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Abstract: Diffuse optical tomography (DOT) methods observe hemodynamics in the brain by mea-
suring light transmission through the scalp, skull, and brain. Thus, separating signals due to heart pul-
sations, breathing movements, and systemic blood flow fluctuations from the desired brain functional
responses is critical to the fidelity of the derived maps. Herein, we applied independent component
analysis (ICA) to temporal signals obtained from a high-density DOT system used for functional map-
ping of the visual cortex. DOT measurements were taken over the occipital cortex of human adult sub-
jects while they viewed stimuli designed to activate two spatially distinct areas of the visual cortex.
ICA was able to extract clean functional hemodynamic signals and separate brain activity sources from
hemodynamic fluctuations related to heart and breathing without knowledge of the stimulus paradigm.
Furthermore, independent components were found defining distinct functional responses to each stim-
ulus type. Images generated from single ICA components were comparable, with regard to spatial
extent and resolution, to images from block averaging (with knowledge of the block stimulus para-
digm). Both images and estimated time-series signals demonstrated that ICA was superior to principal
component analysis in extracting the true event-evoked response signals. Our results suggest that ICA
can extract the time courses and the corresponding spatial extent of functional responses in DOT imag-
ing. Hum Brain Mapp 30:2382–2392, 2009. VVC 2009 Wiley-Liss, Inc.
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INTRODUCTION

Diffuse optical tomography (DOT) is an emerging
method for functional neuroimaging, with advantages
complimentary to those of functional magnetic resonance
imaging (fMRI) with blood oxygenation-level dependent
(BOLD) contrast. DOT uses a wearable imaging cap and
portable equipment, giving it potential as an important
tool for subjects not amenable to large, fixed scanner geo-
metries, such as intensive care patients and young chil-
dren. In addition, the ability to simultaneously image mul-
tiple hemodynamic contrasts (DOT can measure oxy-,
deoxy-, and total hemoglobin concentrations, whereas
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BOLD is most sensitive to deoxyhemoglobin) allows the
study of developing and diseased brains, where the neuro-
vascular coupling is unknown or altered.
DOT is an advancement relative to previous optical neu-

roimaging techniques, often referred to as near-infrared
spectroscopy (NIRS) or diffuse optical imaging. While NIRS
systems create two-dimensional images from arrangements
of isolated single source–detector pair (SD-pair) measure-
ments, DOT encapsulates various methods to synthesize
overlapping measurements into higher-quality three-
dimensional images. One DOT method that can provide
high-quality images while maintaining system simplicity is
high-density DOT, which uses an interleaved grid of sour-
ces and detectors with measurements at multiple distances
to sample different tissue depths. These measurements can
be reconstructed into images using a model of light trans-
port in tissue and data inversion routines.
As with NIRS systems, DOT observes hemodynamics in

the brain by measuring light that has been transmitted
through the scalp, skull, and brain. Thus, superficial and
global signals, such as those due to heart pulsations,
breathing movements, and systemic blood flow fluctua-
tions, must be removed from the composite measured
response if accurate maps of brain hemodynamics are to
be made. We have previously reported the development of
a high-performance DOT system [Zeff et al., 2007]. Using
this system we demonstrated advances in imaging cortical
responses to visual stimuli, improving upon previous non-
invasive optical reports. In this study, we demonstrate the
use of independent component analysis (ICA) with DOT
hemodynamic data to isolate the temporal and spatial
components of evoked responses in adult visual cortex.
ICA has proven useful for analysis of many types of bio-

medical images [James and Hesse, 2005] and has been par-
ticularly successful when applied to studies of the brain by
electroencephalographic (EEG) recordings, by fMRI, or by
simultaneous EEG-fMRI recordings [e.g., Calhoun and
Adali, 2006; Jung et al., 2001; Mantini et al., 2007b; Onton
et al., 2006]. With EEG data, temporal ICA is frequently
employed to remove artifacts in time-series data [Grouiller
et al., 2007; Mantini et al., 2007a]. With fMRI data, ICA is
frequently used to determine the location of responses [Cal-
houn and Adali, 2006; Correa et al., 2007; McKeown et al.,
1998] and to investigate functional connectivity or resting-
state brain networks [Beckmann et al., 2005; Damoiseaux
et al., 2006; Jafri et al., 2008; van de Ven et al., 2004]. Recent
studies have applied ICA to combined EEG-fMRI studies
[Eichele et al., 2008; Moosmann et al., 2008] to characterize
the spatiotemporal aspects of functional responses.
Very few studies have applied ICA to optical data

obtained from humans. Invasive imaging studies of optical
intrinsic signals from animals have used extended spatial
decorrelation, a method similar to ICA, to analyze two-
dimensional video recordings [Schiessl et al., 2000, 2008].
The invasive signal recordings in these studies would not
have all of the contaminating factors from superficial physi-
ology found in noninvasive recordings. A NIRS study in

humans [Morren et al., 2004] used a special ICA algorithm,
SOBI [Belouchrani et al., 1997], to detect fast (range of milli-
seconds) signals from neuronal scattering in the motor cor-
tex (related to a finger-tapping exercise). ICA was applied
to the intensity signals to separate the fast scattering signals
from noise, but only after filtering of the data to remove
cardiac and respiratory cycles. ICA has also been applied to
functional NIRS data to remove a signal correlated to skin
blood flow, as determined with laser Doppler [Kohno et al.,
2007]. To the best of our knowledge, ICA has neither been
used with tomographic optical image reconstructions nor to
separate noninvasive optical hemodynamic imaging signals
into distinct brain functions.
We describe here our preliminary studies undertaken to

investigate the usefulness of ICA for DOT measurements
of functional responses in the brain to various stimuli. ICA
was applied to DOT data obtained in a visual cortex map-
ping study of adult human subjects. We tested ICA against
two previous standards—principal component analysis
(PCA, a classical method for separating data into uncorre-
lated components) and block averaging—in their ability to
extract event-evoked responses from obscuring signals. We
show that ICA is able to extract brain activity from highly
contaminated, raw time-series data, to discriminate
between brain activity and other physiological signals, to
characterize the temporal and spatial features of activity,
and to differentiate between different brain activities, all
without the knowledge of the stimulus design.

MATERIALS AND METHODS

Subjects

Data from three healthy adult subjects (one male and
two females, ages 25–26) were used to evaluate the feasi-
bility of temporal ICA. The study was approved by the
Human Research Protection Office of the Washington Uni-
versity School of Medicine, and informed consent was
obtained from all subjects prior to scanning.

DOT Data Acquisition

The imaging system is a continuous wave high-density
DOT imager with 24 source positions (near-infrared wave-
lengths of 750 nm and 850 nm) and 28 detectors interleaved
in a high-density array (Fig. 1a) [Zeff et al., 2007]. Subjects
were seated in an adjustable chair facing a 19-in. liquid
crystal display at a 70-cm viewing distance. The DOT imag-
ing cap was positioned with the optode array on the back
of the head (Fig. 1a). The cap was centered horizontally,
with the center of the imaging array near the inion.
The visual stimuli were radial, reversing, black-and-

white grids (10-Hz reversal) on a 50% gray background.
The paradigm consisted of blocks of a 10-s stimulus fol-
lowed by a 31-s 50% gray screen. Two types of stimuli, des-
ignated as A and B, were presented (Fig. 1b). The central
lower-right stimulus (A) extended over a polar angle of 708
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and a radial angle of 0.5–1.78; the central lower-left stimulus
(B) mirrored stimulus A. Stimuli were presented in a prede-
termined pseudorandom order, with eight presentations
each of A and B stimuli, with a gray screen presented 15 s
before and after the stimulus sequence. In addition, syn-
chronization signals were obtained from a separate channel,
marking the beginning of each stimulus presentation. The
complete data set consisted of 11 min of recordings at 10.8
Hz, for a total of 7,080 time-series points. This data (x) is
used as the input for further analysis.

Data Preprocessing

SD-pair data for 850 nm were converted to log-ratio
data. No temporal filtering was applied before ICA. The
measurements from the first- and second-nearest neighbor
SD-pairs were included for a total of 212 SD-pair measure-

ments. First-nearest neighbor measurements consisted of
sources and detectors separated by 1.3 cm, sampling su-
perficial tissues, whereas the second-nearest neighbor
measurements had a SD separation of 3 cm, which sam-
ples both brain and superficial tissues. Block-averaged
time traces for each stimulus type were generated for later
comparison with the results of ICA. Each segment (block)
for block averaging consists of 430 points (40 s). The mean
of data points in the interval 12–14 s after onset of stimu-
lus (the peak of the hemodynamic response) for each of
the 212 observed signals is used as the measurement met-
ric (ymeas) for imaging, as described later.

DOT Imaging

For image reconstruction, a two-layer, hemispheric head
model (radius 5 80 mm) is used with finite-element, for-
ward light modeling [NIRFAST, Dehghani et al., 2003] to
obtain a sensitivity matrix for the optode array. The regular-
ized and inverted sensitivity matrix is used to convert mea-
surement data into images of the differential absorption
within the head model. With the measurement data repre-
sented as a vector ymeas, the voxel image data representedFigure 1.

Experimental setup. (a) A schematic of the visual cortex imaging

pad placed over the occipital cortex. Red dots are sources; blue

squares are detectors. (b) Closeup of the two visual stimuli.

Both extend over a polar angle of 708 and have an eccentricity

of 0.5–1.78. Checkerboards reversed at 10 Hz were presented

for 10 s, and were separated by 31 s of 50% gray screen. (c) An

axial image slice with a cortical activation. In this article, images

are displayed as two-dimensional coronal projections [as in (d)]

of a cortical shell covering a depth 10 6 5 mm below the scalp

surface (the region between dotted lines with arrows showing

direction of view). (d) Schematic showing placement of an acti-

vation image on a human subject. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.

com.]

Figure 2.

Steps in the calculation of response templates. (a) An image of

an evoked response from stimulus B using block-averaged raw

data. The black box delineates the region selected for response

B profile generation. (b) Averaged response from all subjects

and all stimuli (red dots) along with a smoothed fitted curve

(black solid line). (c,d) Templates for responses to stimuli A and

B for one subject’s presentation sequence. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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as a vector v, and the inverted sensitivity matrix as S#, the
linear, least-squares solution for the image is given by

v ¼ S#ymeas ð1Þ

as described in Zeff et al. [2007]. From this three-
dimensional image, a cortical shell is selected for viewing
(Fig. 1c). All images are shown as posterior coronal projec-
tions of this cortical shell (Fig. 1d).
We note parenthetically that in our previous publica-

tions we often use an alternative notation in which the
DOT sensitivity matrix is represented by A and the vector
of voxel data by x. In this article, we have changed the
notation to allow us to use the notations typically used for
ICA, in which x is a matrix of observed signals and A is
the mixing matrix as in Eq. (2) mentioned later.
Images for both ICA and PCA components can be com-

puted similarly. For a single component, the matrix col-
umn representing the mapping from the component to the
212-measurement space can be used as the measurement
metric (ymeas) to compute the image (with arbitrary scale)
using the linear, least-squares equation shown in Eq. (1).

Independent Component Analysis

ICA can be applied to either temporal or spatial data. For
this study, we used temporal ICA, assuming independence
of the unknown temporal sources or signals. ICA assumes
that the mixture components follow a Gaussian distribution
and that the source components are non-Gaussian, usually
super-Gaussian. The measured or mixture signal data (x)
are assumed to be a linear mixture of mutually statistically
independent source components (s) as indicated by

x ¼ As ð2Þ

where the matrix A is the mixing matrix and each row of x
represents the temporal signal for one SD pair, and each
row of s represents the temporal signal for a source compo-
nent. The mixture data, x, has dimensions of m 3 n, where
m is the number of SD-pair measurements and n is the
number of time samples.
The estimated sources (Ŝ) are computed using the

unmixing matrix W

ŝ ¼ Wx ð3Þ

where the number of sources, k, may be less than the num-
ber of mixture signals. Thus, the dimensions of the source
matrix are k 3 n and the dimensions of the W matrix are
k 3 m. For our data, 20–40 source components (i.e., time
courses) were estimated in preliminary processing to
determine the number of components required.
There are several different ICA algorithms available. For

analyses of biological data, one or more of three algorithms
are usually applied: Infomax [Bell and Sejnowski, 1995; Lee
et al., 1999], JADE [Cardoso and Souloumiac, 1993], and
FastICA [Hyvärinen, 1999; Hyvärinen and Oja, 1997, 2000].
The success of ICA may depend on the algorithm and the

evaluation measures used, as well as the statistical properties
of the data. An early comparison of the Infomax and FastICA
algorithms for fMRI data showed that both algorithms were
accurate, but that each was best under certain evaluation crite-
ria [Esposito et al., 2002]. A recent study has shown that all
these three algorithms yield reliable and consistent results
when applied to fMRI data [Correa et al., 2007].
For this study, we used the FastICA algorithm (version 2.5)

available from http://www.cis.hut.fi/projects/ica/fastica/
index.shtml [Hyvärinen, 1999; Hyvärinen and Oja, 1997 ]. We
chose to use this algorithm as it is a recent version that is easy
to use. The FastICA algorithm performs the following prepro-
cessing steps: centering the data (subtracting the mean of each
row), reducing the dimensionality of the problem with PCA,
and whitening the data. FastICA also makes adjustments to
the results of the analysis required to compensate for these
preprocessing steps. The independent components (ICs) are
estimated by maximizing the non-Gaussianity of the esti-
mated source signals using one of the four nonlinear contrast
functions included in the algorithm. We selected the ‘‘skew"
option for the nonlinearity function for our processing, as ex-
amination of the measured signals showed that some signals
had a bimodal or skewed distribution, although many of the
measured time-series signals were approximately Gaussian.
Also, the evoked-response signals have a nonsymmetric distri-
bution so that at least two estimated source components
should have skewed distributions.
Given the estimated ICs, the mapping back to the origi-

nal measurement space of a desired subset of components
can be computed by

x̂ ¼ ACŝ; ð4Þ
where the k 3 k diagonal matrix C has a value of 1 for di-
agonal elements corresponding to the IC to be included
and 0 for elements elsewhere. The m 3 k matrix A is the
estimate of the mixing matrix shown in Eq. (2). The mea-
surement data corresponding to an IC can then be used to
generate an image as described in the DOT imaging sec-
tion. The ICs that were highly correlated (correlation mag-
nitude >0.5) with the A or B response templates (see
response template calculation mentioned later) were used
to generate images of the scanned area. Note that these
components are also easily detected by visual inspection
as their shape is characteristic of functional responses.

Principal Component Analysis

Each data set x was also analyzed by PCA to select the
same number of uncorrelated or principal components
(PCs) as the number of ICs estimated by ICA. PCA was
performed (following subtraction of each row mean) by
using the singular value decomposition of x,

x ¼ UDVT: ð5Þ

The Matlab command ‘‘svd(x, ‘econ’)’’ was used to per-
form the decomposition. Then, the resulting k PCs in rows
of Y are given by
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Y ¼ ðbVbDÞT ð6Þ

where the n 3 k matrix bV contains the first k columns of V
and the diagonal matrix bD is a k 3 k subset of the original
D matrix containing the corresponding singular values.
The mapping from a single PC (or several PCs) to the

measurement space of 212 signals is given by

x̂PC ¼ bUCYþMx ð7Þ

where the matrix C is a k 3 k diagonal matrix with diago-
nal elements corresponding to the PCs to be retained set
equal to 1, and the matrix Mx contains the row means
(small for our data) that were subtracted from the data
prior to PCA. The m 3 m U matrix is reduced to k col-
umns for the modified matrix in the equation.
The measurement data corresponding to a PC is recon-

structed as an image as described in the DOT imaging sec-
tion. PCs that were highly correlated with the A or B
response templates (see response template calculation
mentioned later) were used to generate images of the
scanned regions.

Response Template Construction

To objectively judge the ICA and PCA results, we created
canonical hemodynamic time courses for each of the A and
B stimulus temporal patterns. An extracted component that
represents a response to stimulus A should show a hemody-
namic response following the temporal pattern of the A
event design, and similarly a component that represents a
response to stimulus B should follow the temporal pattern
of the B event design. To create such templates, we need to
convolve each event design with a hemodynamic response
function. One could use a hemodynamic response function
from the literature. However, since hemodynamic responses
can vary across cortical regions and stimulus paradigms, we
calculated a hemodynamic response function directly from
the measured, block-averaged data.
A block-averaged activation image was obtained for each

subject and stimulus (Fig. 2a). Then, the pixel containing the
maximum value in the image was used as the center pixel
to define a 5 pixel 3 5 pixel (1 cm 3 1 cm) region. A tempo-
ral profile of this region was obtained. This procedure was
repeated for all three subjects and both stimulus responses
(Fig. 2b, red lines). To provide a single consistent response
with high signal-to-noise ratio, the average of all responses
was used as a standard response curve. To further reduce
the noise in the response curve, two functions were fit piece-
wise to the data (Fig. 2b, blue line). This smoothing tech-
nique does not imply any underlying functional form for
the hemodynamic response.
To create the fully synchronized reference patterns for

the expected hemodynamic responses to both the A and B
stimulus patterns, we inserted our smoothed standard he-
modynamic response curve into the appropriate intervals
of the presentation sequence for each subject. Since the
subject viewed alternating presentations of stimulus A and

B in one session, the two templates are synchronized to
the known start of the entire pseudorandom sequence. Fig-
ure 2c,d show the two templates for one particular
sequence of stimulus presentation.

Correlation Coefficients

To test the ICA and PCA components, temporal correla-
tion coefficients were computed between each component
and the template response curves for both stimuli. These
coefficients were calculated for each of the three subjects.
Only the magnitudes (absolute values) of the correlation
coefficients were evaluated further as the sign of the ICA
and PCA components is not uniquely determined.

RESULTS AND DISCUSSION

Independent Components

The time course of the average of the 212 original
measured signals (Fig. 3a, Subject 1; for clarity, only 400 s
of data are shown) is obviously a mixture of many dif-
ferent source signals in different frequency regimes
(Fig. 3b), with low- and high-frequency contaminants

Figure 3.

Representative ICA components and their Fourier transforms

for Subject 1. (a) The average of all 212 measurement signals.

(b) Fourier transform of (a) showing components occurring at

many frequencies. (c) IC corresponding to a hemodynamic

response for stimulus B. (d) Fourier transform of (c) with prom-

inent low-frequency content. (e) IC corresponding to cardiac

pulse. (f) Fourier transform of (e) showing a strong frequency

contribution at about 1.3 Hz. (g) IC corresponding to respira-

tion. (h) Fourier transform of (g) with a strong frequency contri-

bution at about 0.3 Hz.
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obscuring any functional response signal. Cardiac pulses,
respiration, biological noise, and measurement instrument
noise are all components in the final measured signal. After
ICA, components typical of several important physiologic
processes can be seen (shown with the sign convention that
functional responses increase signal amplitude, although the
estimated components may have been originally inverted as
ICA cannot determine a multiplicative constant). The evoked
response for each stimulus is found in a separate IC (Fig. 3c
shows one of two such components), with the Fourier trans-
form (FT) demonstrating prominent low-frequency compo-
nents (Fig. 3d). This IC conforms with the expected response
to stimulus B and is highly correlated to the template signal
for response B with a correlation coefficient of 0.81. Distinct
ICs are found that correspond to different physiologic con-
founds. For example, an IC was found with a strong FT
peak at about 1.3 Hz, most likely corresponding to heart
pulsation (Fig. 3e,f), and an IC with a FT peak at about 0.3
Hz most likely is due to respiration (Fig. 3g,h). Other esti-
mated ICA components (not shown) correspond to baseline
drifts, sudden changes in the baseline, or artifacts of
unknown origin.
ICA was able to distinguish the hemodynamic responses

for both A and B stimulus types in all three subjects (Fig.
4a,b, Subject 2). The two components in Figure 4a,b are

highly correlated to the response templates with correlation
coefficients of 0.83 (stimulus A) and 0.86 (stimulus B). These
responses generate images (Fig. 4c,d) that compare favor-
ably with those from block-averaged raw data (Fig. 4e,f).
(Responses occur in the hemisphere contralateral to that of
the visual stimulus.) The images generated from the ICA
components qualitatively appear to have better spatial local-
ization than the images from the block-averaged raw data,
and the background for the ICA images is also qualitatively
flatter than that in the block-averaged images.
The number of estimated ICs was selected as the mini-

mum at which two estimated components clearly repre-
sented the stimulus responses. For the three subjects, 30,
24, and 35 components, respectively, were estimated from
the 212 measurement signals. The variance in the reduced
data set generated by PCA, as calculated from the eigen-
values, was greater than 98% for all three subjects. Alter-
natively, the number of components could be determined
by setting a lower threshold for the percent variance repre-
sented by the PCA reduced data.
These ICA temporal response results were reproduced in

all three subjects (Fig. 5a–c, stimulus B). Correlation coeffi-
cients for the three components are 0.81, 0.86, and 0.58 for
Subjects 1, 2, and 3, respectively. The corresponding images
generated from the ICs all show the expected localization
and have high contrast-to-noise ratio (CNR; Fig. 5d–f). In all
three subjects, the IC images qualitatively appear to have
better resolution (smaller response regions) and lower noise
than those from block-averaged raw data (Fig. 5g–i).
The ICs shown in the first row of Figures 4 and 5 have

the distinctive shape of the stimulus response with varying
degrees of contaminating signals. The contaminants appear
to be mostly noise, and there appears to be no mixing of
the two responses. For all three subjects, two response
components, corresponding to the A and B stimuli, were
isolated from the physiologic components (heart rate and
breathing), and all six of these components have correla-
tion coefficients greater than 0.58.

Principal Component Analysis

With our data and neuroimaging application, we find
that, in contrast to ICA, PCA was unable, in any subject,
to distinguish functional hemodynamic activations with
good signal-to-noise ratio. The three PCs with the highest
correlation to the B response for each subject (Fig. 6a–c)
have much higher noise than the comparable IC (compare
with Fig. 5a–c). Qualitatively, the functional evoked
responses are distinguished by eye only with difficulty.
Quantitatively, the correlation coefficients for these com-
ponents are 0.44, 0.49, and 0.21, respectively (all much
lower than even the worst result from ICA). The images
generated from the PCs (Fig. 6d–f) show much higher
noise than either those from ICA or block-averaged raw
data (compare with Fig. 5d–i). For Subject 1, the image
from PCA has localized the activation to the subject’s left
hemisphere, while ICA places the activation correctly in

Figure 4.

Results of ICA: Isolation of multiple stimulus responses for Subject 2

(arranged in two columns: A, B). (a) IC corresponding to the A stim-

ulus type (r 5 0.83 with template A) with the distinctive shape of a

functional response. Red vertical lines represent stimulus onset, with

letters showing which stimulus was presented in that interval (see

Fig. 1). (b) IC corresponding to the B stimulus type (r 5 0.86 with

template B). (c,d) Images obtained for each IC. (e,f) Images obtained

from block-averaged raw signals. The two rows of images are similar

with slightly less background activity in the ICA images. [Color

figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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the right hemisphere. For Subject 2, the temporal PC com-
ponent appears to be a mixture of both the A and B
responses with one response inverted (Fig. 6b). In fact,
this PC has a correlation of 0.68 relative to the A template
and a correlation of 0.49 relative to the B template, the
two highest correlation coefficients among all subjects’
PCs. The image from this PC (Fig. 6e) reflects this inabil-
ity to separate the two functional responses, as we see an
activation with the correct localization for a B response
(compare with Fig. 4d) as well as a deactivation (inverted
response) where we expect to see an A response (com-
pare with Fig. 4c). For Subject 3, functional responses can-
not be distinguished at all (the correlation coefficient is
only 0.21). Rather, PCA localizes a small region to the far
right of the imaging pad, possibly an artifact from optode
motion (Fig. 6f).

Correlation Coefficients

A more comprehensive assessment of the ICA and PCA
approaches can be obtained by computing the correlation
coefficients between every temporal component and the

response template signals. As an example, from among all
subjects, the IC (Fig. 7b) and the PC (Fig. 7c) with the
highest correlation to a template for response A (Fig. 7a),
have values of r 5 0.83 and r 5 0.68, respectively. If we
examine the correlation coefficient for all ICs for this sub-
ject relative to the B template, we see a clear dichotomy
between a single component that matches the expected
response and low correlation values for all other compo-
nents (Fig. 7d, black squares). However with the PCs (Fig.
7d, red triangles), there is no clear distinction between PCs
that correlate and those that do not correlate. The results
are similar when we plot the 178 correlation coefficients
for the ICA and PCA components for all subjects with
both response templates (recall the template is specific to
each subject). Again, the ICs can easily be visually charac-
terized with six components (two each for three subjects)
that correlate with the stimuli (r > 0.58) and all the rest
with very low correlation values (r < 0.24) (Fig. 7e, black
squares). In contrast, the PCs exist in a spectrum with no
clear distinction between those that correlate (only one cor-
relation coefficient greater than 0.5) and those that do not
(Fig. 7e, red triangles). For the PCs, there are many inter-
mediate values (0.2–0.5) of the correlation coefficients. This

Figure 5.

Results of ICA: Stimulus B in multiple subjects (arranged in three

columns by subject). (a–c) ICs corresponding to stimulus B

found in three subjects (r 5 0.81, 0.86, 0.58). Red vertical lines

represent stimulus onset with letters showing which stimulus

was presented in that interval. Note that the hemodynamic

responses are easily distinguishable in each subject. (d–f) Images

obtained for each IC. (g–i) Images obtained from block-averaged

raw signals. Note the similarity between images in the two rows

with less noise in the background for ICA images. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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suggests that the PCA components remain as a mixture of
signals, with the evoked responses disseminated among
many components.
Thus, while PCA is useful for reduction of dimensional-

ity before ICA, the PCs do not reflect the functional
response to the stimuli for this data as accurately as do the
ICs. These graphs (Fig. 7d,e) clearly demonstrate the supe-
riority of ICA over PCA for this DOT application. In addi-
tion, the close correlation of the estimated functional
response ICs to the expected evoked-responses offers a
way to automate the selection of components for imaging
or further processing, automatically removing the noise
components from the signal.

Discussion of Methodology

In this study, we applied ICA to the measured time-se-
ries (x) data for a single optical wavelength without any
preprocessing or filtering of the data. It is worth noting
that several alternative temporal and spatiotemporal analy-
sis methods have been proposed for improving the stimu-
lus activation/background ratios (CNR) in NIRS measure-
ments. For example, low-pass filters (t > � 2 s) are typi-
cally used to suppress cardiac pulsations and high-pass
filters to suppress long-term fluctuations (t < � 30 s) [Boas
et al., 2001; Jasdzewski et al., 2003]. In addition, efforts

have been made to remove specific cardiac and respiration
signals [Gratton and Corballis, 1995; Nolte et al., 1998].
However, the spectrum of hemodynamic fluctuations is
quite broad and densely populated, with contributions not
only from pulse [Franceschini et al., 1999; Madsen and
Secher, 1999] and breathing [Franceschini et al., 2002], but
also from slower oscillations [Taga et al., 2000] in systemic
and cerebral hemodynamics. Though less common, multi-
channel regression methods including an eigenvector anal-
ysis [Zhang et al., 2005] and a linear regression approach
[Saager and Berger, 2005; Zeff et al., 2007] have also been
used. For optimal ICA processing, it may be advantageous
to perform some preprocessing to remove artifacts or sig-
nals with large amplitudes before the application of ICA
as other investigators have found [Mantini et al., 2007a,b;
Morren et al., 2004].
To benchmark the relevance of ICA to DOT data, we

performed a quantitative comparison to PCA, a classical
method for representing observed data as a sum of uncor-
related components. In previous reports, ICA has not
always performed better than PCA, as the success of either
approach depends on the type of data and the purpose of
the study. For instance, a study that compared PCA and
ICA for face recognition concluded that the optimal
method is data-dependent [Delac et al., 2005]. However, in
most instances, ICA has significant advantages over PCA.

Figure 6.

Results of PCA: stimulus B in multiple subjects (arranged in

three columns by subject). (a–c) PCs with strongest correlation

relative to stimulus B in each of the three subjects (r 5 0.44,

0.49, 0.21). Amplitudes are arbitrary. Red vertical lines represent

stimulus onset with letters, showing which stimulus was pre-

sented in that interval. Note that the signals are mixtures of

stimulus responses and contaminants. (d–f) Images obtained for

each PC. The images also show a mixture of different components;

compare with images shown in Figure 5. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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For example, Bugli and Lambert [2007] found that, in
application to EEG data, ICA could extract two event-
related potential signals, whereas PCA extracted only a
mixture of two signals. Similar results have also been
reported for other types of biomedical signals [Reidl et al.,
2007; Tresch et al., 2006]. Our study finds that PCA, at
best, detected a mixture of two different evoked signals
and did not differentiate between functional activations
and background physiology. ICA produced significantly
better results, suggesting that the independence criteria are
a meaningful approach to decompose DOT data sets.
The judgments about the success of the various methods

were made using solely temporal criteria: a component (ei-
ther from ICA or PCA) that corresponds to stimulus A
should show a response when A is presented, but not B. It
could happen that the component that correlates most
highly temporally with stimulus A shows a spatial pattern
that would be unexpected based on known retinotopy (i.e.,

the visual field mapping to contralateral cortex). This was
not seen with any of the data-processing methods. Both
block averaging and ICA methods showed the expected
spatial activation patterns. And, with the PCA component
that appeared as a mixture of the two temporal hemody-
namic responses, we also saw a spatial mixture of A and
B; this latter conclusion being secondary, was based on ref-
erence to earlier ICA and block-averaged images and not
on a preconceived notion of the expected retinotopy.
Future work should include further spatial analysis,
including the correlation of their spatial patterns to
expected brain localization. Establishing the spatial confi-
dence of ICA mapping will be especially important in
order to move the method toward more naturalistic set-
tings (complex mixtures of stimuli) and fields where there
is no expected brain localization to use as a reference.
In this study, we applied ICA to the SD-pair time-series

signals derived from a high-density DOT system as
opposed to the more traditional sparse NIRS imaging sys-
tems. An advantage of the current data set is that many
SD-pairs sample the same tissue volume with different
weightings. Thus, the DOT data set presents the ICA algo-
rithm with a classical unmixing problem in which focal
neural responses are projected on to a number of SD pairs.
The spatial oversampling of the DOT data may provide an
advantage over sparse NIRS data for ICA data processing.
We note that there are a number of other possible

approaches for applying ICA to DOT data. The DOT inver-
sion process provides model-based ‘‘unmixing" of the data.
ICA, either temporal or spatial, applied to the reconstructed
image series may produce better results. Furthermore, DOT
uses multiple wavelength data and spectral unmixing to
distinguish changes in oxygenated hemoglobin, deoxygen-
ated hemoglobin, and total hemoglobin concentrations.
Since these variables are tightly coupled to physiology, ICA
may perform better when applied to hemoglobin contrasts
instead of the single wavelength data used in the present
study. Such ICA of hemodynamic variables could also be
combined with simultaneous monitoring of the subject’s
physiology (e.g., of pulse, breathing rate, and end tidal
CO2), which could be used for automatic sorting of the
components. Future studies are needed to evaluate the per-
formance of these alternate approaches to the temporal,
spectral, and spatial aspects of DOT data analysis.

CONCLUSIONS

DOT can be used to investigate activity of the brain cor-
tex similar to fMRI studies, with the added advantages of
portability, simplicity of data acquisition and equipment,
fewer restrictions on subjects, and comprehensive hemo-
globin contrasts. However, since the DOT measurements
are made with light entering and exiting through the scalp
and skull, the measurements of light attenuation due to
brain activity are highly contaminated by signals due to
superficial and global hemodynamic fluctuations.

Figure 7.

Correlation coefficients. (a) The template for the response to

stimulus (for Subject 2). (b) The IC with the highest correlation

(0.83) to the template. (c) The PC with the highest correlation

(0.68) to the template. (d) The plot of all correlations for Sub-

ject 2 and stimulus B; correlations were computed for all 24 ICs

and all 24 PCs. ICs show a clear dichotomy between the func-

tional response component (r 5 0.86) and other components.

(e). Correlation coefficients for all three subjects and both stim-

uli; correlation coefficients were computed for all ICs and PCs

relative to both stimuli resulting in 178 values for each method.

For ICA, the six stimulus response components have high corre-

lation values (>0.58), whereas the remaining components have

low values (<0.24). In contrast, only one PC has a high correla-

tion value (r 5 0.68). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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As shown herein, ICA is able to extract multiple hemo-
dynamic functional responses initially obscured in DOT
measurements by background physiology. Furthermore,
we have shown that it is possible to extract functional
responses from our DOT data without prior temporal fil-
tering or processing based on frequency content. The
images from ICA are comparable in spatial resolution to
those from block-averaged raw data and are obtained
without a priori information about the nature of the stim-
uli. Thus, studies of task-related responses to events with-
out access to event design [e.g., Bartels and Zeki, 2004,
2005] can be analyzed with minor modifications to the
techniques described here.
In conclusion, this report demonstrates the usefulness of

ICA applied to unprocessed DOT data for blind identifica-
tion of event-evoked responses in the visual cortex of
human brain. By improving sensitivity and identification,
the application of ICA can potentially increase the impact
of DOT methods in a wide range of basic research and
clinical applications.
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