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Abstract: An important issue in the analysis of fMRI is how to account for the spatial smoothness of
activated regions. In this article a method is proposed to accomplish this by modeling activated regions
with Gaussian shapes. Hypothesis tests on the location, spatial extent, and amplitude of these regions
are performed instead of hypothesis tests of individual voxels. This increases power and eases interpre-
tation. Simulation studies show robust hypothesis tests under misspecification of the shape model, and
increased power over standard techniques especially at low signal-to-noise ratios. An application to
real single-subject data also indicates that the method has increased power over standard methods.
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INTRODUCTION

The main purpose of fMRI analysis is to determine
which brain regions are activated. This question is
answered by looking for groups of significantly activated
voxels but not by looking for single voxel activity. At the
basis of this train of thought is the assumption that activa-
tion (i.e. the BOLD response) measured by fMRI has a spa-
tial extent of several millimeters and that the activation

pattern is smooth [Hartvig, 2002]. This assumption is often
incorporated by assuming positive spatial correlations
between voxels, either positive correlations between fMRI
noise or positive correlations between fMRI signals. Meth-
ods that incorporate fMRI noise correlations are, for exam-
ple, Monte Carlo multiple testing corrections [Forman
et al., 1995], permutation test frameworks [Hayasaka and
Nichols, 2004], preprocessing smoothing kernels [Friman
et al., 2003], and random field theory [Poline et al., 1997;
Worsley et al., 1996]. Methods that incorporate signal cor-
relations are clustering approaches [Neumann et al., 2006;
Thirion et al., 2006], spatiotemporal analyses [Bowman,
2005; Kiebel et al., 2000], mixture models with spatial con-
straints [Hartvig and Jensen, 2000; Woolrich et al., 2005],
and priors in a Bayesian framework [Flandin and Penny,
2007; Penny and Friston, 2003].
Another way to incorporate positive spatial correlations

of fMRI signals is to explicitly use the assumptions of an
underlying smooth process to model the spatial activation
pattern. By assuming that each active brain region can be
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approximated by a generic spatial model of activation, one
can model activity in an entire fMRI image [Hartvig, 2002;
Lukic et al. 2004, 2007; Tzikas et al., 2004]. The successful-
ness of this type of method depends on the shape model
used. A model too simple leads to severe misspecification
and biased inference. A model too complex may describe
the shape of activation well but may hinder interpretation,
because of modeling noise and containing too many pa-
rameters.
Aiming for a sensible, easy to interpret way to analyze

the spatial pattern of fMRI data we propose an alternative
method of fMRI analysis, termed ‘‘activated region fitting’’
(ARF). At the heart lies the assumption that a region of
brain activation can be approximated by a Gaussian-
shaped function and that a number of these Gaussian
functions can be used to describe the activation pattern in
an fMRI image. The Gaussian function was chosen as it is
relatively simple—it uses six parameters which are easy to
interpret—and still has good flexibility in terms of differ-
ent shapes. The optimal number of Gaussians is deter-
mined by fitting increasingly complex models (i.e. more
Gaussian functions) to the data until a parsimonious
description of the data is given. Hypothesis tests are then
performed on the parameters of the Gaussian functions,
allowing for hypotheses of location, spatial extent, and am-
plitude.
Analyzing fMRI data with ARF has several advantages.

First, an objective measure is available for the location,
spatial extent, and amplitude of each area of activation.
Second, these locations, spatial extents, and amplitudes
may serve as input for a functional connectivity analysis.
Third, an entire image is described with relatively few pa-
rameters, thereby increasing power and reducing the mul-
tiple testing problem. Fourth, ARF corrects for model mis-
specification, allowing for robust hypothesis tests. Fifth, as
the method of ARF is performed on the output of a stand-
ard GLM analysis (unthresholded), it is easy to add to the
standard analysis steps and computational load is rela-
tively low.
The outline of the article is as follows. First, the techni-

cal details of ARF will be explained. Details on the spa-
tial model, parameter and variance estimation, model fit,
and hypothesis testing will be given. Thereafter, details
on the simulation studies are given, performed to assess
bias, variance estimation under misspecification, and
power. Then an application to real data is given, fol-
lowed by the discussion in which the findings are sum-
marized, and in which possible limitations and exten-
sions are highlighted.

METHOD

ARF works by fitting a spatial model of activation to an
entire image of signal change. This image is either a 2D
slice or a flattened 3D map. The spatial model is one, or a
sum of two or more bivariate Gaussian-shaped regions.

Each region is described by two parameters to model the
location of activation, three parameters to model the extent
of activation, and one parameter to model the amplitude
of activation. The spatial model is fitted to the data using
generalized least squares (GLS). The number of regions
that best describe the data is decided by using the Bayes-
ian information criterion (BIC). Once a decision is made on
the number of regions, robust hypothesis tests are per-
formed on the parameters of the regions. The following
sections will explain the ARF method in detail.

Input

ARF works on the estimated scaling parameters and
associated variances of a standard GLM analysis (note that
t-values can also be used, with their variances set to 1).
ARF requires multiple independent measurements of the
condition of interest. This requires multiple measurements
from different runs of the experiment. In a block design
the multiple measurements can be derived from multiple
blocks of the same condition. In an event-related design
the data of several runs of the experiment can be used. A
GLM analysis is performed on these multiple measure-
ments, and the resulting unthresholded values are then
used as trials in the ARF analysis. The number of trials in
the present study was set to either 5 or 15, but other val-
ues can be chosen as well. The actual ARF estimation is
performed on the average over these trials. The individual
trials are used to obtain robust hypothesis tests.
Let bk be a (N 3 1) vector, with N indicating the num-

ber of voxels, containing the scaling parameters from the
GLM analysis of trial k. Let rk

2 be a (N 3 1) vector con-
taining the squared standard errors of bk. The average
over K trials is then:

b ¼ 1

K

XK
k¼1

bk ð1Þ

Assuming independent variances rk
2 over k 5 1, . . . , K

trials, the variance of b is calculated as follows [Parzen,
1960]:

w¼ 1

K2

XK
k¼1

r2
k ð2Þ

with w being a (N 3 1) vector of variances.

Spatial Model

The main assumption in the ARF procedure is the spa-
tial model used to describe the data. This shape model
must be anatomically sensible, relatively simple, and inter-
pretable. For these reasons a slight adaptation of a bivari-
ate Gaussian distribution function was chosen. A graphical
representation of a region is given in Figure 1.
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The parameters y1 and y2 define the location of the cen-
ter of a region, y3, y4, and y5 define the spatial extent of a
region, and y6 defines its amplitude. The model for voxel
n, for j 5 1, . . . , J regions is

f xn; uð Þ ¼
XJ

j¼1

u6j

2p Rj

�� ��1=2 exp � 1

2
xn � kj

� �0
R�1
j xn � kj

� �� �
ð3Þ

The location of voxel n is contained in a (2 3 1) vector
xn 5 (xn,yn)

0. The parameters defining the center of the
activated region j are contained in a (2 3 1) vector kj 5

(y1j, y2j)0. Finally, Rj

�� �� denotes the determinant of matrix Sj,
defined as

Rj ¼
u23j u3ju4ju5j

u3ju4ju5j u24j

" #

Estimation

Recall that b was the (N 3 1) vector containing the aver-
age scaling parameter values. Now let the diagonal of a
(N 3 N) weight matrix W (with 0s on the off-diagonal) be
w. To estimate the parameters of the model, GLS estima-
tion is adopted:

S uð Þ ¼ b� f X;uð Þ
� �0

W�1 b� f X;uð Þ
� �

ð4Þ

In the above equation f(X, y) is a (N 3 1) vector contain-
ing the model predictions using Eq. (3) for all voxels
within X. The sums-of-squares function is minimized using
a Newton-type algorithm [Schnabel et al., 1983]. Bounda-
ries of the parameter space are checked after convergence
to avoid convergence to local minima near the boundaries.
In addition, the algorithm is restarted several times with
different starting values in order to avoid local minima.
ARF adopts a sequential fitting paradigm where the pro-

cedure starts to model the data with one region and
increases the number of regions until the model fit crite-
rion is reached (cf. next section). The model fit criterion is
calculated after convergence of the model. At each level in
the sequence all parameters are estimated, no parameters
are held fixed between levels. A concise outline of the
algorithm steps can be found in Appendix C.

Model Selection

ARF chooses the number of regions that is needed to
obtain a good but parsimonious description of the data.
This necessitates a goodness of fit measure which takes
both goodness of fit and the number of parameters into
account. It is especially convenient to keep the number of
regions low to obtain high power, and therefore the BIC is
used [Schwarz, 1978]. Ignoring constants the BIC equals:

BIC ¼ ln S uð Þ þ p lnN ð5Þ

In the above equation p indicates the number of parame-
ters (which is six times the number of regions J). The BIC
is corrected for the number of parameters used in the
model, which allows ARF to find a model with a good
trade-off between the fit of the model and the number of
parameters used in the model, given the number of voxels
in the analysis [Waldorp et al., 2005b]. The current imple-
mentation is to start with the simplest model (one region),
check the BIC, increase the number of regions by one,
check the BIC, increase with one region, etc., until the BIC
starts to increase. Then the model that had the minimum
BIC value is chosen.

Variance Estimation

Since the underlying spatial process in fMRI is
unknown, every spatial model has some degree of misspe-
cification. This can lead to incorrect estimates of variances
of the estimated region parameters and consequently to
unreliable hypothesis tests of the parameters [White, 1980].
Misspecification in our case can either refer to the fact that
a Gaussian-shaped function only gives an approximation
to an active region, or to the fact that the number of
regions incorporated in the model is incorrect.
Usually with GLS the variance–covariance matrix of

the parameters is calculated using the observed Hessian
matrix containing the second-order partial derivatives
of the model with respect to the parameters. Let HðûÞ be a

Figure 1.

Isocontours of an activated region. y1 and y2 define the center

of the region; y3, y4, and y5 (not shown) define the spatial

extent of the region; y6 (not shown) defines the amplitude of

the region.
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(p 3 p) matrix, such that each element (r 5 1, . . . , p; s 5 1,
. . . , p):

hrs û
� �

¼
XN
n¼1

1

wn

@fn uð Þ
@ur

@fn uð Þ
@us

� �bn � fn uð Þ
� � @2fn uð Þ

@ur@us

� 	
u¼û

� �

ð6Þ

[Seber and Wild, 1989]. The variance–covariance matrix
CðûÞ is then calculated by:

C û
� �

¼
S û
� �

N � pð Þ H û
� �� ��1 ð7Þ

Equations (6) and (7) assume that the model is correctly
specified [Waldorp et al., 2005a; White, 1980], an assump-
tion that is not tenable in the situation of ARF. To correct
for this misspecification the variances of the parameter
estimates are calculated using the sandwich estimate [Wal-
dorp et al., 2005a; White, 1980]. Let FðûÞ be the (N 3 p)
matrix of first-order derivatives of the model with respect
to the parameters. Let RðûÞ be a (N 3 N) matrix of the out-
erproduct of the residuals:

R û
� �

¼ 1

K2

XK
k¼1

bk � f û
� �� �

bk � f û
� �� �0 ð8Þ

Note that each element in RðûÞ has to be divided by the
number of trials once more to scale it to the averaged data.
The sandwich estimate is then as follows:

C û
� �

¼
S û
� �

N � pð Þ H û
� �� ��1

F û
� �0

W�1R û
� �

W�1F û
� �

H û
� �� ��1

ð9Þ

Note in addition that when the model is correctly speci-
fied in both the mean and variance, the function reverts to
the standard expression for the covariance matrix of pa-
rameters estimates [cf. Seber and Wild, 1989, paragraph
12.2.4], as the matrix RðûÞ containing the residuals, goes to
W and the residuals in HðûÞ tend to zero. For spatially
uncorrelated data the diagonal of RðûÞ can be used.

Hypothesis Testing

ARF allows hypothesis tests on the parameters of each
activated region, or on functions of these parameters. Hy-
pothesis tests on the location, spatial extent, and amplitude
of the regions can be performed, individually and as an
omnibus test. All tests are calculated by a Wald statistic
[Seber and Wild, 1989] and are calculated for each acti-
vated region j. That is, the hypothesis tests are calculated
per region. The test statistic equals:

a0 ûj
� �h

ÂjCjÂ
0
j

i�1

a ûj
� �

ð10Þ

In the above equation Cj denotes the (6 3 6) variance–
covariance matrix of the parameter estimates of a region j.
aðûjÞ is a (4 3 1) column vector which consists of four
null-hypotheses, namely, (1) the x-coordinate of the center
of region j equals a hypothesized x-coordinate c1, (2) the y-
coordinate of the center of region j equals a hypothesized
y-coordinate c2, (3) the spatial extent of region j is 0, and
(4) the amplitude of region j is 0. Note that the extent of a
region can be defined by the determinant of matrix S from
Eq. (3), where this determinant is given by the usual

expression for a 2 3 2 matrix det
a b
c d

� �
 �
¼ ad� bc

[Schott, 1997]. So a0 ûj
� �

is defined as follows:

a0 ûj
� �

¼ u1j � c1
x location

u2j � c2
y location

u23ju
2
4j � u23ju

2
4ju

2
5j

extent

u6j
amplitude

� �
ð11Þ

Âj is defined as a (4 3 6) matrix containing the partial

derivatives of aðûjÞ to the yj-parameters:

Âj ¼

1 0 0 0

0 1 0 0

0 0 2u3ju
2
4j 1� u25j

� � 
2u4ju

2
3j 1� u25j

� � 
0 0 0 0

2
66664

0 0

0 0

�2u5ju
2
3ju

2
4j

� 
0

0 1

3
77775 ð12Þ

The test-statistic in Eq. (10) under H0 is asymptotically F
distributed with N and (N 2 p) degrees of freedom [Seber
and Wild, 1989; for misspecified models, see White, 1982],
with p indicating the number of parameters.
The Wald statistic is based on the estimated variances of

parameter estimates, and these variances are only estimated
adequately in asymptotic circumstances, in our case, if the
number of voxels is very large and/or if the signal-to-noise
ratio (SNR) is high [cf. Seber and Wild, 1989]. In nonasymp-
totic cases the variances might be underestimated thus giv-
ing rise to tests that are too liberal [see, for example, Fears,
1996; Seber and Wild, 1989]. Therefore we determined in
simulations whether the variances are estimated adequately.
If so, then the asymptotic approximation is adequate and
the test results can be trusted.

Starting Values

Starting values might be calculated by searching for
maxima in the input map. The x and y location of a maxi-
mum are used as the starting values for y1j and y2j. At this
location the starting values for y3j and y4j are calculated by
finding at what distance from this maximum the input val-
ues are half this maximum. The starting values of y5j and
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y6j are manually set. To overcome problems with conver-
gence to local minima, the procedure can be run several
times with different starting values.

Simulations

To check the ARF procedure several simulation studies
were performed. First, the procedure was checked for pro-
ducing unbiased parameter estimates, i.e. it was deter-
mined if the simulation parameters were correctly recov-
ered by the procedure. Second, the variance estimates of
the parameters were checked to be adequate and robust
against model misspecification in different SNR conditions.
Finally, the procedure was tested for its detection power
in different SNR conditions.
For the simulation studies, maps with 18 3 18 voxels

were created. The signals were either the correct model, a
misspecified model in shape, or a misspecified model in
the number of regions. Different SNRs were created by
adjusting the amount of noise added to the signals. The
chosen SNR values were calculated over the image map
and were set at 1, 2, 5, and 10 [Smith and Nichols,
2009], with SNR 1 and 2 indicating low SNRs and 5 and
10 indicating high SNRs. In Appendix A the setting of
SNRs is explained in more detail. The number of trials
was set to either 5 or 15, but the SNR of the averaged data
was held constant between these two trial conditions. To
get an adequate measure of parameter recovery, variance
estimates, and detection power, each condition was run
1,000 times.

Correct model

The correct spatial model used the Gaussian model as
specified in Eq. (3). For the simulations the following pa-
rameters were used, y 5 (9,9,2,3,0.1,100)0, creating a
slightly rotated elliptical activation area. The simulations
were used to check correct parameter recovery, to check
the variance estimates, and to perform power analyses.

Incorrect shape model

The shape model in this case was a pyramidal shape,
with a base of 7 3 5 voxels, placed in the center of the
map. The data were not smoothed, thus creating a misspe-
cified shape. This model was used to check the variance
estimates and to perform power analyses.

Incorrect number of regions

The shape model in this case was the sum of two Gaus-
sian regions placed next to each other in the map using
the following parameters: y1 5 (8,8,1,220.3,50)0, y2 5

(10,10,1,3,0.3,70)0. The ARF procedure was set to fit only
one region, therefore creating a model misspecified in the
number of regions. This model was used to check the var-
iance estimates and to perform power analyses.

Standard thresholding

To compare ARF with standard voxel-wise threshold
methods, Bonferroni, false discovery rate (FDR) [Genovese
et al., 2002; Nichols and Hayasaka, 2003], and the cluster-
size threshold corrections [Forman et al., 1995] were cho-
sen. For FDR the q parameter was set to 0.05 and the C pa-
rameter was set to 1, which are common values in fMRI
studies [Genovese et al., 2002]. The cluster-size threshold
was determined using the Bonferroni corrected P-value
and a cluster size of 3 contiguous voxels.

RESULTS

Parameter Recovery

Bias in parameter estimates was calculated for each pa-
rameter at different SNR values. The bias was divided by
its standard error to obtain standardized bias.
As can be seen in Figure 2, the bias is approximately

zero. The parameters are recovered successfully with high
accuracy even in low SNR conditions.

Variance Estimation

To evaluate the ARF procedure in producing correct var-
iance estimates, the correct model, the pyramidal model
and the ‘‘incorrect number of regions model’’ (double
model) were used to create data that were subsequently
analyzed with a model with one Gaussian shape. The var-
iance estimation was performed using Eq. (9) with a diago-
nal RðûÞ matrix and differing numbers of trials (5 and 15).
The sandwich estimations were furthermore contrasted
with standard variance estimation based on the standard
Hessian matrix using Eq. (7). It is expected that the sand-
wich estimates will outperform the standard estimates.
To promote conciseness, only the results for the location

and amplitude parameters will be reported. For these pa-
rameters the mean estimated variances over the 1,000 sim-
ulations were divided by the variance of the parameter
estimates over the 1,000 simulations. This ratio should be
close to 1. Ratios higher than 1 indicate too large estimated
variances and thus conservativeness of the ARF procedure;
whereas ratios lower than 1 would indicate liberal testing.
Figure 3 shows the variance ratios for the three different

models. As can be seen the sandwich estimates perform
better than the standard Hessian estimates in all situations.
For the correct model, the sandwich estimates are to be
preferred in low SNR conditions and are equal to the Hes-
sian estimates for the higher SNR conditions. For the incor-
rect models, the sandwich estimates are in all SNR condi-
tions more adequate than the Hessian estimates. It can also
be seen that the number of trials used for the sandwich
estimation does not have a profound effect on the ratios,
thus indicating that only five trials are sufficient. Note that
the estimates of the standard Hessian for misspecified
models are too small for low SNR and too large for high
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SNR. As can be seen by comparing the estimates for the
pyramidal and double model (both incorrect), the type of
misspecification determines the performance of the stand-
ard Hessian. Note in addition that the sandwich estimates
do not underestimate the actual variances; in fact, there is
a slight tendency to over estimate variances. Therefore, the
resulting tests will be slightly conservative.

Power Analysis

The ARF method was contrasted with the standard
methods of Bonferroni, FDR [Nichols and Hayasaka, 2003],
and the cluster size threshold (CST) method of Forman
et al. [1995]. The power for the methods was calculated as
follows: for ARF if the Wald test of the amplitude parame-
ter ðû6Þ was significant (P < 0.05) the region was classified
as active. For Bonferroni and FDR, two methods are
adopted. In the first method if a minimum of 1 significant
voxel was below the threshold it was classified as active.
For the second method if a minimum of 3, not necessarily
adjacent, significant voxels were below the threshold it
was classified as active. For the CST method the Bonfer-
roni threshold was used with a cluster size of 3 voxels to

obtain the CST. If 3 adjacent voxels were below this
threshold it was classified as active. Included was a so-
called SNR 5 0 condition, to determine whether the test
would not detect a signal in more than 5% of the simula-
tions, when in fact there is no signal present (i.e. the false-
positive rate). The proportion correct discoveries (for all
methods) refer to the proportion of cases where a signal
was detected irrespective of its location.
As can be seen in Figure 4a–c, the ARF method clearly

has an advantage when SNR is low (1 or 2), detecting
around 60–95%, respectively, irrespective of the number of
trials used and irrespective of the kind of misspecification.
For the higher SNRs (5 and 10) the power of the ARF
method goes up to 100% together with Bonferroni, FDR,
and the cluster size method. Note in addition that the ARF
method does not yield too liberal results, since its false-
positive rate is about 5%.
For the standard methods the difference between the 1

voxel criterion and the 3 voxel criterion is also clear.
Power is increased for the 1 when compared with the 3-
voxel criterion, but it is still below ARF performance. For
the cluster size method there is a power advantage over
Bonferroni (3 voxel) and FDR (3 voxel). But for Bonferroni

Figure 2.

Standardized bias for location, spatial extent, and amplitude parameters as a function of signal-

to-noise ratio.
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(1 voxel) and FDR (1 voxel) the results were comparable to
CST.
As an aside in order to check whether ARF is sensitive

to correlated noise, power simulations were run for the
double model with noise convolved with a FWHM filter of
2 voxels (see Appendix A). All other simulation parame-
ters remained the same as before. The most interesting
condition in this case is the SNR 5 0 condition. The
percentage of false positives should again be 5% or lower.

Figure 4d shows the false-positive rate (SNR 5 0) and the
power (SNR 5 1, 2, 5, 10) of the ARF method and the stand-
ard techniques. The percentage of false positives for the ARF
method with five trials was 1% and with 15 trials 0.6%.

Real Data Example

ARF was tested on a real dataset of a verbal feedback
experiment [Christoffels et al., 2007]. For a single subject

Figure 3.

Variance ratios for location and amplitude parameters of the different shape models (correct,

pyramidal, and double) as a function of signal-to-noise ratio.
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an inflated brain was created for the left hemisphere. For
four runs the unthresholded t-values (df 5 133), including
negative values, were exported as four trials analyzed by
ARF. The images consisted of 126 3 74 voxels and were
averaged over trials, creating the average map to estimate
the ARF regions. The distribution of the averaged t-values
had a minimum of 24.22, a mean of 0.12, and a maximum
of 4.28. The first quartile was 20.64 and the third quartile
was 0.98. This created a highly peaked and small tailed
distribution. The input image is shown in Figure 5.

Standard thresholding with a FDR correction yielded
only 2 significant voxels (mainly because the small tails of
the distribution), and both CST (with Bonferroni threshold
and a cluster size of 3 voxels) and Bonferroni showed no
significant voxels. The significant FDR voxels are marked
in black in Figure 5. For the ARF procedure a sequential
fitting of 18 regions was performed to select the correct
model. The program was run in R [R Development Core
Team, 2007] and took 37.5 min for the final solution on a
2.21-GHz AMD Opteron. The ARF algorithms are available

Figure 4.

Proportion correct discoveries (power) for activated region fitting, Cluster size threshold, false

discovery rate, and Bonferroni as a function of signal-to-noise ratio for three shape models

[correct (a), pyramidal (b), and double (c)]. (a–c) The uncorrelated noise data. (d) The corre-

lated noise data with the double model. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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as a free R package and can be downloaded from (http://
home.medewerker.uva.nl/w.d.weeda1/). The BIC indi-
cated that a model with 13 regions showed the best fit, as
can be seen in Figure 6. The variances of the region param-
eters were derived from the sandwich estimates. Details of
the estimates and test are shown in Tables BI and BII (Ap-
pendix B). The final solution is displayed in Figure 7.
The ARF solution clearly yields more significant active

regions than the standard thresholded image, again show-
ing increased power over standard techniques. Note that

these results were obtained for a single subject. It may also
be clear that with 4 [location (2), spatial extent (1) and am-
plitude (1)] 3 13 5 52 parameters of interest, the ARF so-
lution gives a very concise description of the 126 3 74 5

9,324 voxels.

DISCUSSION

The method of ARF uses the observation that fMRI acti-
vation consists of spatially smooth clusters: it describes an
entire fMRI image with a multitude of Gaussian-shaped
regions. In the simulations and in a real experiment it was
shown that ARF is robust against model misspecification
and has increased detection power over standard thresh-
olding techniques. Although ARF has increased power, it
was also shown that ARF does yield tests that are slightly
conservative. This indicates that the regions detected by
ARF can be considered as being active regions, but there
may still be other active regions that remain undetected.
Three extensions of ARF might be considered. First, ARF

works on 2D slices or flattened 3D images. The method
may be extended to 3D. This requires however one addi-
tional parameter to define location, and three additional
parameters to define the spatial extent of each activated
region. This increases computational complexity and might
reduce the power of the technique. This added to the fact
that fMRI results are nearly always presented in 2D, sug-
gesting that the 2D or flattened 3D analysis might suffice.
Second, in our simulations we have assumed that the

temporal noise is uncorrelated. Of course this is an unreal-
istic assumption, but in real applications an appropriate
temporal correlation model can be incorporated in the
GLM that serves as input for the ARF procedure. Third,
although we showed in simulations that ARF does not
detect any spurious clusters introduced by correlated

Figure 5.

Average activation (t-values) of the left hemisphere from four runs

of the experiment (unthresholded). Active voxels (based on FDR

correction) are marked black. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 6.

BIC values for 18 sequential models. The triangle indicates the

best fitting model (13 regions). [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 7.

Activated region fitting solution with 13 active regions. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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noise, the performance of ARF in such situations should
be studied further.
The idea of using specific shape models is not entirely

new to fMRI analysis. One of the most well-known imple-
mentations comes from Hartvig [2002], who also uses a
Gaussian shape model to describe regions of fMRI images.
The main difference between the Stochastic Geometry
Model of Hartvig and ARF is that the former is a spatio-
temporal approach in a Bayesian framework, while ARF
uses temporal and spatial information in distinct models.
Therefore, ARF might be more applicable in practice,
because standard analysis packages can be used to pre-
process and analyze the temporal structure, after which
ARF is invoked to model the spatial structure.
Lukic et al. [2007] also used an explicit shape model to

describe fMRI data very similar to the ARF method. Both
methods fit a multitude of spatial functions to activation
data and use the parameters to test hypotheses. The major
difference between the methods is that ARF uses a Gaus-
sian shape with parameter estimates of location, spatial
extent, and amplitude, whereas in the method of Lukic
et al. a blurred pillbox shape or a Gaussian shape with a
fixed width was used. In this sense ARF has more flexibil-
ity in shapes of activation. Another advantage of ARF is
that it produces robust hypothesis tests under misspecifica-
tion of the shape model.
In sum, it is important to account for the spatial smooth-

ness of activated regions, since it improves the detection
power. ARF accounts for spatial smoothness by parameter-
izing activated regions by Gaussian shapes. Since this only
gives an approximation to reality, the tests on region pa-
rameters are designed to be robust against model specifica-
tion. Simulation studies and a real data example have
shown that ARF is a robust high-power method for fMRI
analysis.
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APPENDIX A: NOISE SIMULATIONS

For the simulation studies, data with different SNRs
were created by adjusting the amount of noise added to
the signals. The white noise added to the signal was nor-
mally distributed with zero mean and standard deviation
1/SNR 3 max (b) [Krueger and Glover, 2001], where b

denotes the true noiseless signal and where the maximum
is taken over the voxels. It is shown in the work of Wink
and Roerdink [2006] that noise is approximately normally
distributed. It is assumed that the noise is both spatially
and temporally uncorrelated, which are of course only
crude approximations to reality but which suffice for the
present purposes. The chosen SNR values are based on
typical SNRs found in fMRI experiments (see, for example,
Smith and Nichols, 2009).
To assess the false positives and power under correlated

noise conditions, the same procedure was used except that
en was convolved with a FWHM filter of 2 voxels before
the signal was added. This created a condition where the
spatial extent of the noise is relatively high compared with
the spatial extent of the signal.

Procedure

Let n 5 1, . . . , N denote voxels, t 5 1, . . . , T time points
in a time series, and SNR be a chosen SNR. Let bn be a
vector of length T containing the real signal at voxel n
which is constant over all time points T. Then, for each
voxel n:

a. Create a vector en of length T with for each element a

sample from N 0; max bð Þ
SNR

� �  ffiffiffiffi
T

p
;

b. The real time series at voxel n is then given by bn 1 en;
c. bn is then given by the mean of bn 1 en;
d. The standard error of bn is given by the standard

error of bn 1 en;
e. The t-value with (T 2 1) degrees of freedom is then

given by bn/se(bn).

APPENDIX B: REAL DATATABLES

APPENDIX C: ALGORITHM OVERVIEW

TABLE BI. Estimates and standard errors for location

and amplitude parameters

Region û1 se û2 se û6 se

1 43.44 0.39 36.03 0.21 596.52 18.70
2 58.04 0.17 46.64 0.22 353.65 10.73
3 30.73 0.72 45.10 0.32 385.04 24.96
4 8.77 0.11 25.73 0.18 104.88 7.65
5 38.28 0.42 17.39 0.34 159.96 18.81
6 56.05 0.25 20.49 0.56 513.31 22.55
7 25.81 0.20 28.46 0.21 228.69 16.58
8 56.95 0.34 60.90 0.22 256.50 15.18
9 38.87 1.01 56.74 0.69 137.79 7.36
10 70.86 0.18 19.15 0.20 348.48 11.98
11 28.30 0.66 35.21 0.77 560.73 36.48
12 84.87 0.46 8.43 0.27 205.88 19.62
13 57.12 0.72 3.39 0.18 205.70 27.39

TABLE BII. Wald statistic P values for spatial

extent and amplitude

Region Spatial extent Amplitude

1 0.0000* 0.0000*
2 0.0000* 0.0000*
3 0.0000* 0.0000*
4 0.0000* 0.0000*
5 0.0014* 0.0000*
6 0.0000* 0.0000*
7 0.0000* 0.0000*
8 0.0000* 0.0000*
9 0.0000* 0.0000*
10 0.0000* 0.0000*

11 0.0000* 0.0000*
12 0.0000* 0.0000*
13 0.0000* 0.0000*

* Significant with P < 0.0038 (Bonferroni corrected).
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