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Abstract: This article introduces the measure of integrated local correlation (ILC) for assessing local co-
herence in the brain using functional magnetic resonance imaging (fMRI) data and characterizes the
measure in terms of reproducibility, the effect of physiological noise, and the dependence on image re-
solution. The coupling of local neuronal processes influences coherence in a voxel’s neighborhood. ILC
is defined, for each voxel, as the integration of its spatial correlation function. This integrated measure
does not require the specification of a neighborhood and, as demonstrated by experimental data, is
effectively independent of image resolution. Respiratory and cardiac fluctuations do not considerably
alter the ILC value except in isolated areas in and surrounding large vessels. With resting-state fMRI
data, ILC was demonstrated to be tissue-specific, higher in gray matter than white matter, and repro-
ducible across consecutive runs in healthy individuals. Within the gray matter, ILC was found to be
higher in the default mode network, particularly the posterior and anterior cingulate cortices. Compar-
ing ILC maps obtained from resting state and continuous motor task data, we observed reduced local
coherence in the default mode network during the task. Finally, we compared ILC and regional homo-
geneity by examining their ability to discriminate between gray and white matters in resting state data
and found ILC to be more sensitive. Hum Brain Mapp 30:13–23, 2009. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Functional connectivity [Friston et al., 1993] between ana-
tomically distributed regions of the brain in resting-state
has been well studied using neuroimaging techniques
including functional magnetic resonance imaging (fMRI).
Most functional connectivity studies focus on connectivity

between different regions in networks. On the other hand,
local coherence carries information regarding localized
coordination among neighboring neuronal units and is de-
pendent on the local anatomic structure and homogeneity
of neuronal processes. This aspect has been investigated
recently by a regional homogeneity (ReHo) measure [Zang
et al., 2004] derived using Kendall’s coefficient of concord-
ance (KCC) [Baumgartner et al., 1999; Kendall and Gibbons,
1990]. In their study, Zang et al. found significant changes
in ReHo in a finger tapping experiment. In a more recent
study, Kriegeskorte et al. [2006] showed that improved
functional activation maps could be obtained using an
information-based approach incorporating the local func-
tional homogeneity but avoiding spatial smoothing.
Methodologically, previous studies of local coherence uti-

lized predefined neighborhoods, making the result explicitly
dependent on the neighborhood size and implicitly on the
spatial resolution. In this work, we introduce a general
approach to characterize local brain coherence by defining a
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metric, integrated local correlation (ILC), which is the inte-
gration of the spatial correlation function for each voxel. In
principle, the integration does not require the specification
of a finite neighborhood. In practice, the spatial correlation
function becomes negligible beyond 25–43 mm limit of
‘‘local scale’’ defined by Bellec et al. [2006] except in cases of
distributed networks, which are not the focus of this study.
Therefore, for the practical implementation of ILC calcula-
tion, only a finite neighborhood needs to be considered.
Although the spatial correlation function for a voxel is a con-
tinuous function in principle, it can only be measured dis-
cretely in practice at the acquired image resolution. This is a
potential problem for ReHo [Zang et al., 2004] because KCC
is dependent on ranking, which is sensitive to the number of
voxels in the neighborhood, and hence indirectly dependent
on resolution. This problem is negligible for ILC, because
the integration of the entire correlation function with respect
to the physical dimensions is not expected to depend on the
sampling resolution significantly.
Resting-state fluctuations in fMRI have gained signifi-

cant interest because they are thought to carry vital physi-
ological information. In fact, low frequency correlation
between distributed regions is being extensively used in
examining functional connectivity in networks [Biswal
et al., 1995, 1997; Cordes et al., 2000; Hampson et al., 2002;
Lowe et al., 1998; Peltier and Noll, 2000]. Therefore, local
coherence in resting state may provide an added measure
for understanding the brain. To demonstrate that ILC is a
meaningful measure, we examined its tissue specificity
and reproducibility in resting state fMRI data. To demon-
strate that ILC does not arise primarily from fluctuations
due to heart beat and respiration, we also compared ILC
derived with and without the removal of physiological
noise. Our results show that ILC is tissue-specific, repro-
ducible, has functional relevance, and not greatly influ-
enced by physiological fluctuations. Comparing ILC maps
obtained from resting state and a continuous motor task
revealed reduced local coherence in the default mode net-
work during the task thereby demonstrating the utility of
ILC for differentiating experimental conditions. Finally, we
compared ILC and ReHo by examining their ability to dis-
criminate between gray and white matter in resting state
data and found ILC to be more sensitive.

METHODS

Definition and Calculation of ILC

With local coherence attributed to physical proximity,
the temporal correlation of a given voxel with its neigh-
bors is a function that decreases with distance and can be
used to characterize the local coherence. In this work, the
spatial correlation function is integrated, giving rise to
ILC, to characterize local coherence. In the two-dimen-
sional (2D) case considered here, ILC reflects the volume
under the spatial correlation function. Note that the inte-
gration of the correlation function, which goes to zero rap-

idly with distance, is insensitive to the size of the neigh-
borhood used for the integration as long as it is sufficiently
large. This would not be the case if the mean of the corre-
lation function in the neighborhood is used.
Given that our measurement of the correlation function

is discrete and truncated, it is desirable for any measure of
local coherence to be independent of discretization and
truncation. Although the definition of ILC suggests this in-
dependence, it needs to be experimentally verified. Discre-
tization is dictated by the finite spatial resolution of image
acquisition. If the correlation function is sufficiently
smooth, the ILC obtained should be independent of the
spatial resolution. This hypothesis is tested experimentally
with data obtained at two spatial resolutions.
Even though we have considered the 2D case in this

report, ILC could theoretically be extended to the three-
dimensional (3D) case if we have contiguous slices. These
voxels would not need to be isotropic based on our dem-
onstration of insensitivity to voxel size. However, with
multi-slice imaging, issues of imperfect slice profile and
slice timing would have to be considered and may make
the ILC calculated in 3D more complicated.

Data Acquisition

In the first experiment, echo planar imaging (EPI) data
were obtained from a phantom containing a solution of
3.75 g NiSO4 and 5 g NaCl in 1,000 g H2O, using a 3.0 T
Siemens Trio scanner. The scan parameters were repetition
time (TR) 5 750 ms, echo time (TE) 5 34 ms, flip angle
(FA) 5 508, field of view (FOV) 5 22 cm, five slices with a
thickness of 5 mm, 280 volumes per slice, and an in-plane
resolution of 3.44 3 3.44 mm2.
In Experiment 2, resting state EPI runs were obtained in

three healthy subjects while they were instructed to keep
their eyes open, fixate on a central cross, and not engage in
any mental activity. Three consecutive scans were per-
formed with parameters similar to those used in the phan-
tom experiment: TR 5 750 ms, TE 5 34 ms, FA 5 508, FOV 5
22 cm, 10 axial slices of 5 mm thickness covering the section
between the corpus collusum and the top of the brain, 280
volumes per slice, and an in-plane resolution of 3.44 3 3.44
mm2. In addition, a high-resolution resting-state scan was
also performed with an in-plane resolution of 2 3 2 mm2

and other EPI parameters matched to the first three scans.
T1-weighted anatomical images with 1 mm isotropic resolu-
tion were acquired using a magnetization prepared
rapid gradient echo (MPRAGE) sequence [Mugler and
Brookeman, 1990] with TR/TE 5 2600/3.93 ms and FA5 88.
In the third experiment, resting-state data were acquired

in three subjects using the scan parameters described earlier,
with the difference that only five slices were acquired. These
slices started at the top of the brain with a voxel size of 3.44
3 3.44 3 5 mm3. A pulse-oximeter and nasal respiratory
cannula were used during data acquisition to obtain cardiac
and respiratory pulsations, respectively. T1-weighted axial
anatomical images were acquired in the same slices at an
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image resolution of 512 3 512 using a spin-echo sequence
(TR 5 534 ms, TE 5 8.6 ms, and FA5 908).
In the fourth experiment, EPI data were acquired in

three healthy volunteers with a paradigm consisting of
3 min of a fixation condition (resting state) followed by
3 min of a continuous motor task that required the subjects
to continuously perform bimanual finger opposition. The
finger opposition was paced at 1 Hz by a number (1, 2, 3,
or 4) visually presented, indicating the digit to oppose
against the thumb. Scan parameters were TR 5 750 ms,
TE 5 34 ms, FA 5 508, and FOV 5 22 cm. The volume
imaged consisted of 10 axial slices of 5 mm thickness cov-
ering the section between the bottom of the corpus collu-
sum and the top of the brain. The resting and task periods
each consisted of 280 time points. In addition, T1-weighted
anatomical images with 1 mm isotropic resolution were
acquired using an MPRAGE sequence [Mugler and
Brookeman, 1990] with TR/TE 5 2600/3.93 ms and FA5 88.

Data Analysis

The operational procedure for calculating ILC is as fol-
lows. Motion correction and slice scan time correction was
performed. Subsequently, detrending was applied to each
voxel time series to remove baseline drift. For each voxel
in the image, a 2D correlation function corresponding to
its temporal correlation with neighboring voxels was calcu-
lated (Fig. 1) and integrated to obtain ILC as given in the
equation below.

ILCð~sÞ ffi
X
x

X
y

PN�1
n¼0 a~sðnÞ3bxyðnÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

n¼0 a~sðnÞ½ �23PN�1
n¼0 bxyðnÞ

� �2q

where ~s is the position of the voxel under consideration,
and a~sðnÞ is the time course for that voxel. bxy(n) represents
all other neighboring voxels where x and y span the

dimensions of the neighborhood. ILC was calculated only
for those voxels for which the neighborhood used for the
calculation was contained within the image. In addition, as
described below, a correction to account for system inher-
ent correlation was determined and applied to the result-
ant ILC. The ILC was calculated for every voxel in the
image to form ILC maps. The anatomical images were
manually segmented into gray matter and white matter
using MRIcro [Rorden and Brett, 2000], a freely available
medical image processing software package (http://
www.sph.sc.edu/comd/rorden/mricro.html). The seg-
mented images were down-sampled to match the EPI reso-
lution and separate gray matter and white matter masks
were obtained and used in assessing the tissue-specificity
of ILC.

Characterization of ILC

Inherent correlation in fMRI data and its correction

It is possible that fMRI data contain inherent correla-
tion due to the image acquisition and reconstruction
processes. To ascertain the possible inherent correlation
in the data and its effect on ILC, the spatial correlation
function of the phantom data and the corresponding ILC
maps were obtained and examined. Furthermore, the dis-
tribution of the phantom ILC was compared with that of
a simulated independent Gaussian random field with
matching standard deviation using the Wilcoxon rank
sum test. It was found that the inherent correlation was
small but could not be ignored. To compensate for this
effect, the spatial correlation function of the phantom,
obtained by averaging the correlation function of all vox-
els in the phantom, was subtracted from the spatial cor-
relation function of each pixel in the human brain data
before ILC calculation.

Figure 1.

Mean spatial correlation functions. Left: brain tissue. Right: EPI phantom. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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Discretization and truncation

To investigate the effect of resolution on the calculated
ILC, we used the high-resolution EPI data with the matrix
size of 128 3 128. The in-plane resolution for this data set
was 2 3 2 mm2. To obtain ILC maps calculated with low-
resolution images, the k-space data of the high-resolution
images were truncated to a 64 3 64 matrix, zero padded
to 128 3 128, and inverse Fourier transformed to form an
image that had a resolution of 4 3 4 mm2 but a matrix
size of 128 3 128. This image was divided into four nono-
verlapping 64 3 64 sub-images using the simple sub-sam-
pling scheme shown in Figure 2. Each of these sub-
sampled images was used to calculate an ILC map, using
a neighborhood that has the same physical size as that
used for the high-resolution image. The resultant maps

were combined by reversing the down sampling process,
providing a 128 3 128 ILC map for comparison of mean
ILCs in gray matter and white matter Region of Interest
(ROIs). Note that this process allowed us to calculate the
ILC map with low-resolution images and to perform the
comparison at the same high resolution. To examine the
effect of truncation, the earlier process was repeated for
neighborhood sizes ranging from 12 3 12 mm2 to 68 3 68
mm2 (corresponding to 3 3 3 to 17 3 17 low-resolution
voxel neighborhoods).

Effect of physiological noise

The effect of cardiac and respiratory pulsations on
fMRI data has been extensively studied [Deshpande
et al., 2006; Hu et al., 1995; Kruger and Glover, 2001]. To
test the effect of physiological fluctuations, data from
Experiment 3 were analyzed with and without physio-
logical noise correction using a retrospective technique
[Hu et al., 1995]. ILC maps were obtained before and af-
ter the correction and the significance of the difference
was ascertained.

Tissue-specificity

Gray matter and white matter masks were obtained as
described in the Data Analysis section and were used to
obtain mean ILC values for the gray matter and white
matter, respectively. In addition, the ILC maps were
upsampled to the resolution of the anatomical image and
overlaid on it.

Regional ILC differences in gray matter

Using EPI data obtained from the three subjects in the
second experiment, the mean ILC value of gray matter for
each of the three runs was calculated. The statistical signif-
icance of the difference between the ILC value of each
voxel and the gray matter mean ILC was ascertained and
displayed as a statistical parametric map. For every sub-

Figure 2.

A schematic illustrating the sub-sampling scheme used to derive

low-resolution images from high-resolution data.

Figure 3.

Rescaled spatial correlation function of the phantom showing

sinc-modulation in the readout direction. The original scale (0, 1)

is compressed to (0, 0.04) in this figure.

Figure 4.

Left: EPI phantom image obtained with parameters matched to

in vivo data. Right: ILC image of EPI phantom plotted on a

matched scale. The images are representative of a typical slice

and other slices also gave similar results.
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ject, the T1-weighted anatomical images and the statistical
parametric maps were spatially transformed to MNI space.
The voxels common to the statistical parametric maps
from all three runs were overlaid onto that subject’s ana-
tomical image for display.

Reproducibility

fMRI data obtained from repeated resting-state runs in
the second experiment were used to test the reproducibil-
ity of the tissue-specific pattern in three healthy subjects.
ILC maps were obtained for all three runs, and the correla-
tion coefficient between them was ascertained to assess
reproducibility [Strother et al., 1997].

Differentiating experimental conditions

ILC maps were generated for the resting state (Condi-
tion 1) and continuous motor (Condition 2) separately, and
the difference between the maps of the two conditions was
obtained to assess changes in local coherence. It has been
reported that the default mode network is deactivated dur-
ing the performance of an explicit task when compared
with resting state [Raichle et al., 2001]. Based on this, the
difference in maps may highlight this network.

Comparison of ILC and ReHo

We performed an explicit comparison of ILC with ReHo
by evaluating their tissue specificity and within tissue var-
iance. ILC and ReHo [Zang et al., 2004] maps were calcu-
lated from the data obtained in the second experiment.
Histograms of ILC and ReHo maps were plotted and the
statistical significance of the difference between their gray
matter and white matter distributions was ascertained. The
ability of ILC and ReHo to differentiate between the tis-
sues demonstrates their sensitivities to fMRI physiology
and neural processing in the tissues [Deshpande et al.,
2006; Kruger and Glover, 2001].

Statistical Significance Testing

We subjected the gray matter and white matter ILC dis-
tributions to a Jarque–Bera test for goodness-of-fit to a nor-
mal distribution [Jarque and Bera, 1980] and found that
the distributions were not normal (at 95% significance).
Hence, we employed the nonparametric Wilcoxon rank
sum test [Wilcoxon, 1945] to test for the significance of the
difference in tissue specific ILC distributions. This test
was employed before and after physiological correction,
and for high- and low-resolution data. For testing the

Figure 5.

Left: ILC null distribution obtained from Gaussian noise matched to the phantom noise level.

Right: ILC distribution obtained from the phantom.

TABLE I. Mean ILC values of gray matter and white matter for high and low-resolution data

Subject

Gray matter White matter

High
resolution

Low
resolution P-value

High
resolution

Low
resolution P-value

1 21.8 21.6 0.7 6.1 6.0 0.7
2 20.5 20.3 0.4 7.9 7.6 0.3
3 23.6 23.2 0.8 7.4 7.2 0.6
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significance of the difference between ILC values of each
voxel and the gray matter mean ILC, the gray matter dis-
tribution was ascertained. Subsequently, the position of the

ILC value of every voxel in the corresponding gray matter
distribution was calculated. To estimate the P-value of
each voxel’s ILC, the fraction of gray matter voxels with
ILC above it was ascertained. This procedure was adopted
instead of the t-test since the gray matter distributions
were not normal.

RESULTS AND DISCUSSION

Inherent Correlation in fMRI Data and its

Correction

The average spatial correlation functions for the phantom
and the brain tissue, respectively, are shown in Figure 1.

Figure 7.

ILC difference maps obtained by subtracting the ILC maps before and after correcting for physio-

logical noise.

Figure 6.

Variation of ILC with increasing neighborhood size for both high

(dotted line) and low-resolution data (solid line). Blue: gray mat-

ter. Red: white matter.

Figure 8.

ILC maps during resting-state indicating the tissue specificity of ILC.

TABLE II. Effect of physiological rhythms on ILC

Subject

Gray matter White matter

BC AC P-value BC AC P-value

4 21.7 22.7 0.35 11.4 12.0 0.34
5 27.9 28.1 0.76 11.8 11.7 0.89
6 26.3 26.7 0.59 8.1 8.3 0.66

BC, before correction for physiological noise; AC, after correction.
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A rescaled version of the phantom’s spatial correlation
function is depicted in Figure 3, which shows a sinc modu-
lation in the readout direction. This is likely the result of
inherent filtering caused by the interpolation of data
sampled on the readout gradient ramps in the EPI
sequence. In EPI, a finite time is needed to switch the
readout gradient from the positive value to the negative
value. Sometimes, as is the case here, data are sampled on
the ramps and interpolation has to be performed in the k-
space during image reconstruction, leading to the sinc
modulation in Figure 3. The ILC map for the phantom is

Figure 10.

Regions having ILC values significantly

different from the mean gray matter

ILC for the three subjects. The three

slices shown in each subject are those

containing the majority of voxels

exhibiting significantly higher ILC.

Figure 9.

Histogram of ILC values showing separable gray matter and

white matter distributions.

TABLE III. Correlation coefficient between ILC

maps obtained from repeated runs demonstrating

reproducibility

Subject Run 1 and Run 2 Run 1 and Run 3 Run 2 and Run 3

1 0.94 0.94 0.95
2 0.93 0.91 0.94
3 0.84 0.83 0.91
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Figure 11.

ILC maps for three consecutive resting-state

runs in healthy individuals. The images are rep-

resentative of a typical slice and other slices

also gave similar results.

Figure 12.

ILC difference maps showing the

regions having higher ILC during rest-

ing state when compared with the con-

tinuous motor condition. Note that

the maps were thresholded at a P-

value of 0.05. The regions indicated are

(A) lateral prefrontal cortex (LPFC),

(B) inferior parietal cortex (IPC), (C)

medial prefrontal cortex (MPFC),

(D) dorsal anterior cingulate cortex

(dACC), and (E) posterior cingulate

cortex (PCC) extending rostrally into

precuneus. The slices containing the

components of the default mode net-

work are displayed for each subject.
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shown in Figure 4. Although the mean value of phantom
ILC is substantially less than that of brain tissue, the distri-
bution of phantom ILC is significantly different from the
null distribution (Fig. 5), indicating non-negligible inherent
correlation. Therefore, we subtracted the average spatial
correlation function of the phantom from the spatial corre-
lation function of the brain tissue pixels before calculating
ILC.
It is worth noting that global variations in signal time

courses may lead to global correlations that result in
elevated ILC values. This could be addressed by removing
the global mean [Fox et al., 2005, 2006; Fransson, 2005;
Greicius et al., 2003]. In our data, this was not found to be
a significant factor and global mean correction did not al-
ter the difference between ILC values of gray matter and
white matter.

Discretization

As we explained in the Introduction section, a major
advantage of the ILC method is its independence of the
image resolution. Table I lists the mean gray matter and
white matter ILC values calculated for using high- and
low-resolution images. The Wilcoxon rank sum test shows
that there is no significant difference between the two reso-
lutions.

Truncation

Figure 6 plots the ILCs, calculated with low- and high-
resolution images, respectively, versus the neighborhood
size used. It can be seen that the ILC plateaus at 52 3 52
mm2, indicating that correlation beyond this distance is
negligible, were in agreement with a recent work [Bellec
et al., 2006]. This result also indicates that for the calcula-
tion of ILC, as long as a sufficiently large neighborhood is
used, the result is independent of the neighborhood size.
In this work, we employed a 60 3 60-mm2 neighborhood.
Also, the high- and low-resolution curves follow each
other closely, reinforcing the fact that ILC is independent
of image resolution.

Effect of Physiological Noise

As shown in both Table II and Figure 7, the removal of
respiratory and cardiac noise did not significantly alter the
ILC values in gray matter and white matter. In fact,
the Wilcoxon rank sum test showed that the difference in
the tissue ILCs before and after correction is not signifi-
cant. The difference map in Figure 7 shows that most vox-
els were not affected by the correction, with few voxels in
isolated areas in the proximity of large vessels and cere-
brospinal fluid exhibiting detectable differences.
In contrast to ReHo [Zang et al., 2004], our approach

does not require the specification of a particular neighbor-
hood size, is independent of image resolution, and does
not need spatial smoothing. In addition, we showed that

the inherent correlation in our images could not be
ignored and hence we compensated for its effects; while
we examined this inherent correlation only on our scanner,
data acquired with other scanners are likely to contain
similar inherent correlation that should be accounted for.
Also, as we have shown, physiological fluctuations have
little contribution to gray matter and white matter ILC val-
ues. These features make ILC a more robust measure for
characterizing local coherence.

Tissue-specificity

ILC was found to be tissue-specific as shown in Figure 8
for a representative subject. The corresponding mean ILC
values for gray matter and white matter are shown in
Tables I–II. The P-values of the Wilcoxon rank sum test
are less than 10220 for all the subjects, indicating that
white matter and gray matter ILC distributions are signifi-
cantly different. ILC is higher in the gray matter than that
in the white matter (a fact also apparent in the gray matter
and white matter distributions shown in Fig. 9). This dif-
ference possibly reflects a combination of neuronal and he-
modynamic factors that have been implicated in earlier
reports of differences between gray matter and white mat-
ter [Deshpande et al., 2006; Kruger and Glover, 2001].

Regional ILC Differences in Gray Matter

Figure 10 shows the regions having ILC values signifi-
cantly higher than the mean gray matter ILC for the three
subjects from the second experiment. It is evident that the
components of the default mode network, particularly

Figure 13.

Histograms of the ReHo values of the white matter (WM) and

gray matter (GM). This histogram is derived from the data of

the subject shown in Figure 9. Based on these histograms it is

difficult to separate the gray matter from the white matter based

on ReHo values.
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posterior and anterior cingulate cortices, have significantly
higher ILC compared with other gray matter regions. This
result is consistent with previous studies that have
reported significantly higher regional cerebral blood flow
[Raichle et al., 2001] and ReHo values [He et al., 2004] in
the default mode network.

Reproducibility

Table III lists the correlation coefficients between the ILC
maps obtained from three repeated runs in three subjects.
It is clear that there is a high degree of consistency be-
tween them. The resting-state ILC maps for all the three
subjects are shown in Figure 11. In these maps tissue-specific
patterns are consistent across consecutive resting-state
runs. Note that the value and the spatial patterns of the
phantom ILC (Fig. 4) are significantly different from those
shown in Figure 11, confirming that the tissue-specific resting-
state pattern is not due to the inherent correlation.

Differentiating Experimental Conditions

It is evident from the ILC difference maps shown in Fig-
ure 12 that there is a reduction of local coherence in the
default mode network during the continuous motor task
when compared with resting state. This is consistent with
previous reports of deactivation of the default mode net-
work during the performance of an explicit task when
compared with resting state [Raichle et al., 2001]. This
result shows that ILC could be an useful measure to cap-
ture ROI-specific changes in local coherence with different
experimental conditions. Interestingly, the continuous
motor task did not alter the ILC values in the motor net-
work significantly similar to a lack of change in inter-
regional connectivity in the network reported in a previ-
ous study [Morgan and Price, 2004].

Comparison of ILC and ReHo

As shown in Table IV, the difference between gray and
white matter distributions was only significant in one sub-
ject for ReHo while it was significant in all three subjects for
ILC. A comparison of gray matter and white matter ReHo
distributions shown in Figure 13 with that of the corre-
sponding ILC distributions in Figure 9 confirms the results
shown in Table IV. Previous studies [Deshpande et al., 2006;
Kruger and Glover, 2001] have attributed tissue specificity

in the brain to differences in fMRI physiology and neural
processing. Our results show that ILC may be more sensi-
tive to these differences when compared with ReHo.
We have provided a comparison between ILC and ReHo

since ReHo also attempts to characterize local coherence in
a voxel neighborhood. It should also be noted that another
technique, Cross-correlation Coefficients of Spontaneous
Low Frequency (COSLOF) [Li et al., 2002], which was orig-
inally introduced to measure average inter-regional corre-
lation, could be made equivalent to ILC if the COSLOF cal-
culation is done with correlations between a given voxel
and its neighborhood.

CONCLUSIONS

In this article, we have introduced and characterized a
general measure, ILC, to quantify local brain coherence.
We hypothesized and demonstrated that ILC is effectively
independent of image resolution and the neighborhood
size as long as it is sufficiently large. In addition, we also
found that respiratory and cardiac fluctuations do not sig-
nificantly affect ILC values in brain tissue. Furthermore,
the inherent correlation in the data was found to be small
but non-negligible, and a correction was introduced. As a
demonstration of biological relevance, reproducible, tissue-
specific ILC patterns were found in the resting-state fMRI
data of healthy individuals and discriminated between
gray and white matters. Within the gray matter, the
default mode network exhibited higher ILC in resting
state. The reduction of ILC in the default mode network
during a continuous motor task when compared with the
resting state showed the utility of ILC in discriminating ex-
perimental conditions. Also ILC was shown to discrimi-
nate between different tissues better than ReHo. It is con-
cluded that the ILC measure is a robust tool to assess local
brain coherence.
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