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Abstract: Morphometric studies of medical images often include a nonrigid registration step from a
subject to a common reference. The presence of white matter multiple sclerosis lesions will distort and
bias the output of the registration. In this article, we present a method to remove this bias by filling
such lesions to make the brain look like a healthy brain before the registration. We finally propose a
dedicated method to fill the lesions and present numerical results showing that our method outper-
forms current state of the art method. Hum Brain Mapp 30:1060–1067, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Nonrigid registration is an essential tool to analyze medi-
cal images. For example, it can be used to segment images
using a prelabeled atlas [Warfield et al., 1998], to follow the
evolution of brain structures in longitudinal studies [Rey
et al., 2002] or for morphometry [Ashburner et al., 1998].
In this article, we will focus on the problem caused by

white matter lesions in the context of multiple sclerosis
(MS). MS is an immune-mediated demyelinating disease
affecting both white and grey matter. White matter pla-

ques are easily detected on current conventional images
whereas grey matter lesions are still not well appreciated.
When one tries to nonlinearly register a brain with MS to
a brain without MS, white matter lesions will cause a
strong distortion in the output transformation [Brett et al.,
2001; Meier et al., 2005]. Indeed, intensity driven nonrigid
registration algorithms assume that the two images being
registered have the same structures but these lesions are
present in the patient and not in the reference image. This
distortion of the transformation will be an important prob-
lem when nonrigid registration is used for morphometry.
Deformation-based morphometry and tensor-based mor-

phometry allow us to analyze statistical differences in the
size or shape of brain structures between two groups of
subject. For these techniques, the first step is to find the
(nonlinear) mapping between each subject and the refer-
ence image and then to do some statistical analysis on the
estimated transformations or their derivatives [Ashburner
et al., 1998; Chung et al., 2003; Davatzikos et al., 1996; Lep-
ore et al., 2006; Studholme et al., 2004]. It is therefore im-
portant for the statistical analysis that the transformation is
not distorted by the presence of lesions.
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Lesions location can help in the understanding of brain
diseases and functions. To perform statistical analysis of
lesion location, the lesions of each subject have to be
described using a common coordinate system. Different
methods have been used to do so. A manual method has
been proposed in [Damasio and Frank, 1992] and in [Frank
et al., 1997]. An operator has to draw the lesions of each
subject in the reference template using anatomical land-
marks. The operator has to be an experienced neuro-anato-
mist, the process is time consuming, and as pointed out in
[Fiez et al., 2000], this method is subject to an important
inter and intra observer variability. Image registration pro-
vides an automated method to perform this task. As non-
rigid registration is biased by the presence of lesions, most
authors prefer to use affine registration [Narayanan et al.,
1997; Charil et al., 2003] or [Enzinger et al., 2006]. Indeed,
affine registration is robust to the presence of lesions in
the brain but only the global shape of the brain will fit the
reference.
In this article, we propose a solution for these two prob-

lems and have a nonrigid registration that is not distorted
by lesions and an automated method to map MS lesions in
a reference brain taking inter subject variability into account.

State of the Art of Pathological Brain

Images Registration

Given two images, the aim of registration is to find the
transformation that maps the voxels from one image (the
reference) to the voxels of the other (the floating image).
To restrict the search space and find a realistic transforma-
tion, one usually requests that the transformation be
smooth and/or invertible [Christensen et al., 1993; Rueck-
ert et al., 2006; Sdika, 2008].
For the registration of normal brains, this requirement

makes sense when both the reference image and the float-
ing image have the same structures. An invertible transfor-
mation guarantees the preservation of the topology of the
floating image before and after the transformation.
For the registration of nonhealthy brains, the invertibility

of the transformation is no longer a reasonable assumption
as abnormal structures such as tumors or lesions can be
present. Nevertheless, apart from the regions where the
new structures appear, the topology should be preserved.
For the problem of tumors, a biomechanical model of

the growth of the lesions can be used prior and after the
registration as in [Kyriacou et al., 1999] or a ‘‘tumor seed’’
can be added to the atlas before the registration as in
[Dawant et al., 2002]. These methods cannot be used here.
Indeed, a tumor will grow and push the surrounding tis-
sues of the brain, whereas multiple sclerosis is more likely
to create lesions that ‘‘replace’’ healthy tissues without
moving surrounding tissues.
Another approach consists of removing the influence of

the pathological voxels during the registration process.
The voxels in the lesions are removed from the similarity
metric driving the registration: the cost function is masked

so that only the voxels from normal structures are used. It
has been applied to focal lesions in [Brett et al., 2001] or to
tumors in [Radu et al., 2004].
In [Meier and Fisher, 2005], the registration is not based

on voxel intensity but works by first segmenting and
parameterizing different brain structures and then finding
a transformation that makes these binary structures match.
In their work, they used the brain surface, the midsagittal
plane, and the ventricles surface. As MS lesions do not
appear in these structures, they do not affect the registra-
tion, but the registration will not make the grey matter
structures match either.
In general, three approaches can be distinguished:

removing the lesions from the patient image and aligning,
adding the lesions to the atlas and aligning, or removing
the influence of the lesions during the registration.
Our method consists of inpainting white matter lesions

before performing the registration: the intensity in the
lesions is replaced to remove them from the original
image. Usually, image inpainting is done by smoothly
interpolating the image in the inpainting area while con-
tinuing the level sets as in [Bertalmio et al., 2000; Oliveira
et al., 2001]. One can also try to reproduce the surrounding
texture as in [Bertalmio et al., 2003; Drori et al., 2003]. We
propose in this article an inpainting algorithm dedicated to
the problem of filling white matter lesions in brain images.
Our inpainting based method is adapted to the physio-

logical process of MS, computationally efficient and fully
automated once the lesions have been segmented. It allows
the registration of an MS patient and the mapping of MS
lesions to an atlas or a single case reference template.
In this article, there are three contributions: (i) the intro-

duction of inpainting in biomedical image processing as an
effective tool to remove the influence of lesion during non-
rigid registration of patients, (ii) the proposition of an
inpainting algorithm dedicated to this problem and (iii) the
comparison between different inpainting methods using
state of the art methods showing that our method improves
the registration of MS patient brain MR images.

METHOD

Overall Approach

The method we propose in this article applies to the
nonrigid registration of multiple sclerosis brains. This dis-
ease causes the formation of lesions mostly visible in the
white matter. Some lesions can also be located in the corti-
cal or deep grey matter but are more difficult to appreciate
with current imaging technology.
White matter lesions must have already been segmented

either manually or with a semi-automated software as bi-
nary regions in the patient image. Then, they are removed
from the image and the space left is reconstructed to make
the image look like a normal brain. We can subsequently
use a standard nonrigid registration algorithm that can
preserve the topology of the floating image.
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An Inpainting Algorithm Using Anatomical Prior

The objective of image inpainting is to fill missing parts
in a given image. Most image inpainting techniques found
in the literature are applied to 2D images for scratch
removal from paintings, photo restoration, object or text
removal.
In general, the problem of image inpainting is ill-posed.

As the intensity of the voxels in the missing regions is not
known, the objective is to fill the regions in a coherent and
visually acceptable way by continuing the grey level or
texture of surrounding voxels.
In our case, the objective of the inpainting step was to

fill the lesions to make the brain look like a healthy brain.
As image inpainting will be used for a specific range of
images (images of brains with a given modality) and a
specific type of inpainting mask (MS lesions), a priori
knowledge on the problem can be used to design dedi-
cated inpainting algorithms. We have evaluated three
inpainting methods to fill white matter lesions.

Basic inpainting

As the inpainting areas are not textured, we have used a
simple algorithm inspired from [Telea, 2004]. It consists of
filling the inpainting region from its border to its center
with an average of know neighbors voxels. So, the follow-
ing iterations are applied while the inpainting region is
non empty:

forall x 2 @X : IðxÞ ¼

P

n2VðxÞ\X
wðx� nÞIðnÞ

P

n2VðxÞ\X
wðx� nÞ ;

X ¼ X=@X

where I is the image to inpaint, X is the inpainting region
(initialised with the original lesion mask), X its comple-
ment (the voxels outside X), @X its border (voxels of X
having on of its 6 neighbours in X), V(x) a neighbourhood
of x (a 3 3 3 3 3 neighborhood in our implementation)
and w a Gaussian kernel.
This algorithm will be denoted as BI (basic inpainting)

in the rest of this paper
Note that, as some voxels are removed during every

iteration, this algorithm is guaranteed to terminate.

Local white matter inpainting

The restricted range of images allows us to add more a
priori knowledge in the inpainting step. The lesions we
want to remove from the MS patient images are located in
the white matter but often have the same intensity as other
tissues (grey matter or the cerebrospinal fluid). The voxel
of the inpainting area should be filled only with the inten-
sity of the normal appearing white matter. To do so, we
segmented the input image into normal appearing white

matter (NAWM), grey matter (GM), and cerebrospinal
fluid (CSF) and inpainted the MS lesions by using only the
value of the surrounding NAWM. In our implementation,
the output of the FAST software [Zhang et al., 2001] was
used for the segmentation. The algorithm, denoted as LWMI
(Local White Matter Inpainting), consists of iteratively filling
the border of the unknown region using the formula:

IðxÞ ¼

P
n2VðxÞ\X\NAWM

wðx� nÞIðnÞ
P

n2VðxÞ\X\NAWM

wðx� nÞ ;

where the symbols of the BI algorithm were used. At the
end of the iteration, the inpainted voxels of the border are
added to the NAWM mask and removed from the inpaint-
ing mask X. Note that with this formula, the denominator
for a given voxel x can be null. In this case, x is not
inpainted and remains in X. So, when the lesion touches
the GM or the CSF, it will automatically be filled starting
from the border with the NAWM and ending with non
WM structures.
If the segmentation is inexact or inaccurate, the algo-

rithm might not start for some lesions (for example if the
lesion is surrounded by GM on the segmentation). In this
case, the neighborhood V and the Gaussian kernel w can
be dynamically enlarged to make the neighborhood reach
the NAWM mask.
Note that, as only the NAWM is used to inpaint the

lesion, enlarging V and w is not problematic with LWMI
and can be beneficial for the robustness of the method.
Indeed, voxels not directly in contact with the lesions (and
not affected with partial volume effect, fuzzy boundary or
other influence of the lesion) can be used to fill the lesion
areas. This is another clear advantage of LWMI over BI for
which enlarging V means increasing the chances to use
non WM structures to fill the lesions.
In our implementation, a 5 3 5 3 5 neighborhood of x

is used for V(x).

Global white matter inpainting

A third possibility to inpaint the white matter lesion
was to fill the MS lesions with the mean intensity of the
NAWM over the whole brain. This constant is automati-
cally found by computing the average intensity over the
NAWM mask provided by FAST.

The Nonrigid Registration

Following the inpainting step, we perform a nonlinear
registration using the inpainted image. As the topological
changes due to lesions have been removed before the
registration, constraints to preserve topology or penaliza-
tion of nonsmooth transformation can be used during the
registration process everywhere in the image.
The algorithm used, as described in [Sdika, 2008], mod-

els the registration by a nonlinear optimization problem
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with nonlinear constraints to prevent the Jacobian to be
negative. The constrained optimization problem is solved
by using a combination of the multipliers method and the
L-BFGS algorithm with a non-monotone line search. The
transformation is modeled using cubic splines, making it
intrinsically smooth, local, compact, and fast to compute.
The cost function is the squared difference between the
reference and the deformed version of the floating image,
which is adapted to monomodality registration. A multire-
solution approach is used to speed-up the registration and
to avoid local minima.
Formally, the registration problem with constraints, can

be written as

min
8x;gðc;xÞ�0

1

2N

X

x

ðIf ðTðc; xÞÞ � IrðxÞÞ2;

where If is the floating image, Ir is the reference image, N
is the number of voxels in the reference image, T is the
transformation parameterized by the spline coefficients c
to be estimated. g(c,x) is the constraint on the transforma-
tion given by:

gðc; xÞ ¼ 1

2
jjrJðxÞjj22 � /ðJðxÞÞ;

where J is the Jacobian of the transformation and / is a
function, negative for negative or small value of its argu-
ment. By correctly choosing / and the stopping criterion,
the Jacobian is ensured to be positive on all the voxels.
Negative Jacobians are penalized between voxels by mak-
ing the Jacobian derivatives small on the voxels where the
Jacobian is small. The local support property of B-spline is
particularly important as it ensures that a deformation in a
given region of the brain have only a local effect on the
transformation. More details on this registration algorithm
can be found in [Sdika, 2008].
Before the nonrigid registration, a slight Gaussian

smoothing (r 5 0.7) is applied to both the reference and
the floating image to reduce the effect of whole integer in-
tensity quantitation values and to improve signal to noise
ratio (SNR).

EVALUATION

Material

The images we used were T1 weighted 3D gradient echo
images with a resolution of 1 3 1 3 1 mm acquired on a
3 Tesla General Electric (GE) MR scanner equipped with
an 8-channel receiver coil. The lesion masks of the MS
patients have been manually segmented by an experienced
MS neurologist.

Lesion Mapping Example

To map lesions from a patient brain to a reference
healthy brain using inpainting one needs to: inpaint the

patient white matter lesions, perform the nonrigid registra-
tion using the inpainted image as the floating image and
the healthy brain as reference and then, map the patient
lesion mask using the transformation found by the regis-
tration.
An example of such a mapping is shown in Figure 1.

Note that on this figure, some lesions seem to be created,
some others seem to disappear but if you consider them as
3D object and look at few neighboring slices in the patient
and the control, no lesions are added or lost.

Protocol for Numerical Simulation

In this section, we will evaluate quantitatively different
ways to register a patient image with white matter MS
lesions to a reference template. To compare the different
methods, we propose an evaluation procedure similar to
the one used in [Brett et al., 2001]. Simulated datasets are
created and the output transformations of the different
methods are compared to a ground truth.
The simulations are generated as follows. Using a

healthy brain c and a patient brain p with its lesion mask
lp, an artificial image cp and its lesion mask lcp are created
by mapping the lesions of the patient to the control.
For another control c0 and a given registration method

with lesions, a transformation T can be estimated between
cp with its lesion mask lcp and c0.
The transformation T is then compared to the ground

truth T0 computed as the output of a standard nonlinear
registration (control to control) between c and c0. To mea-
sure the distance to the ground truth, we used the mean
value of the transformation error on voxels:

EðTÞ ¼ 1

N@

X

x2@
jjTðxÞ � T0ðxÞjj;

where Q is a given mask and NQ the number of voxels in
the mask. The brain mask given by the BET software
[Smith, 2002] or the lesion mask are used for Q, giving us
a global error measure in the whole brain and a local mea-
sure in the lesion area. To be sure that the method used to
create cp does not favor one of the registration methods we
want to compare, three simulation datasets were created
using three different lesion mapping methods. Dataset
Affine was created using affine registration to transfer the
lesions, Dataset Mask was created using CFM (Cost Func-
tion Masking) for the registration and Dataset Inpaint was
created using LWMI before the registration. We used two
sets of three control scans (one for c and one for c0) and a
set of five MS patient images. Consequently, each of the
three datasets was made of 45 simulations.

Results

The results of the evaluation are shown on Figure 2 for
the error in the whole brain and on Figure 3 for the error
in the lesions. Regardless of the lesion mapping method
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used to create the simulation set, one can see that the
LWMI method gives the best results followed by BI,
GWMI and CFM, the Naive method comes last.
As already reported in [Brett et al., 2001] for focal

lesions or in [Radu et al., 2004] for tumors, the cost func-
tion masking approach improves the registration com-
pared to the Naive method. Indeed the lesions are outliers
that are removed before the fit of one image to another.
The experiments in this article also show that inpainting

the lesions with LWMI before the registration improves
the registration over the CFM. The rationale behind the
inpainting approach is to try to correct the outliers instead
of removing them during the fit. A good outlier correction
method provides, in this case, a better fit.
As expected, the difference between the methods is

more visible in lesion area and the superiority of LWMI is
clearer. Indeed, LWMI is the only method with subvoxel
accuracy in the lesion area. Note also that the interval of

one standard deviation around the mean do not overlap
between LWMI and the second best method (CFM) for the
datasets Affine and Inpaint. This emphasizes the need to
pay a special attention to the registration method if the
object of the study is the spatial distribution of lesions.
Results from statistical analysis show that the superiority

of LWMI is highly significant. Tables I and II present the
P-values of right tail T-tests between the output of LWMI
and the other methods for the three datasets. With a signif-
icance threshold of 0.05 all the tests show the significance
of the superiority of LWMI over the other methods pre-
sented.

DISCUSSION

In this work, an original approach was proposed to per-
form nonlinear registration between two brain images
when at least one of them has MS lesions. It consists of

Figure 1.

Example of lesion mapping by inpainting white matter lesions

before the registration. On the patient image (a) the lesions are

segmented out (b) and inpainted using the LWMI method (c).

The registration is performed between the inpainted patient (c)

and the reference image (g). The output transformation can

finally be applied on the inpainted patient (d) the original patient

image (e) and on the lesion mask of the patient (f). Note that

some lesions appeared and disappeared on this slice but in 3D,

no lesion is added or lost. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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inpainting white matter lesions; the inpainted image is
then used for nonlinear registration in lieu of the original
patient image. Secondly, a dedicated inpainting algorithm
has been proposed to fill the lesions, using the properties
of the images to inpaint (images of the brain) and the
inpainting mask (MS lesions). The lesions are inpainted
using the intensity of surrounding normal appearing white
matter voxels.
Since our lesion inpainting approach is an easy prepro-

cessing step before the registration, any standard nonrigid

registration algorithm can be used without modification.
Besides, any brain with white matter lesions can be used
as the reference image or the floating image of the registra-
tion algorithm. This is not the case with the CFM method.
Indeed, if a mask is used to remove the influence of a region
of the floating image, the voxels of the reference mapped to
this region will have a null cost. Consequently, the algorithm
will tend to map voxels of the reference to the area of the
floating image with no cost and the lesions in the floating
image would have the tendency to attract the surrounding
tissue. So, with the cost function masking approach, the
brain with lesions has to be used as the reference of the
registration. As for morphometry or lesion mapping, the ref-
erence image of the registration should be the reference tem-
plate (a control subject or an average of a group of controls),
a solution would be to do the registration with the patient as
reference and the lesions masked, and then, to invert the
transformation. The inpainting method does not raise this
issue. The lesions of the patient are inpainted, and then, the
patient image can be used as either the reference or the float-
ing image (or both) during the registration.
The evaluation of the different methods, summarized in

Figures 2 and 3, favors the LWMI method over CFM. The
mean error obtained with the LWMI method is clearly
reduced compared to the other methods, especially in the
lesion area. This is of importance when the spatial distri-
bution of the lesions is the object of the study.
Instead of removing the outliers as the CFM method

does, the inpainting method tries to reconstruct the cost
function as it would be without the lesions. The registration
algorithm is then driven to a better solution with this recon-
struction than when no information is available at the lesion
location. The GWMI method uses the a priori knowledge
that the lesions are in the white matter and BI fills the
lesions with surrounding voxels, using local information for
the inpainting. The LWMI method combines these two

TABLE I. P-values of the right tail T-test between LWMI

and each method for each set of simulation and for the

whole brain mask

Naı̈ve CFM BI GWMI

Dataset affine 3.8e-12 2.5e-09 5.6e-04 6.5e-07
Dataset mask 4.9e-12 1.7e-08 1.3e-06 1.1e-04
Dataset inpaint 4.3e-12 2.7e-11 7.8e-07 3.4e-06

TABLE II. P-values of the right tail T-test between

LWMI and each method for each set of simulation and

for the lesion mask

Naı̈ve CFM BI GWMI

Dataset affine 4.7e-19 1.9e-11 3.8e-13 3.6e-25
Dataset mask 5.7e-19 3.6e-08 9.7e-14 1.8e-23
Dataset inpaint 5.1e-20 2.4e-13 2.1e-14 6.9e-24

Figure 2.

Mean and standard deviation of the error in the whole brain for

each set of simulations and each method. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure 3.

Mean and standard deviation of the error in the lesion mask for

each set of simulations and each method. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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properties to inpaint the lesions using the local values of
the white matter and consequently, produces the best
results of the evaluation. With a better reconstruction
method, the solution found by the registration is also better.
The inpainting method we proposed (LWMI) uses the

output of the segmentation of the brain in CSF, GM, and
NAWM. A high accuracy is not required for this segmen-
tation. Indeed, we only need the intensity of the NAWM
in the neighbourhood of the inpainted area. If we are not
confident in the segmentation accuracy or if the lesion
boundary is fuzzy or if we want to improve the robustness
of the method, a good prescription would be to erode the
NAWM mask and to increase the size of the neighborhood
V(x) used in the inpainting method.
We assume in this article that grey matter lesions have

only a minor influence on the registration. If this assump-
tion is considered too strong, grey matter lesions can also
be inpainted the same way white matter lesions are
inpainted, by filling them with the surrounding grey mat-
ter voxel intensities.
Our LWMI inpainting method can be applied to differ-

ent contrast modalities (T1, T2, proton density. . .) and
other neurological diseases affecting the white matter. The
only requirement is that intensity in the lesions must be
uniform, without details to reconstruct, create or extend
from the neighborhood. The extension of our inpainting
based approach to DTI images will be the object of future
work.
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