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Abstract: Children and adolescents born before 33 weeks of gestation, that is very preterm, may experi-
ence problems with the inhibitory control of behaviour and the allocation of attention. Previous func-
tional magnetic resonance imaging (fMRI) studies have found preterm-born adolescents to display
altered brain activation in tasks measuring inhibitory control. However, adolescence is a period during
which dynamic changes are occurring in the brain, and it is not yet known whether these functional
alterations will persist into adulthood, or instead reflect developmental delay. This study used an
event-related fMRI Go/No-Go motor response inhibition paradigm, which included an oddball task
measuring attention allocation to infrequent stimuli, to compare blood-oxygen-level-dependent (BOLD)
signal between 26 preterm-born adults and 21 controls. Group differences in brain activation were
observed in inhibition and attention networks during both conditions. During motor response inhibi-
tion, preterm-born participants compared to controls showed increased BOLD signal in medial and
right lateral posterior brain regions, including middle temporal/occipital gyrus, posterior cingulate
gyrus and precuneus. During oddball trials, preterm-born young adults displayed attenuated brain
activation in a fronto-parietal-cerebellar network which is involved in mediating attention allocation.
This pattern of reduced brain activation in task-relevant regions of attention allocation, and increased
activation in posterior brain regions during inhibitory control, suggests adult alteration of inhibition
and attention processing following very preterm birth, which may reflect a developmental delay. Hum
Brain Mapp 30:1038–1050, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

There is a wealth of literature on cognitive and behav-
ioural impairments following very preterm birth. For
instance, preterm-born children tend to show problems
with both shifting and focussing attention, which may pre-
dict later behavioural problems [Andersen and Doyle,
2004; Lawson and Ruff, 2004]. In addition, increased psy-
chiatric symptomatology such as externalising behaviours
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and incidence of attention deficit and hyperactivity dis-
order (ADHD) have been described in preterm-born and
very low birth weight (e.g., <1,500 g: VLBW) cohorts
[Bhutta et al., 2002; Botting et al., 1997; Breslau and Chil-
coat, 2000; Foulder-Hughes and Cooke, 2003; Lawson and
Ruff, 2004]. Increased parental ratings of impulsivity have
also been recorded [Eriksson and Pehrsson, 2003].
Cognitive and behavioural impairments have partly

been explained by structural brain alterations in very pre-
term populations [Abernethy et al., 2004; Allin et al., 2001;
Nosarti et al., 2004, 2008]. In adolescence, an association
has been observed between caudate volume and hyperac-
tivity scores in individuals who were born very preterm
[Nosarti et al., 2005]. Because of its periventricular loca-
tion, the caudate nucleus is at elevated risk of damage in
preterm neonates, as a result of cerebral haemorrhage and
perinatal asphyxia. In addition, preterm adolescents (mean
gestational age <30 weeks) when compared with controls
have been reported to have smaller caudate volumes
[Abernethy et al., 2004; Nosarti et al., 2008]. Decreased
caudate volume has also been observed in preterm chil-
dren with low IQ scores (<80) [Abernethy et al. 2004]. To-
gether these data suggest that cognitive and behavioural
functions reliant on fronto-striatal pathways may be
impaired in very preterm samples. Similarly, alterations of
fronto-striatal networks have been described in ADHD in
terms of structural brain development [Castellanos et al.,
2002; Krain and Castellanos, 2006] and functional neuronal
substrates during tasks involving inhibitory control
[Durston et al., 2003; Rubia et al., 1999].
Inhibitory control is one of the latest cognitive functions

to develop, maturing well into adolescence [Tamm et al.,
2002; Wildenberg and Molen, 2004]. The ability to monitor
and inhibit responses is required in many psychological
domains, such as the regulation of emotion [Lewis and
Stieben, 2004], the protection of attentional focus from in-
terference, as well as the withdrawal of motor responses
[Rubia, 2002]. Motor response inhibition is mediated by
lateral prefrontal areas such as the dorsolateral and infe-
rior frontal cortex, anterior cingulate and the caudate nu-
cleus [Bunge et al., 2002; Horn et al., 2003; Rubia et al.,
2001, 2003, 2006, 2007a].
In line with the behavioural findings of late develop-

ment of inhibitory control are functional imaging findings
of late progressive maturation of the fronto-striatal activa-
tion in networks [Booth et al., 2003; Bunge et al., 2002;
Rosso et al., 2004; Rubia et al., 2000, 2006, 2007a]. In partic-
ular, activation in networks in the prefrontal and caudate
regions have been shown to increase in a linear fashion
between childhood and mid-adulthood during inhibitory
task performance [Rubia et al., 2000a, 2006]. Recent data
using diffusion tensor imaging also found that the matura-
tion of fronto-striatal white matter fibre tracts (from age 7
to 31) related to enhanced performance on a Go/No-go in-
hibition tasks [Liston et al., 2006]. In addition, research
suggests that younger age groups rely more on posterior
brain regions as compared with the task-relevant fronto-

striatal networks recruited by older participant groups
[Booth et al., 2003; Bunge et al., 2002; Rubia et al., 2006,
2007a]. Bearing this in mind, it is of interest to investigate
whether such late maturing functions and their underlying
fronto-striatal neural networks are impaired in preterm-
born adults who may show signs of functional and struc-
tural developmental delay [Nosarti et al., 2006, 2008].
The extent to which preterm-born adults show response

inhibition impairments is not yet clear. Work by our group
exploring executive function suggests that preterm-born
adults may still display difficulties on tasks with inhibitory
components, such as the Hayling sentence completion test
which includes a verbal inhibition component [Nosarti
et al., 2007]. Another study using functional magnetic reso-
nance imaging (fMRI) and the same Go/No-go task
employed in this study, found that preterm-born adoles-
cent boys (mean age 16 years) displayed differential brain
activation when compared with a sample of non-preterm-
born adolescent boys, despite showing comparable cogni-
tive performance [Nosarti et al., 2006]. Preterm-born ado-
lescents in contrast to controls showed decreased blood-
oxygenated-level-dependent (BOLD) signal in caudate nu-
cleus, left inferior frontal and anterior cingulate gyri. They
also showed increased brain activation mainly in temporal
regions, which was interpreted as being possibly compen-
satory. In addition, a recent large-scale study by our group
found an increase in delayed responses in preterm-born
adults on a neuropsychological task that requires interfer-
ence inhibition [Nosarti et al., 2007]; i.e., the Incompatibil-
ity subscale of the Test of Attentional Performance.
Other fMRI studies have revealed differences in brain

activation between full-term and preterm-born children
and adolescents, even in the presence of intact cognitive
performance [Ment and Constable, 2007; Petersen et al.,
2002]. This may implicate differential developmental time
courses, processes of neural plasticity, i.e. the process
whereby compensatory neural events facilitate the re-
organisation of existing brain tissue [Nosarti et al., 2003],
and/or increased neurocognitive compensation with age.
fMRI is particularly well-placed to detect such process,
which may not be evident at a neuropsychological level
[Rubia, 2002; Rushe et al., 2001].
The aim of this study was to use event-related fMRI to

explore the neuronal substrates of response inhibition and
attention allocation in young adults who were born very
preterm (<33 weeks of gestation) and a group of control
participants of similar age and gender. The rationale for
undertaking this study was threefold: first to test whether
alterations in brain activation during motor response inhi-
bition would be observed in preterm-born adults. To date,
current knowledge of the functional neuronal consequen-
ces of preterm birth is largely confined to child and ado-
lescent samples (see Ment and Constable, 2007 for a
review). Second, to investigate whether preterm-born
adults would show differences in attention networks dur-
ing a simple Oddball task measuring perceptive selective
attention allocation. Third, to include female participants,
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as the majority of fMRI studies has investigated preterm-
born boys, despite evidence that the gender may influence
the mechanisms of brain development [DeBellis et al.,
2001; Gur et al., 1999; Reiss et al., 2004; Thompson et al.,
2007], as well as the relationship between brain structure
and function [Nosarti et al., 2004, 2005].
We hypothesised that preterm-young adults would con-

tinue to show BOLD signal alterations, when compared
with healthy controls, during inhibition and attention proc-
essing, possibly reflecting developmental delay, and/or
neurocognitive compensation. This may manifest as
attenuation in task-specific neural networks underpinning
motor inhibition and attention allocation, e.g., fronto-stria-
tal and fronto-parieto-temporal, respectively, or increased
brain activation in regions that underpin less specialised
attention processes.

METHODS

Participants

In 1983–1984, 252 infants born at less than 33 weeks ges-
tation were admitted within 5 days of birth to the Neona-
tal Unit at University College London Hospital (UCLH),
survived and were discharged. Of this cohort, all individu-
als born at 28 or less weeks of gestation were enrolled for
long-term follow-up, as well as a random sample of those
born from 29 to 33 weeks of gestation. This selection was
necessitated by an expansion in capacity of UCLH in 1983,
which prevented inclusion of the entire consecutive series
due to limited research resources. One hundred forty-
seven (40% of the entire sample) adolescents were selected
for the study (78 born at <28 weeks gestation and 69 born
at 29–33 weeks gestation). Of the 107 individuals assessed
in adolescence, 55 were born at 28 or less weeks of gesta-
tion and 52 were born from 29 to 33 weeks of gestation.
For the present fMRI study, 26 randomly selected right-

handed preterm-born individuals with no history of cere-

bral palsy, grade 3/4 intraventricular hemorrhage or peri-
ventricular leucomalacia (12 born at <28 weeks gestation
and 14 born at 29–33 weeks gestation; 16 males; mean age
20.1; age range 18.9–21.2 years) and 21 controls (9 males;
mean age 20.1, range 17.8–23.4 years) were recruited (see
Table I). This sample was comparable with a larger group
of very preterm individuals, of a similar age and selected
from the same cohort as in this study, [Allin et al., in
press] in terms of proportion of individuals who were
born at <28 weeks (v 5 0.28, P > 0.05), and estimated
Wechsler Abbreviated Scale of Intelligence (WASI) [Wechs-
ler, 1999] Full Scale IQ (t(90) 5 1.16, P > 0.05).
Twenty-one controls were recruited from advertisements

in the local press and universities selected according to
age, handedness and gender. Inclusion criteria were full-
term birth (37–42 completed weeks of gestation) and
English as a first language; exclusion criteria included
birth complications (e.g., low birth weight defined as
<2,500 g, endotracheal mechanical ventilation), prolonged
gestation (greater than 42 weeks), history of psychiatric ill-
ness, severe hearing and motor impairment.
Mean WASI Full Scale IQ was 107.7 (64.3) for controls

(n 5 16) and 103.7 (62.3) for preterm-born participants,
and did not differ between groups (t(39) 5 0.90, P > 0.05).
Verbal IQ was 94.5 (69.5) for controls and 94.9
(613.2) for participants born very preterm (t(39) 5 20.9,
P > 0.05), with performance IQ being 101.1 (68.8) for
controls; 99.2 (611.8) for preterm-born participants (t(39)
5 0.42, P > 0.05). The groups did not differ in ratings of
parental social economic class [HMSO, 1991; v 5 4.02,
P > 0.05).
Ethical approval for the study was obtained from the

local ethical committee. Written informed consent for the
assessment, including MRI, was obtained from all partici-
pants and a parent of the only participant (control) who
had not yet reached age 18. All participants received travel
expenses, refreshments and a nominal remuneration for
participation in the study.

TABLE I. Demographic details and behavioural data for preterm-born participants and controls

Variable Controlsa Preterm-born

Mean (SD) Males (n 5 9) Females (n 5 12) Total (n 5 21) Males (n 5 16) Females (n 5 10) Total (n 5 26)
Age (years) 19.88 6 1.39 20.31 6 1.96 20.13 6 1.7 20.20 6 0.65 19.98 6 0.65 20.11 6 0.65
Gestation (weeks) — — — 28.25 6 1.95 29.60 6 1.71 28.70 6 1.95
Birth weight 1378.81 6 101.49 1269.70 6 90.08 1336.84 6 361.97
Go error rate:
omissionsb,c

2.22 6 3.70 0.46 6 0.93 1.25 6 2.7 0.93 6 2.67 1.33 6 2.96 1.09 6 2.73

No-go error rate:
commissions

1.67 6 1.12 0.82 6 1.47 1.20 6 1.4 1.50 6 1.46 1.90 6 1.85 1.65 6 1.60

Reaction time:
Go stimuli (s)b

0.41 6 0.06 0.46 6 0.07 0.44 6 0.07 0.41 6 0.06 0.45 6 0.04 0.43 6 0.06

Reaction time:
Oddball stimuli (s)

0.44 6 0.08 0.49 6 0.07 0.47 6 0.08 0.43 6 0.06 0.49 6 0.05 0.45 6 0.06

a There was one instance of missing data for behavioural measures.
b Includes Oddball trials.
c Three outliers were excluded.
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fMRI Paradigm: Go/No-Go Task

In the Go/No-go task, a motor response has to be selec-
tively inhibited or executed depending on whether a ‘go’ or
a ‘no-go’ signal is displayed on the screen. It requires motor
response inhibition and selective attention. A rapid, rando-
mised, mixed trial event-related fMRI was used in combina-
tion with a Go/NoGo activation paradigm including
Oddball trials to control for the attentional oddball effect of
low-frequency no-go appearance (for details of tasks please
see Nosarti et al., 2006; Rubia et al., 2005a, 2006]. Inter-stim-
ulus intervals (ISI) were randomly jittered between 1.6 and
2.0 and presentation was randomised to optimise statistical
efficiency [Dale, 1999; Dale and Buckner, 1997].
The basic task is a choice reaction time task. Arrows of 500-

ms duration appear on the middle of the screen and point to
either the left or right side. After the 500 ms stimulus duration,
there is a blank screen of 1.1–1.5 s, so that each inter-trial-inter-
val amounts on average to 1.8 s. The participant is instructed
to press the left or right response button as fast as possible,
depending on the direction of the arrow. Infrequently (in 12%
of trials), arrows pointing to the top (no-go signals) appear in
the middle of the screen with 500 ms duration. Participants
have to inhibit their motor response to these arrows. In
another 12% of trials (Oddball trials), slightly slanted arrows
pointing left or right appear, and participants have to press a
response button as fast as they can to either the left or right
response button, corresponding to the direction of where the
arrows point, just as to the go signals. These low-frequency
oddball stimuli control for the low-frequency attentional odd-
ball effect and difference in arrow tilt of the no-go trials.
Twenty-four no-go stimuli and 24 oddball stimuli were pseu-
dorandomly interspersed with 160 go stimuli. The event-
related analysis investigates the neural correlates of three dif-
ferent functions: (1) No-go > Oddball trials; pure motor
response inhibition, controlling for selective attention to the
rare No-go trials when compared with frequent go trials by
subtracting the equally rare oddball trials. (2) No-go > Go tri-
als; motor response inhibition, without controlling for the
effects of attention allocation to infrequent stimuli. (3) Oddball
> Go trials; measuring selective attention in the rare Oddball
trials when compared with the frequent go trials. Task dura-
tion was 6.15 min.
The task was explained to the participants and each was

trained once in each condition prior to MRI scanning. In
the scanner, the task instructions were repeated. The para-
digm was written in visual basic programming and pro-
jected from a PC onto a mirror within the MRI scanner
during the scan and response data were recorded onto a
PC at the same time.

Image Acquisition

Gradient-echo echo-planar MR images were acquired
from participants using a 1.5 Tesla Neuro-optimised GE
MR Signa System (GE Medical Systems, Milwaukee, WI) at
the Maudsley Hospital, London. A quadrature head coil

was used for radio frequency (RF) pulse transmission and
reception. In each of the 12 7-mm thick near axial slices
with a 0.7-mm gap, 208 T2-weighted MR images depicting
BOLD contrast were acquired parallel to the intercommis-
sural (AC-PC) plane (time to repeat: TR 1,800 ms, time to
echo-TE 40 ms, flip angle 908). A high-resolution inversion
recovery EPI dataset with 3-mm thick slices and an in-
plane resolution of 1.5 mm was also acquired to facilitate
mapping of the functional data into Talairach space.

Functional MRI Analyses

Individual analysis

The fMRI data were analysed with the software devel-
oped at the Institute of Psychiatry (XBAM V3.4), using a
nonparametric approach to minimise assumptions. The
data were first realigned [Bullmore et al., 1999] to mini-
mise motion-related artefacts and smoothed using a Gaus-
sian filter (FWHM 7.2 mm). Time series analysis was then
carried out by first convolving each experimental condition
with gamma variate functions, modelling delays of 4 and 8
s, respectively (to allow variability within this range). The
weighted sum of these two convolutions that gave the best
fit (least-squares) to the time series at each voxel was then
computed, and a goodness of fit statistic computed at each
voxel consisting of the ratio of the sum of squares of devi-
ations from the mean intensity value due to the model
(fitted time series) divided by the sum of squares due to
the residuals (original time series minus model time se-
ries). This statistic is called the SSQ-ratio. The appropriate
null distribution for assessing significance of any given
SSQ-ratio was then computed using the wavelet-based
data re-sampling method described in detail elsewhere
[Bullmore et al., 2001] and applying the model-fitting pro-
cess to the re-sampled data. This process was repeated 20
times at each voxel and the data combined over all voxels
to give the overall null distribution of SSQ-ratio. The same
permutation strategy was applied at each voxel to preserve
spatial correlational structure in the data. Voxels activated
at any desired level of type I error can then be determined
by obtaining the appropriate critical value of the SSQ-ratio
from the null distribution. Only activation related to suc-
cessful trials were modeled, to circumnavigate effects due
to differential cognitive performance.

Group mapping

The observed and randomised SSQ-ratio maps were
transformed into standard space by a two-stage process
involving first a rigid body transformation of the fMRI
data into a high-resolution inversion recovery image of the
same subject followed by an affine transformation onto a
Talairach template [Tailairach and Tournoux, 1988]. A
generic brain activation map (GBAM) was then produced
for each experimental condition by calculating the median
observed SSQ-ratio over all subjects at each voxel (median
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values were used to minimise outlier effects) at each intra-
cerebral voxel in standard space [Brammer et al., 1997],
and testing these median SSQ-ratio values against the null
distribution of median SSQ-ratios computed from the iden-
tically transformed wavelet re-sampled data [Brammer
et al., 1997]. To increase sensitivity and reduce the multiple
comparison problem encountered in fMRI, hypothesis test-
ing was carried out at the cluster level using the method
developed by Bullmore et al. [1999] initially for structural
image analysis, and subsequently shown to give excellent
cluster-wise type I error control in both structural and
functional fMRI analysis. For each condition, <1 false posi-
tive activated cluster per map was expected at a P-value of
<0.05 at the voxel level, and P < 0.005 at the cluster-level.

ANOVA for group comparisons

Following transformation of the statistics maps (SSQ ratio)
for each individual into standard space, it is possible to per-
form a randomisation-based test for voxel or cluster-wise dif-
ferences. First, the difference between the median SSQ ratio
values in each group was calculated at each voxel. The me-
dian ratio was then recalculated a large number of times at
each voxel following random permutation of group member-
ship. The latter operation yields the distribution of median
differences under the null hypothesis of no effect of group
membership. Voxel-wise maps of significant group differen-
ces at any desired level of type I error can then be obtained
using the appropriate threshold from the null distribution.
Provided that identical permutations are carried out at each
voxel (to preserve spatial correlations) this method can then
be extended to yield cluster-level differences [Bullmore et al.,
1999]. For the group comparison, <1 false positive activated
cluster per map was expected at a voxel-wise P-value of
<0.05, and cluster-wise P-value of<0.005.
In fMRI analysis, most commonly used assessments of

the significance of the fit of the resulting model use normal
theory and the validity of the normality assumption is
rarely tested. The method of analysis described earlier
(XBAM) makes no such assumptions. Instead, it uses me-
dian statistics to control outlier effects and permutation
rather than normal theory-based inference. Furthermore,
the most common test statistic is computed by standardis-
ing for individual difference in residual noise before
embarking on second level, multi-subject, testing using ro-
bust permutation-based methods. This allows a mixed
effects approach to analysis—an approach that has recently
been recommended following a detailed analysis of the va-
lidity and impact of normal theory based inference in
fMRI in large number of subjects [Thirion et al., 2007].

RESULTS

Demographic and Behavioural Data

There were no age (t(45) 5 0.05, P > 0.05) or gender (v(1)
5 1.63, P > 0.05) differences between groups. However,

given the possible gender differences in behavioural per-
formance, multiple group 3 gender analyses of variance
were conducted to test for group differences on behaviou-
ral variables. The P values were adjusted for multiple test-
ing using the False Discovery Rate [Benjamini and Hoch-
berg, 1995] - see Table I for descriptive statistics.
There were no group differences in error rate for No-go

trials (commissions: F(1,42) 5 1.02, P > 0.05, hp2 5 0.024),
nor on reaction time for Go stimuli (F(1,42) 5 0.02, P >
0.05; hp2 5 0.001). Women were, however, slower to
respond to the Go trials (F(1,42) 5 5.83, P 5 0.05, hp2 5
0.122), although no interaction between group 3 gender
was observed (F(1,42) 5 0.18, P > 0.05, hp2 5 0.004). Further
analyses suggest the observed gender effect was driven by
reaction times on the Oddball trials (F(1,42) 5 8.37, P 5
0.025; hp2 5 0.174), but again no group 3 gender interac-
tion was observed (F(1,42) 5 1.01, P > 0.05; hp2 5 0.002).
After exclusion of three outliers (62 SD from mean)

from the preterm-born adult group, no between group dif-
ferences were observed for error rate for Go stimuli (omis-
sions: F(1,39) 5 0.062, P > 0.05, hp2 5 0.002), nor gender
differences (F(1,39) 5 0.67, P > 0.05, hp2 5 0.017) or gender
3 group interaction (F(1,39) 5 1.7, P > 0.05, hp2 5 0.042).
These patterns of findings mirrored those from a whole
group analysis, i.e., including outliers.

Functional MRI Data

Generic brain activation

During the motor inhibition trials controlling for the
attentional oddball effect (No-go > Oddball trials after ‘go’
trials), control participants showed brain activation in the
superior temporal gyrus. In this contrast, the preterm-born
group displayed brain activation in the cuneus, posterior
cingulate gyrus and post-central gyrus (see Table II).
During the No-go > Go trials which tap motor inhibi-

tion without controlling for the attentional oddball effect,
control participants showed brain activation in cerebellum
and superior temporal gyrus. In the preterm-born group,
there was increased BOLD signal in precuneus.
Control participants showed increased BOLD response

in the Oddball > Go trials in inferior frontal gyrus, subgy-
ral parietal lobe and middle occipital gyrus. The preterm-
born group displayed increased BOLD signal in middle
frontal gyrus and middle occipital gyrus.

Group comparison

For the contrast of No-go > Oddball trials, preterm-born
individuals showed increased brain activation in right
hemispheric posterior regions in the middle temporal
gyrus, middle cingulate gyrus, posterior cingulate and pre-
cuneus during No-go trials when contrasted with Oddball
trials (see Table III; Fig. 1A).
For the contrast of No-Go > Go trials, the preterm-born

group showed reduced BOLD signal in the left posterior
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cerebellum and the right supramarginal gyrus (see Table
III; Fig. 1B).
For the contrast of Oddball > Go preterm-born partici-

pants displayed attenuated brain activation in the left cere-
bellum, right inferior frontal gyrus, right premotor cortex
and the right supramarginal gyrus (see Table III; Fig. 1C).

Gender

To explore the interaction between group (preterm-born
and control) and gender, SSQs representing the magnitude
of brain activation (see description in Methods section) at
the peak co-ordinate for each cluster in which preterm-
born individuals displayed differential brain activation in

comparison to controls, were entered into a Group 3 Gen-
der analysis of variance. No significant interactions
between group and gender survived adjustment for multi-
ple testing, for clusters in the No-go > Oddball which
were differentially activated between preterm-born partici-
pants and controls.
There were no significant Group 3 Gender interactions

in the No-go > Go contrast.
For the Oddball > Go contrast, in addition to the

expected main effect for group, a trend towards a Group
3 Gender interaction was observed, for activation in the
right supramarginal gyrus which was decreased in pre-
term-born females (F(1,43) 5 6.7 df, P 5 0.05), who showed
decreased BOLD signal when compared with male and

TABLE II. Within-group activation foci for controls and preterm-born participants for each contrast

Talairach co-ordinates
Cluster
P value

No. of
Voxelsx y z

Control participants
No-Go > Oddball
R superior temporal gyrus (BA 41) 51 233 9 0.0020 17

No-Go > Go
R cerebellum/anterior lobe/culmen 40 248 229 0.0002 385
R superior temporal gyrus (BA 41) 47 237 15 0.0010 185

Oddball > Go
R subgyral parietal lobe (BA 40) 36 241 37 0.0002 461
R inferior frontal gyrus (BA 9) 43 11 26 0.0002 202
L middle occipital gyrus (BA 18) 240 278 27 0.0020 123

Preterm-born participants
No-Go > Oddball
Cuneus (BA 18) 0 274 20 0.0002 138
L posterior cingulate gyrus (BA 24) 24 222 37 0.0020 30
R postcentral gyrus (BA 3) 40 226 48 0.0030 23

No-Go > Go
R precuneus (BA 31) 7 270 26 0.0003 503

Oddball > Go
L middle frontal gyrus (BA 46) 247 22 26 0.0002 284
R middle occipital gyrus 36 270 9 0.0030 124

TABLE III. Between-group foci for preterm-born and controls for each contrast

Talairach co-ordinates
Cluster
P value

No. of
voxelsx y z

Preterm-born > controls
No-Go > Oddball
R middle temporal/occipital gyrus (BA 39/19) 40 267 26 0.001 53
R middle cingulate gyrus (BA 31) 4 244 42 0.002 48
R posterior cingulate (BA 30) 4 267 213 0.009 31
R precuneus (BA 31) 7 270 26 0.002 28

Controls > preterm-born
No-Go > Go
L cerebellum/posterior 218 241 240 0.007 86
R cerebellum/culmen 40 248 229 0.009 44

Oddball > Go
L cerebellum–posterior/uvula 218 274 224 0.002 119
R inferior frontal gyrus (BA 44) 51 19 26 0.003 117
R precentral gyrus (BA 4/6) 25 219 53 0.005 84
R supramarginal gyrus (BA 40) 36 241 31 0.008 38
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female controls, with a trend towards being statistically
different from preterm males (P 5 0.07).

DISCUSSION

Preterm-born adults displayed differential brain activa-
tion, in comparison to controls, when presented with both

motor response inhibition and oddball attention allocation
trials. Increased brain activation was observed in the pre-
term-born group in right hemispheric middle occipital/
temporal gyrus, precuneus and posterior cingulate gyrus
during No-go trials after subtraction of attentional Oddball
trials. During No-go contrasted with Go trials, preterm-
born participants showed reduced brain activation in the
left posterior cerebellum and a lateral region of the right

Figure 1.

Between-group foci of brain activation for each contrast. The left side of the brain is shown on

the left side of the images.
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cerebellum/culmen. During the attentional Oddball condi-
tion, preterm-born individuals displayed attenuated activa-
tion in the right inferior prefrontal and parietal cortices
and left cerebellum.

Motor Response Inhibition

The increased right hemispheric brain activation
observed in the preterm-born group during motor inhibi-
tion controlling for attention allocation to low-frequency
stimuli (No-go > Oddball) was localised in middle tempo-
ral/occipital cortex, posterior cingulate and precuneus.
The middle temporal/occipital cortex is thought to
respond to the volitional control of attention [Newman
et al., 2007], or effortful, internally mediated orientation to
visual spatial stimuli [Mayer et al., 2004]. The posterior
cingulate is also involved in the dynamic reallocation of
spatial attention [Mesulam et al., 2001; Small et al., 2003],
and is part of a ‘generic midline attentional network’
[Rubia et al., 2006] alongside anterior regions in the cingu-
late gyrus and medial parietal lobe. Our data suggest these
regions were recruited to a greater extent in the preterm-
born participants to successfully inhibit the motor
response.
Similarly, in a different younger sample of preterm-born

adolescent boys aged 14–18 years, we previously observed
increased brain activation during motor inhibition in right
middle temporal and posterior cingulate regions. How-
ever, in the earlier study such increases were alongside
decreases in brain activation in the prefrontal cortex and
caudate nucleus [Nosarti et al., 2006]. No decreases in
brain activation during motor response inhibition were
observed in this study. In the absence of longitudinal data,
it is difficult to place these results in the context of the ear-
lier dataset. However, it is interesting to note that grey
matter decreases have been observed in preterm-born ado-
lescents in both the caudate and regions of the prefrontal
cortex [Nosarti et al., 2008]. One possibility is that struc-
tural differences could have accounted for decreases in
brain activation in these regions in adolescents, but may
no longer be apparent in adulthood. Longitudinal evidence
of delays in cortical maturation has started to emerge in
other conditions such as ADHD [Shaw et al., 2007]. More
specifically, caudate abnormalities have been found to nor-
malise with age in ADHD [Castellanos et al., 2002]. Future
studies could explore this hypothesis using longitudinal
studies to ascertain whether differences in brain structure
in preterm cohorts remain into adulthood.
Although both children and adults have been found to

have increased brain activation in medial posterior regions
such as the precuneus during response inhibition tasks, in
children such activation has been found to be directly
related to the success of inhibition [Bunge et al., 2002],
while older subjects rely more on fronto-striatal networks
[Rubia et al., 2006, 2007a]. Booth and colleagues [2003]
found additional recruitment of the bilateral posterior cin-
gulate in children as compared with adults during a

response inhibition task, and there is evidence that
younger people rely more heavily on these posterior brain
regions. For instance, the precuneus and posterior cingu-
late gyrus, as well as temporal and occipital brain areas,
show negative correlations with age, between adolescent
and adulthood, during several tasks of motor response
inhibition including the Go/no-go task used here [Rubia
et al., 2006, 2007a], and also in tasks of selective attention
[Marsh et al., 2007]. More diffuse brain activation that is
less concentrated on task-specific regions distinguishes
children from adults, and it is thought that these less task-
specific posterior brain regions may play a compensatory
role in task completion when task-specific regions are yet
to fully mature [Durston and Casey, 2006]. This suggests
the pattern of increased posterior activation in the pre-
term-born participants in this study resembles that of
younger participants and may indicate a less mature pat-
tern of brain activation in preterm-born adults during
motor response inhibition.
During inhibition trials that were not controlled for the

attentional oddball effect, preterm-born participants
showed decreased activation in a medial region of the left
cerebellum and a more lateral region of the right cerebel-
lum (culmen). The cerebellum is an important part of
fronto-striato-cerebellar networks where brain activation
correlates linearly with age between childhood and adult-
hood [Rubia et al., 2007a] and has been found to be acti-
vated during Go/No-go tasks [Bunge et al., 2002; Garavan
et al., 2003; Nosarti et al., 2006; Rubia et al., 2006]. In addi-
tion, activation in the cerebellum has been shown to corre-
late with inhibitory capacity [Rubia et al., 2007a]. In this
study, a reduction in cerebellar activation is likely to
reflect a less mature pattern of brain activation in preterm-
born participants, which may be compounded by regional
structural differences as decreased cerebellar volume has
also been observed in preterm-born adolescents [Allin
et al., 2001; Nosarti et al., 2008].
Preterm-born young adults’ behavioural performance on

the motor response inhibition trials in this study did not
differ statistically from controls. This is in line with find-
ings of a younger group of preterm-born males [Nosarti
et al., 2006], as well as of individuals with other patholo-
gies such as ADHD [Rubia et al., 1999, 2005, 2007b; Smith
et al., 2006]. The findings of differential activation patterns
and yet seemingly unimpaired performance may be indic-
ative of neurocognitive compensation. These data are also
consistent with previous observations that brain activation
may be better placed to reveal group differences than
behavioural performance, whereby compensatory proc-
esses may be more difficult to identify [Nosarti et al., 2006;
Rubia et al., 1999, 2005a,b, 2007b; Smith et al., 2006].
Alternatively, the absence of performance differences

between groups may be due to a lack of statistical power.
It is possible that the absence of group 3 gender interac-
tion resulted from a type 2 error, as the sample size of this
and many fMRI studies, is relatively small for neuropsy-
chological analyses, and the statistical power to detect
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subtle differences in inhibition and attention may be insuf-
ficient. In fact, a larger sample of preterm-born adults dis-
played performance deficits on a two tasks with an inhibi-
tory component, i.e., the Incompatibility subscale of the
Test of Attentional Performance and the Hayling sentence
completion test [Nosarti et al., 2007]. In addition, although
not statistically significant, the gender ratio of the two
groups did differ, which may have impacted upon the
findings. However, the effect sizes in this study were gen-
erally weak, making it difficult to ascertain whether these
data represent a lack of power or lack of an effect. Either
way, to observe brain activation similar to those displayed
in children, alongside intact or relatively minor behaviou-
ral differences, i.e., small effect sizes, may suggest neuro-
cognitive compensation similar to that displayed by chil-
dren whose brains are yet to fully mature.

Attention Allocation

Pronounced group differences in brain activation were
observed during the Oddball trials (Oddball > Go), which
measure the allocation of attention to infrequent stimuli.
During these trials, the preterm-born group displayed
reduced activation in the right inferior frontal gyrus, right
precentral gyrus, right supramarginal gyrus and cerebel-
lum. Brain activation in each of these regions has previ-
ously been found during tasks of attention allocation
[Clark et al., 2000; Kiehl et al., 2005; Rubia et al., 2007b].
Preterm-born adults displayed attenuated activation in

the right precentral gyrus during the Oddball trials, in line
with results obtained in a similar sample of preterm-born
adolescent males [Nosarti et al., 2006]. The precentral
gyrus is thought to be involved in target detection [Kiehl
et al., 2005]. Preterm-born adults also showed a decrease
in BOLD signal in supramarginal gyrus during the trials
which measure attention allocation (Oddball). Activation
in the parietal lobes has been observed during tasks of in-
hibition, although it is not considered part of an inhibitory
network and may be related to attentional functions neces-
sary to manage the switch from a ‘go’ to a ‘no-go’
response [Bunge et al., 2002; Garavan et al., 2003; Rubia
et al., 2006]. The supramarginal gyrus, in part, underpins
the detection of novel salient stimuli [Downar et al., 2002;
Kiehl et al., 2005]. Although the Oddball trials in this
study were not novel, they were salient by virtue of their
infrequency. A recent study have found a similar pattern
of hypo-activation in parietal regions, including BA40, in
adolescents with ADHD during Oddball trials [Rubia
et al., 2007b; Tamm et al., 2006].
The inferior frontal gyrus (IFG) is thought to be involved

in evaluating stimuli per se [Downar et al., 2002]. This
may explain why this brain area is consistently activated
during both No-go and Oddball trials, which often require
the evaluation of stimuli, in order to inhibit and execute
responses [Madden et al., 2004; Rubia et al., 2006]. More
specifically, the right IFG has been found to be involved in
target detection [Madden et al., 2004], and to display

increased activation in trials requiring the detection of sa-
lient, novel stimuli when contrasted with familiar stimuli
[Downar et al., 2002]. In this study, preterm-born partici-
pants showed attenuated activation in the right IFG during
Oddball > Go suggesting functional brain activation differ-
ences in selective attention, and in particular, the detection
of infrequent stimuli. Developmental studies of selective
attention found increased task-related prefrontal activation
to occur in adults, when contrasted with adolescents and
children [Adleman et al., 2002; Rubia et al., 2006], with
functional age-related linear increases also displayed in
this region [Adleman et al., 2002; Tamm et al., 2002; Rubia
et al., 2006]. These data suggest the observed under-activa-
tion of the right inferior prefrontal cortex in this study
may be indicative of a developmental delay in preterm-
born adults. It is of interest that attenuated activation in
this region has been found in adolescents with ADHD
during inhibitory and attention tasks [Rubia et al., 2005b;
Smith et al., 2006].
Alongside hypo-activation in fronto-parietal networks

during trials involving allocation of attention to infrequent
stimuli, attenuated activation was also observed in the left
lateral cerebellum. The cerebellum has been implicated
in visual-spatial attention [Townsend et al., 1999], with
some studies suggesting a role in response reassignment
[Bischoff-Grethe et al., 2002]. Recent lesion data also point
to a more specific role in overt shifts of attention character-
ised by saccades to a target as opposed to covert atten-
tional shifts [Golla et al., 2005]. Functional abnormalities in
the cerebellum during motor inhibition and attention allo-
cation are in line with previous observations of structural
and functional differences in the cerebellum in preterm-
born adolescent samples [Allin et al., 2001; Nosarti et al.,
2006, 2008].

Neural Development

Taken together, these data suggest that preterm-born
adults show reduced activation when compared with con-
trols in response to rare, infrequent stimuli including atte-
nuated activation in task-specific fronto-parietal-cerebellar
circuits. The findings of reduced focal activation in task-
specific fronto-parieto-cerebellar circuits where functional
neuronal development has been shown to continue into
adulthood [Adleman et al., 2002; Rubia et al., 2006, 2007a],
suggest that the neural correlates of attention allocation
may remain underdeveloped in preterm-born adults. In
the motor inhibition trials, preterm-born adults show more
diffuse activation in right hemispheric posterior temporal,
occipital and cingulate brain regions, similar to activation
patterns observed in children and adolescents and where
functional activation is known to decrease linearly with
age between childhood and adulthood [Casey et al., 1997,
2000; Rubia et al., 2006, 2007a].
The pattern of increased activation in one condition, and

decreased activation in the other, may at first glance
appear contradictory. However, these data may suggest
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that preterm-born adults when compared with controls
display brain activation patterns that are reflective of less
mature functional brain development. Our current under-
standing of functional neuronal maturation suggests it is
reflected by more efficient and focal neural recruitment,
such as an increase in the magnitude of activation in
regions which are critical for task completion, and attenua-
tion of activation in regions which are not essential for the
task [Durston and Casey, 2006; Tamm et al., 2002]. Younger
when compared with older participants show reduced acti-
vation in task-specific brain regions, but more diffuse and
extensive activation in posterior and less task-relevant brain
areas. This pattern of reduced activation in task-specific
regions of attention allocation, and increased activation of
less task-relevant regions during inhibitory trials, is similar
to that observed in children, and thought to represent neu-
rocognitive compensation in brains that are yet to fully de-
velop. This suggests that preterm-born adults are showing
signs of functional neuronal developmental delay. In addi-
tion, to find regional hyper- and hypo-activation suggests
the observed results are not simply an artefact of either
increased or decreased global brain activation in preterm-
born individuals [Nosarti et al., 2006].
The differential brain activation observed between pre-

term-born participants and controls can be interpreted in
the context of documented brain alterations following pre-
term birth [Abernethy et al., 2004; Inder et al., 1999;
Nosarti et al., 2002, 2004, 2008; Thompson et al., 2007]. Dis-
connection or damage to white matter tracts following pre-
term birth [Huppi et al., 2001] could directly or indirectly
affect the development of grey matter and the neuronal
substrates underlying high-order cognitive functions [Inder
et al., 1999; Olsen et al., 1997]. A recent large-scale study
suggests that structural variations in brain structure in pre-
term-born adolescents accounted for 29% of the variance
in neuro-developmental outcome, while group member-
ship did not reach statistical significance [Nosarti et al.,
2008]. Another smaller scale study also found task-specific
functional neural plasticity in preterm-born adults with
corpus callosum damage in contrast to preterm-born indi-
viduals without damage [Santhouse et al., 2002]. It is of
note that the current sample was ‘low risk’ in terms of
neonatal characteristics, i.e., no cerebral palsy, grade 3/4
intraventricular hemorrhage, or periventricular leucomala-
cia. This may mean our results are specific to those pre-
term-born adults likely to have the most favourable neuro-
developmental outcome.
These findings also suggest that functional neuronal

development in preterm-born populations may be to
some extent mediated by gender. The decreased BOLD
signal in the right supramarginal gyrus during the Odd-
ball > Go were mainly driven by preterm-born women.
As discussed earlier, this region is thought to underpin
the detection of salient stimuli [Downar et al., 2002], and
is under-activated in clinical cohorts such as ADHD
[Smith et al., 2006; Tamm et al., 2006]. It is of interest
that overall women showed slower reaction times on the

Oddball trials, although this effect was not specific to
preterm-born female participants. Previous studies sug-
gest women show attenuated brain activation in a range
of networks during response inhibition tasks [Li et al.,
2006]. However, one study found no male/female differ-
ences in a spatial attention task [Bell et al., 2006], and
increased activation in females have also been observed
in the inferior parietal lobe and right middle frontal
gyrus (BA6) during error processing; i.e., failed inhibition
attempts [Hester et al., 2004]. Structural brain differences
between males and females have been observed in chil-
dren and adolescents [DeBellis et al., 2001] as well as
adults [Gur et al., 1999]. Structural gender differences in
selective brain areas have also been reported in preterm
infants [Thompson et al., 2007], in line with data suggest-
ing that the developmental trajectories of preterm-born
men and women may differ [Ingemarsson, 2003; Reiss
et al., 2004].

CONCLUSION

Preterm-born adults show decreased BOLD signal in
task-relevant brain regions during attention allocation and
increased signal in task-irrelevant posterior brain regions
during motor response inhibition. This suggests continuing
functional and neural plasticity following very preterm
birth, which is testament to the resilience of the human
brain. This observed pattern of brain activation in preterm-
born adults resembles that of younger cohorts, and so is
suggestive of a maturational delay. Future studies should
attempt to adjust for task difficulty and allow less room
for cognitive or neural compensation Rubia et al., 2007a].
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