Stability is best with FSL PBMAP/
PVE for white (deviations <5%) and FreeSurfer is the best
method to stably compute gray matter volumes (range 5
6.2%) followed by FSL PBMAP and APRIORI (range 7.3 and
7.4%). SPM gray and white and FreeSurfer white matter vol-
ume counts even show ranges of over 10%.
These conclusions drawn from the analysis of simulated

data are supported by the findings that the real data
results show even higher variations between segmenta-
tions. These strong variations also make clear how difficult
it is to confidently estimate the actual brain volume from
the segmented results. Even though for the 57 real and 20
multiple-anatomical-model BrainWeb data sets tested here,
the differences/deviations show some qualitative similar-
ities, it would be difficult to deduce a segmenter-specific
quantitative factor to ‘‘normalize’’ the data to make inter-
segmenter comparison possible because of relatively high
variations of the discrepancies.
In addition to that and even more importantly, the low

stability of the methods shows that brain volumes deter-
mined with the same method should be considered care-

fully when compared, because relatively small differences
in image quality can have an impact on the deviations of
the calculated volumes from the ‘‘true’’ volumes that do not
follow any regular pattern. This finding is particularly sig-
nificant for the results for white matter using SPM5, where
the volumes of two different image qualities differ over
17%, or for the values for the gray matter volumes (discrep-
ancy over 10%), but is present nearly throughout the volu-
metry results. These results obtained from the variable-
quality BrainWeb data are supported by our findings that
segmentations of (real) data from healthy volunteers (OA-
SIS data base) scanned twice within weeks show similar
discrepancies between time points even when using the
same method and constant image acquisition conditions.
In this context, the study by Chard et al. [2002] about

SPM99 volumetry reproducibility over time shows the re-
markable result that coefficients of variation ranged from
1.2 to 0.5% for individuals undergoing subsequent MR
scans 197 days apart. According to our results such rela-
tively small variations between segmentations of subse-
quent scans suggest that the data analyzed by Chard et al.
[2002] must fulfill higher quality standards than the data
we analyzed.
These within-segmenter comparisons have been per-

formed using simulated images, because this allows to
control and change specific quality parameters for the
same original data set. In this study, the common quality
parameters ‘‘noise’’ and ‘‘intensity-non-uniformity’’ were
varied over typically occurring ranges [Collins et al., 1998;
Kwan et al., 1999] for the variable-quality BrainWeb data,
whereas the multiple-anatomical-model data has constant
image quality/acquisition parameters and varies the ana-
tomical features.
In real MRI data, more parameters than those simulated

here do vary, i.e., the simulation does not include parame-
ters like motion artifacts or scanner-specific technical char-
acteristics, which can have a high impact on image quality.
This ‘‘limitation’’ of the simulated data, however, does not
invalidate the results and conclusions presented, but rather
suggests that the effects described here are even more pro-
nounced in real data sets, an assumption that is supported
by the much larger between-segmenter differences for the
tested real than for simulated data.
The relevance of these results is based on the impact

they might have on clinical applications such as detecting
relatively small but diagnostically relevant changes in
patients over time and studies using these methods for
brain volumetry to investigate connections between dis-
eases and volumetric changes [e.g., Job et al. 2002], because
differences in image quality linked to the discussed effects
occur in serial MR-examinations even if the same scanner
and protocol are used (see our analysis of OASIS data at
two different time points). In studies using data acquired
with different MR-scanners or different protocols, varia-
tions of image quality are likely even more frequent.
Since normal brain volume shows a significant variation

anyway (in the multiple-anatomical-model BrainWeb data
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the biggest gray matter volume is 24% larger than the
smallest (30% for white matter) and the expected volume
differences due to pathological conditions are usually
rather subtle, the instability of the segmentation methods
has a significant influence on statistical analysis of group
comparisons. Our Monte-Carlo simulations show an intui-
tive method to estimate the necessary increase in the num-
ber of subjects in a study due to the segmenter-instability.
The longitudinal study model we test shows that 150
instead of 120 patients are needed to detect a gray matter
volume decrease of up to 3% between two time points.
Comparing groups of patients is likely to even make the
increase higher.
In this study, we used standard procedures with default

parameters as suggested in the documentations of the soft-
ware packages, because we wanted to assess the perform-
ance of the segmenters according to the way they are used
by most (applied) researchers. Exceptions are the use of
the coregistration function in SPM5, which probably
enhances the use of a priori information through an
improved alignment of the image data with the template
brain and the additional use of partial volume estimation
and a priori information in FSL. Especially the FSL analy-
sis shows how difficult it is to give a general recommenda-
tion about specific segmentation methods. Given the
relatively low stability (ranges of over 10% for the multi-
ple-anatomical-model data and up to over 20% for the
variable-quality BrainWeb data) of the segmentations the
mean values estimating the accuracy should not be overin-
terpreted to give definite advice which parameter settings
to prefer even if the differences between some mean devia-
tion values would suggest that. An example is that the
multiple-anatomical-model data suggests that APRIORI
performs better for gray matter segmentation, whereas
PBMAP is more accurate for white matter. However, when
comparing the results for the variable quality BrainWeb
data APRIORI even shows a slightly lower gray matter ac-
curacy than PBMAP.
The positive impact of the usage of the SPM5-coregister

function on segmentation results, the tests of fusing seg-
mentation results performed here and the differences
between PBMAP, PVE and APRIORI segmentation in FSL
or between the volume- and surface-based approach in
FreeSurfer exemplify how future studies about systematic
parameter variation and combination of different methods
could help optimize segmenter performance. Unfortu-
nately, the optimization approaches STAPLE/VOTING we
tested do not seem to present a straight-forward solution
of the shortcomings of the methods that we uncovered in
this study. The general conclusions of our study remain
valid both for single and fusion-methods.

ACKNOWLEDGMENTS

A part of the real data sets were acquired at the Har-
aldsplass Deaconess University Hospital, Bergen, Norway,
as part of a larger study of aging supported by the

Research Council of Norway and Kavli Center for Demen-
tia Research.

REFERENCES

Amato U, Larobina M, Antoniadis A, Alfano B (2003): Segmenta-
tion of magnetic resonance brain images through discriminant
analysis. J Neurosci Meth 131:65–74.

Ashburner J, Friston KJ (2005): Unified segmentation. NeuroImage.
26:839–851.

Aubert-Broche B, Collins DL, Evans AC (2006): A new improved
version of the realistic digital brain phantom. Neuroimage
32:138–145.

Aubert-Broche B, Griffin M, Pike GB, Evans AC, Collins DL
(2006): 20 new digital brain phantoms for creation of validation
image data bases. IEEE TMI 25:1410–1416.

Barnes J, Whitwell JL, Frost C, Josephs KA, Rossor M, Fox NC
(2006): Measurements of the amygdala and hippocampus in
pathologically confirmed Alzheimer disease and frontotempo-
ral lobar degeneration. Arch Neurol 63:1434–1439.

Barra V, Boire JY (2001): Automatic segmentation of subcortical
brain structures in MR images using information fusion. IEEE
Trans Med Imaging 20:549–558.

Bezdek JC, Hall LO, Clarke LP (1993): Review of MR image seg-
mentation techniques using pattern recognition. Med Phys
20:1033–1048.

Byrum CE, MacFall JR, Charles HC, Chitilla VR, Boyko OB,
Upchurch L, Smith JS, Rajagopalan P, Passe R, Kim D, Xantha-
kos S, Ranga K, Krishnan R (1996): Accuracy and reproducibil-
ity of brain and tissue volumes using a magnetic resonance
segmentation method. Psychiatry Res 67:215–234.

Cates JE, Lefohn AE, Whitaker RT (2004): GIST: An interactive,
GPU-based level set segmentation tool for 3D medical images.
Med Image Anal 8:217–231.

Ciumas C, Savic I (2006): Structural changes in patients with primary
generalized tonic and clonic seizures. Neurology 67:683–686.

Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH
(2002): The reproducibility and sensitivity of brain tissue vol-
ume measurements derived from an SPM-based segmentation
methodology. J Magn Reson Imaging 15:259–267.

Clark KA, Woods RP, Rottenberg DA, Toga AW, Mazziotta JC
(2006): Impact of acquisition protocols and processing streams
on tissue segmentation of T1 weighted MR images. Neuro-
image 29:185–202.

Cocosco CA, Kollokian V, Kwan RK, Evans AC (1997): BrainWeb:
Online interface to a 3D MRI simulated brain database. Neuro-
image 5:425.

Collins DL, Zijdenbos AP, Kollokian V, Sled J, Kabani NJ, Holmes
CJ, Evans AC (1998): Design and construction of a realistic dig-
ital brain phantom. IEEE Trans Med Imaging 17:463–468.

Cordato NJ, Duggins AJ, Halliday GM, Morris JG, Pantelis C
(2005): Clinical deficits correlate with regional cerebral atrophy
in progressive supranuclear palsy. Brain 128 (Part 6):1259–1266.

Counsell SJ, Boardman JP (2005): Differential brain growth in the
infant born preterm: Current knowledge and future develop-
ments from brain imaging. Semin Fetal NeonatalMed 10:403–410.

Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP (2005):
Comparison and validation of tissue modelization and statisti-
cal classification methods in T1-weighted MR brain images.
IEEE Trans Med Imaging 24:1548–1565.

Dale AM, Fischl B, Sereno MI (1999): Cortical surface-based analy-
sis I: Segmentation and surface reconstruction. Neuroimage
9:179–194.

r Brain MR Image Segmentation and Volumetry Evaluation r

r 1325 r



Droske M, Meyer B, Rumpf M, Schaller C (2005): An adaptive
level set method for interactive segmentation of intracranial
tumors. Neurol Res 27:363–370.

Duncan JS, Papademetris X, Yang J, Jackowski M, Zeng X, Staib
LH (2004): Geometric strategies for neuroanatomic analysis
from MRI. Neuroimage 23 (Suppl 1):34–45.

Fennema-Notestine C, Ozyurt IB, Clark CP, Morris S, Bischoff-
Grethe A, Bondi MW, Jernigan TL, Fischl B, Segonne F, Shat-
tuck DW, Leahy RM, Rex DE, Toga AW, Zou KH, Brown GG
(2006): Quantitative evaluation of automated skull-stripping
methods applied to contemporary and legacy images: Effects
of diagnosis, bias correction, and slice location. Hum Brain
Mapp 2:99–113.

Fischl B, Sereno MI, Dale AM (1999): Cortical surface-based analy-
sis II: Inflation, flattening, and a surface-based coordinate sys-
tem. Neuroimage 9:195–207.

Fischl B, Salat D, Busa E, Albert M, Dietrich M, Haselgrove C, van
der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A,
Makris N, Rosen B, Dale AM (2002): Whole brain segmenta-
tion. Automated labeling of neuroanatomical structures in the
human brain. Neuron 33:341–355.

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F,
Salat D, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness
V, Makris N, Rosen B, Dale AM (2004): Automatically parcel-
lating the human cerebral cortex. Cereb Cortex 14:11–22.

Fjell AM, Walhovd KB, Reinvang I, Lundervold A, Dale AM,
Quinn BT, Makris N, Fischl B (2005): Age does not increase
rate of forgetting over weeks: Neuroanatomical volumes and
visual memory across the adult life-span. J Int Neuropsych Soc
11:2–15.

Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005):
Normative estimates of cross-sectional and longitudinal brain
volume decline in aging and AD. Neurology 64:1032–1039.

Frangou S, Chitins X, Williams SC (2004): Mapping IQ and gray
matter density in healthy young people. Neuroimage 3:800–
805.

Good CD, Scahill RI, Fox NC, Ashburner J, Friston KJ, Chan D,
Crum WR, Rossor MN, Frackowiak RS (2002): Automatic dif-
ferentiation of anatomical patterns in the human brain: Valida-
tion with studies of degenerative dementias. Neuroimage 17:
29–46.

Grabowski TJ, Frank RJ, Szumski NR, Brown CK, Damasio H
(2000): Validation of partial tissue segmentation of single-channel
magnetic resonance images of the brain. Neuroimage 12:640–656.

Grant Steen R, Mull C, McClure R, Hamer RM, Lieberman JA
(2006): Brain volume in first-episode schizophrenia. Br J Psy-
chiat 188:510–518.

Greenspan H, Ruf A, Goldberger J (2006): Constrained Gaussian
mixture model framework for automatic segmentation of MR
brain images. IEEE Trans Med Imaging 25:1233–1245.

Harris G, Andreasen NC, Cizadlo T, Bailey JM, Bockholt HJ, Mag-
notta VA, Arndt S (1999): Improving tissue classification in
MRI: A three-dimensional multispectral discriminant analysis
method with automated training class selection. J Comput
Assist Tomogr 23:144–154.

Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A
(2006): Automatic anatomical brain MRI segmentation combin-
ing label propagation and decision fusion. Neuroimage 33:115–
126.

Henriksson KM, Wickstrom K, Maltesson N, Ericsson A, Karlsson
J, Lindgren F, Astrom K, McNeil TF, Agartz I (2006): A pilot
study of facial, cranial and brain MRI morphometry in men
with schizophrenia. Psychiatry Res 147 (Part 2):187–195.

Honea R, Crow TJ, Passingham D, Mackay CE (2005): Regional defi-
cits in brain volume in schizophrenia: A meta-analysis of voxel-
based morphometry studies. Am J Psychiatry 162:2233–2245.

Job DE, Whalley HC, McConnell S, Glabus M, Johnstone EC, Law-
rie SM (2002): Structural gray matter differences between first-
episode schizophrenics and normal controls using voxel-based
morphometry. Neuroimage 17:880–889.

John NM, Kabuka MR, Ibrahim MO (2003): Multivariate statistical
model for 3D image segmentation with application to medical
images. J Digit Imaging 16:365–377.

Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D,
Lee JM, Kim SI, Evans AC (2005): Automated 3-D extraction
and evaluation of the inner and outer cortical surfaces using a
Laplacian map and partial volume effect classification. Neuro-
image 27:210–221.

Kovacevic N, Lobaugh NJ, Bronskill MJ, Levine B, Feinstein A,
Black SE (2002): A robust method for extraction and automatic
segmentation of brain images. Neuroimage 17:1087–1100.

Kwan RK, Evans AC, Pike GB (1999): MRI simulation-based eval-
uation of image-processing and classification methods. IEEE
Trans Med Imaging 18:1085–1097.

Lemieux L, Hammers A, Mackinnon T, Liu RSN (2003): Automatic
segmentation of the brain and intracranial cerebral spinal fluid
in -weighted volume MRI scans of the head, and its application
to serial cerebral and intracranial volumetry. Magn Reson
Imaging 49:872–884.

Leow A, Yu CL, Lee SJ, Huang SC, Protas H, Nicolson R, Hayashi
KM, Toga AW, Thompson PM (2005): Brain structural map-
ping using a novel hybrid implicit/explicit framework based
on the level-set method. Neuroimage 24:910–927.

Lie J, Lysaker M, Tai XC (2006): A binary level set model and
some applications to Mumford-Shah image segmentation. IEEE
Trans Image Process 15:1171–1181.
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